表面粗糙度的检测方法
粗糙度的测量方法

粗糙度的测量方法
粗糙度是指物体表面的不平整程度,可以通过以下几种方法来测量粗糙度:
1. 触摸和视觉评估法:通过手感或目视观察物体表面的不平整程度来评估粗糙度,这种方法简单直观,但缺乏精确性。
2. 比较法:将待测物体与已知粗糙度的标准参照物进行比较,通过人眼观察和判断两者之间的差异来确定粗糙度。
这种方法需要经验丰富的观察者来进行评估。
3. 使用表面粗糙度评估仪器:这种仪器能够测量物体表面的凹凸程度、纹理、峰谷间距等参数,常用的仪器有粗糙度测量仪、激光扫描仪、形貌测量仪等。
这些仪器可以提供精确的数值化结果,并且适用于各种表面材料。
需要注意的是,粗糙度的测量方法与被测物体的尺寸、材料、形状等因素相关,选择合适的测量方法需要根据具体情况进行判断。
表面粗糙度的测量方法

环境振动和噪声会影响测量结果的准确性,应采取措施减小或消除这些因素的 影响。
测量误差的来源与控制
误差来源分析
表面粗糙度的测量误差可能来源于测 量设备、被测表面、操作人员和环境 条件等多个方面。
误差控制措施
为减小测量误差,应对各个方面的误 差源进行分析和控制,如提高操作人 员的技能水平、加强设备维护和校准 等。
触针法
总结词
利用触针接触表面并测量其微观不平度的度测量方法之一。它通过将一个微小的触针置于 待测表面上,利用传感器记录触针在表面上的起伏变化,从而测量表面的微观不 平度。该方法精度高,适应性强,但可能会对表面造成轻微划痕。
印模法
总结词
通过复制表面微观形貌并进行分析的方法。
表面粗糙度的测量方法
目录 CONTENT
• 表面粗糙度概述 • 接触式测量方法 • 非接触式测量方法 • 测量方法的选用与注意事项
01
表面粗糙度概述
定义与重要性
定义
表面粗糙度是指物体表面微观不 平度的程度,通常是指在加工过 程中留下的痕迹。
重要性
表面粗糙度对物体的使用性能和 寿命有着重要影响,如耐磨性、 抗腐蚀性、接触刚度等。
光学显微镜法
总结词
利用光学显微镜观察表面形貌来测量表 面粗糙度
VS
详细描述
光学显微镜法是利用光学显微镜观察表面 形貌,通过观察到的表面形貌特征来测量 表面粗糙度的一种非接触式测量方法。通 过调整显微镜的放大倍数和焦距,可以观 察到不同尺度下的表面形貌特征,从而测 量表面粗糙度的大小。
扫描隧道显微镜法
糙度值增大。
工件材料
工件材料的硬度、韧性 等物理性质对表面粗糙
度有影响。
粗糙度的检测方法

粗糙度的检测方法
粗糙度的检测方法:
① 根据被测表面材质形状选择合适之检测仪器如表面粗糙度仪比较样块等;
② 清洗待测工件表面去除油污灰尘防止杂质影响测量精度;
③ 将工件固定在专用夹具上调整位置使其与测量探头平行并保持一定压力接触;
④ 设定仪器参数如测量长度取样长度滤波条件等并预热至稳定状态;
⑤ 启动测量程序使探头沿设定路径扫描记录表面高低变化信息;
⑥ 测量完毕后仪器自动计算Ra Rz Rp等粗糙度参数并显示结果;
⑦ 对于复杂曲面或难以接触之部位可采用光学非接触式测量方法如激光共聚焦显微镜;
⑧使用比较样块时需先用标准块校准并选择与待测表面相似粗糙度等级;
⑨ 在样块上选取代表区域与待测表面进行比对观察两者纹理差异估计粗糙度值;
⑩ 对于要求极高精度之场合还需采用原子力显微镜扫描隧道显微镜等高端设备;
⑪ 完成测量后及时记录数据并根据标准评价表面质量是否符
合要求;
⑫ 根据测量结果分析加工工艺合理性并为后续改进提供参考依据。
混凝土表面粗糙度检测标准

混凝土表面粗糙度检测标准混凝土表面粗糙度检测标准一、前言混凝土表面的粗糙度是指混凝土表面的凹凸不平程度。
混凝土表面的粗糙度对于混凝土结构的使用寿命和安全性有着非常重要的影响。
因此,在混凝土结构施工过程中,必须对混凝土表面的粗糙度进行检测。
本文旨在介绍混凝土表面粗糙度检测标准,以便工程师和施工人员了解混凝土表面粗糙度检测的标准和方法。
二、检测方法混凝土表面粗糙度的检测方法主要有以下几种:1. 直接观测法直接观测法是指通过肉眼观察混凝土表面的凹凸不平程度来判断混凝土表面的粗糙度。
这种方法简单易行,但是由于人的主观因素,结果可能存在误差。
2. 用手触摸法用手触摸法是指用手触摸混凝土表面的凹凸不平程度来判断混凝土表面的粗糙度。
这种方法可以检测出较小的凹凸不平,但是由于受个人感觉和手感的影响,结果也可能存在误差。
3. 用粗糙度计测量法用粗糙度计测量法是指使用粗糙度计来测量混凝土表面的粗糙度。
这种方法可以测量出更加准确的混凝土表面粗糙度,并且结果不受主观因素的影响。
但是,由于设备价格较高,不是所有的工程项目都能够采用这种方法。
三、检测标准混凝土表面粗糙度的检测标准主要有以下几个方面:1. 表面粗糙度等级混凝土表面粗糙度等级是指混凝土表面的凹凸不平程度的大小。
根据混凝土表面粗糙度等级的不同,可以分为以下几种:(1)一级表面粗糙度:混凝土表面非常平整,几乎没有任何凹凸不平。
(2)二级表面粗糙度:混凝土表面有一定的凹凸不平,但是可以用手触摸时不感到明显的凹凸。
(3)三级表面粗糙度:混凝土表面有明显的凹凸不平,但是还不会对混凝土结构的使用和安全产生影响。
(4)四级表面粗糙度:混凝土表面的凹凸不平非常明显,会对混凝土结构的使用和安全产生较大的影响。
2. 检测标准混凝土表面粗糙度的检测标准主要有以下几个方面:(1)一级表面粗糙度:混凝土表面的平整度应该在3mm以内,混凝土表面的高低差应该在1mm以内。
(2)二级表面粗糙度:混凝土表面的平整度应该在5mm以内,混凝土表面的高低差应该在2mm以内。
表面粗糙度的测量

表面粗糙度的测量表面粗糙度的测量方法有光切法,光波干涉法及触针法(又称针描法)等,工厂常用的还有粗糙度样板直接和被测工件对照的比较法,以及利用塑性和可铸性材料将被测工件加工表面的加工痕迹复印下来,然后再测量复印的印模的印模法。
一、实验目的1.建立对表面粗糙度的感性认识;2.了解用双管显微镜测量表面粗糙度的原理及方法。
二、实验内容用双管显微镜测量表面粗糙度的Rz值。
三、测量原理及仪器说明双管显微镜又撑光切显微镜,它是利用被测表面能反射光的特性,根据“光切法原理”制成的光学仪器,其测量范围取决于选用的物镜的放大倍数,一般用于测量0.8-80微米的表面粗糙度Rz值。
仪器外型如图1所示,它由底座6,支柱5,横臂2,测微目镜13,可换物镜8及工作台7等部分组成。
仪器备有四种不同倍数(7X,14X,30X,60X)物镜组,被测表面粗糙度大小(估测)来选择相应倍数的物镜组(见表1)。
表1 双管显微镜测量参数物镜放大倍数N 总放大倍数目镜视场直径(mm)物镜与工件距离(mm)测量范围Rz(µm)换算系数E(微米/格)7X 60X 2.5 9.5 30~30 1.2514X 120X 1.3 2.5 6.3~20 0.6330X 260X 0.6 0.2 1.6~6.3 0.29460X 510X 0.3 0.04 0.8~1.6 0.147测量原理如图2所示,被测表面为P1-P2阶梯表面,当一平行光束从45度方向投射到阶梯表面时,即被折成S1和S2两段,从垂直于光束的方向上就可以在显微镜内看到S1和S2两段光带的放大像S1'S2',同时距离h也被放大为h1'。
通过测量和计算,可求得被测表面的不平度高度h。
这种方法类似在零件表面斜切一刀,然后观察其剖面的轮廓形状,因此称为光切法。
图3为双管显微镜的光学系统图,由光源1发出的光,经聚光镜2,狭缝3,物镜4以45度方向投射到北测表面上,调整仪器使反射光束经物镜5成像在目镜分划板6上,光束被测上表面的S1点反射,在下表面S2点反射,它们各成像于分划板6的S1'和S2',距离h1被放大为h1',通过目镜可观察到凹凸不平的光带(图4(b)),光带边缘即工件表面上被照亮了的h1的放大轮廓像h1',测量h1'即可求出被测表面的不平高度h2。
表面粗糙度量测方法

表面粗糙度是对工件质量进行评估的重要指标之一,对于其在使用过程中的配合质量、运动精度以及耐磨损性等都有着不容忽视的影响,因此,想要保证工件的加工质量,就必须采取有效措施,降低表面粗糙度。
表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动等。
由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。
表面粗糙度与机械零件的配合性质、耐磨性、疲劳强度、接触刚度、振动和噪声等有密切关系,对机械产品的使用寿命和可靠性有重要影响。
一般标注采用Ra。
表面粗糙度测量方法一、接触式测量方法接触式测量方法指的是,在测量设备中的探测位置会直接与表面接触,可以帮助人们获取被测表面的信息。
但是这种测量方式不适用于刚性强度偏高、容易发生磨损的表面。
1、比较测量方法在车间普遍应用的测量方法是比较法。
比较法指的是将对比粗糙度样板与被测表面进行比较,测量人员直接用手的触摸来确定表面的粗糙度,或者通过肉眼观察,也可以使用放大镜、比较显微镜来对比。
通常情况下,当粗糙度评定参数值偏高时,可以运用比较法,但是很可能造成很大的误差。
2、印模法印模法指的是采用一些塑性材料当做块状印模,然后将其与被测表面互相贴合,再取下时,印模上会出现表面的具体轮廓,测量人员可以开始测量印模的表面,这种方式可以获取部件的表面粗糙度。
一些规模大的零件内表面测量工作无法通过设备来完成,可以使用印模法来实现。
然而印模法也存在一定缺陷,它的准确性不强,而且操作过程很复杂。
3、触针法触针法的另一种名称是针描法。
这种方法是在被测表面上放置一根很尖的触针,测量过程中需要垂直放置,使触针做横向移动。
根据被测表面的轮廓,触针会自行做垂直起伏运动。
把触针所做的位移活动利用电路转变为电信号后,可以将其方法,分析与计算后就可以获取表面粗糙度的指数。
触针法主要包括感应式、压电式以及电感式等几种方法。
表面粗糙度的测量

光切法测量原理为从光源发出的光线经聚光镜和狭缝形成一束扁 平光带,通过物镜组以45°方向投射在被测表面上。由于被测表面上 存在微观不平的峰谷,被具有平直边缘的狭缝像的亮带照亮后,表面 的波峰在S点产生反射,波谷在S′点产生反射,在与被测表面成另一 个45°方向经物镜放大后反射到目镜分划板上。从目镜中可以看到被 测表面实际轮廓的影像各自成像在分划板的a和a′处,若两点之间的 距离为N,用目镜上的测微百分表测出轮廓影像的高度N,根据物镜组 的放大倍数K,即可算出被测轮廓的实际高度h。
公差配合与要进行尺寸和形位误差的 测量,还要进行表面粗糙度的测量。其测量方法很多,下面 仅介绍几种常见的测量方法。 一、比较法
比较法是将被测表面与表面粗糙度样块相比较来判断工 件表面粗糙度是否合格的检验方法。
表面粗糙度样块的材料、加工方法和加工纹理方向最好 与被测工件相同,这样有利于比较,提高判断的准确性。另 外,也可以从生产的零件中选择样品,经精密仪器检定后, 作为标准样板使用。
公差配合与测量技术
用样板比较时,可以用肉眼判断,也可以用手触摸感觉, 为了提高比较的准确性,还可以借助放大镜和比较显微镜。 这种测量方法简便易行,适于在车间现场使用,常用于评定 中等或较粗糙的表面。 二、光切法
光切法就是利用“光切原理”来测量零件表面的粗糙度; 工厂中常用的光切显微镜(又称为双管显微镜),就是根 据光切原理制成的测量粗糙度仪器。
光切显微镜
三、针描法 针描法的工作原理是利用金刚石触针在被测表面上等速
缓慢移动,由于实际轮廓的微观起伏,迫使触针上下移动, 该微量移动通过传感器转换成电信号,并经过放大和处理得 到被测参数的相关数值。按照针描法原理测量表面粗糙度的 常用量仪有电动轮廓仪。
表面粗糙度的测量方法

21
干涉显微镜
编辑课件ppt
22
编辑课件ppt
23
Mirau干涉仪的改进: R被固定在PZT上。
1986年WYKO公司研制成功 的TOPO非接触微表面测量 系统。 测量精度达 1
1000
自动完成测量。
编辑课件ppt
24
Nomarski干涉显微镜及改进
带有旋转检偏器测相的改进的微分干涉显微镜(清华)
m
Sm =2C (ei1 ei ) / m i1
❖ (5)用光切法测量Ra值
因测量与计算都很麻烦,故很少应用。
编辑课件ppt
19
4.仪器的测量误差和示值相对误差的检定
❖ (1)测量误差的主要因素有:瞄准误差、测微目镜制造误 差、估读误差、 定度用标准尺误差、被测工件定位误差、 仪器使用调整误差等。
编辑课件ppt
9
二、光切法测量表面粗糙度
编辑课件ppt
10
1.光切法原理:
所谓光切法就是用一狭窄的扁平光束 以一定的倾斜角照射到被测表面上,光 束在被测表面上发生反射,将表面微观 不平度用显微镜放大成象进行观测的方 法。图4-5是光切法的测量原理图。
图4-5 光切原理
❖ 若倾斜角取45°,则得:
编辑课件ppt
8
4.间接测量方法 这类方法是利用被测表面的某种特性来间接评定表
面粗糙度的数值。例如: ❖ 气动法:是利用流经测量头与被测表面间气体流量的大小
或其所引起的压力变化来评定表面粗糙度。 ❖ 电容法:是利用测量头与被测表面间形成的电容量大小来
评定表面粗糙度。不能直接测出表面参数Ra或Rz,而需 进行比对定标,且要配备一些和被测表面几何形状相适应 的测量头。 ❖ 其他方法:激光散射法、激光散班法、激光全息法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面粗糙度的检测方法
表面粗糙度的检测是通过测量表面的微观形状和轮廓来评估表面质量的过程。
有多种方法可以用于表面粗糙度的检测,其中一些常见的方法包括:
表面轮廓仪(Surface Profilometer):表面轮廓仪是一种用于测量物体表面轮廓的设备。
它通过沿表面滑动或扫描,利用探测器检测高度变化,并生成相应的高度剖面图。
通过分析这些剖面图,可以得出表面的粗糙度参数。
激光干涉仪(Laser Interferometer):激光干涉仪利用激光光束的干涉效应来测量表面的高度变化。
这种方法对于高精度的表面粗糙度测量很有效,可以提供亚微米级别的分辨率。
原子力显微镜(Atomic Force Microscope,AFM):AFM是一种在原子尺度上测量表面形状和粗糙度的工具。
它使用微小的探针扫描样品表面,通过探测器的运动来生成高分辨率的表面图像。
表面粗糙度仪(Surface Roughness Tester):这是一种专门用于测量表面粗糙度的便携式仪器。
通常采用钻头或球形探头,测量表面在垂直方向的高低变化,并输出相应的粗糙度参数,如Ra、Rz等。
光学显微镜:在一些情况下,使用光学显微镜可以对表面进行观察和评估。
虽然其分辨率较低,但对于一些较大尺度的粗糙度评估仍然有效。
在选择适当的检测方法时,需要考虑表面的特性、粗糙度范围和检测精度的要求。
根据具体的应用场景,可以选择最合适的工具和技术。