微波技术与天线实验指导书

合集下载

微波技术与天线实验三

微波技术与天线实验三

微波技术与天线实验报告图1.新建HFSS工程图2. 设置求解类型2.创建微带天线模型2.1设置默认的长度单位为mm图3. 设置默认的长度单位为mm 2.2建模相关选项设置图4. 建模相关选项设置2.3 创建参考地在Z=0的XOY面上创建一个顶点位于(-45mm, -45mm),大小为90mm×90mm 的矩形面作为参考地,命名为GND,并为其分配为理想导体边界条件。

2.4 创建介质板模型创建一个长、宽、高为80mm×80mm×5mm的长方体作为介质板层,介质板层的底部位于参考地上,其顶点坐标为(-40,-40, 0),介质板的材料为R04003,介质板层命名为Substrate2.5 创建微带贴片在Z=5的XOY面上创建一个顶点坐标为(-15.5mm,-20.7mm,5mm),大小为30.0mm×41.4mm的矩形面作为微带贴片,命名为Patch,并为其分配理想导体边界条件。

2.6 创建同轴馈线的内芯创建一个圆柱体作为同轴馈线的内芯,圆柱体的半径为0.5mm,长度为5mm,圆柱体底部圆心坐标为(9.5mm,0,0),材质为理想导体,同轴馈线命名为Feed。

2.7 创建信号传输端口面同轴馈线需要穿过参考地面,传输信号能量,因此需要在参考地面GND上开一个圆孔允许能量传输。

圆孔的半径为 1.5mm,圆心坐标为(9.5mm,0,0),并将其命名为port.2.8 创辐射边界表面创建一个长方体,其顶点坐标为(-80,-80,-35),长方体的长宽高为160mm ×160mm×75mm,长方体模拟自由空间,因此材质为真空,长方体命名为Air,创建好这样一个长方体之后,设置其四周表面为辐射边界条件。

、图5 微带贴片天线模型3.设置激励端口设置同轴信号端口面的激励方式为集总端口激励。

4.添加和使用变量添加设计变量Length,初始值为30.0mm,用以表示微带贴片天线的长度,添加设计变量Width,初始值为41.4mm, 用以表示微带贴片天线的宽度,添加设计变量Xf, 用以表示同轴馈线的圆心点的X轴坐标。

微波实验-123

微波实验-123

第一部分微波技术与天线实验实验一微波功率与频率的测量一、实验目的1.了解微波测量系统的组成、测试仪器的工作原理及测试方法。

2.学会用波长计谐振吸收法测频率,掌握吸收式波长计测取频率值的原理和方法。

3.学会用微瓦功率计测功率。

二、实验要求1.充分作好实验前的预习和准备工作,写出预习报告。

2.实验应严格按照仪器使用说明、测量方法和实验步骤进行操作。

三、预习报告要求1.画出实验仪器和器件连接框图。

2.简述实验目的、实验原理和方法。

3.写出实验步骤,画出数据表格。

四、实验注意事项1.开机前必须将信号源的衰减器置于较大衰减量,否则易烧坏器件。

(注意:面板标注“功率”,则向左旋,衰减增大;面板标注“衰减”,则向右旋,衰减增大。

)2.拆接器件时,将信号源工作方式置“外调制”,不要随意关电源。

3.连接器件时,注意波导口方向。

五、实验原理微波信号发生器是由高频部分、调制部分、功率指示器部分、频率显示及衰减显示部分组成。

高频部分是由体效应振荡器、截止式衰减器二个单元组成。

体效应振荡器采用砷化镓体效应二极管作为振荡管,在外加直流偏压的瞬时,所产生的尖峰脉冲电流能量,被不断用来激发谐振腔。

当高频电源送来高频电压加到体效应管上,在谐振腔产生相应射频电压,腔体的输出耦合孔直接耦合输出,经过环流器送到调制器与脉冲形成电路进行调制,从而完成对微波信号的脉冲调幅,工作状态选择电路控制输出状态。

当工作状态选择按键置“等幅”时,信号源输出微波信号,输出功率可直接用微瓦功率计测得,输出信号频率可用外接的波长计测得,也可校对信号源频率显示是否准确。

当工作状态选择按键置“方波”或“脉冲”时,则输出微波调幅信号。

仪器采用PIN调制器来实现微波信号的脉冲幅度调制,整个调制部分是由一套脉冲形成电路及一个PIN调制器构成,由脉冲形成电路产生一系列的脉冲信号,驱动PIN 调制器,从而完成对微波信号的脉冲调制。

图1-1 简单的微波测量系统框图六、实验系统简介一般常用的微波测量系统如图1-1所示。

《微波技术与天线》实验指导书(DOC)

《微波技术与天线》实验指导书(DOC)

微波技术与天线实验指导书南京工业大学信息科学与工程学院通信工程系目录实验一微波测量系统的熟悉和调整 - 2 -实验二电压驻波比的测量 - 9 -实验三微波阻抗的测量与匹配 - 12 -实验四二端口微波网络阻抗参数的测量 - 17 -实验一微波测量系统的熟悉和调整一、实验目的1. 熟悉波导测量线的使用方法;2. 掌握校准晶体检波特性的方法;3. 观测矩形波导终端的三种状态(短路、接任意负载、匹配)时,TE10波的电场分量沿轴向方向上的分布。

二、实验原理1. 传输线的三种状态对于波导系统,电场基本解为(1) 当终端接短路负载时,导行波在终端全部被反射――纯驻波状态。

在x=a/2处其模值为:最大值和最小值为:(2) 终端接任意负载时,导行波在终端部分被反射――行驻波状态。

在x=a/2处由此可见,行驻波由一行波与一驻波合成而得。

其模值为:可得到最大值和最小值为:(3) 终端接匹配负载时,导行波仅有入射波而无反射波――行波状态。

其模值为由上述可知,在测量线的终端分别接上短路器、任意负载和匹配负载,移动探针位置,都可以观测到测量线中不同位置的电场强度(复振幅大小)对应的电流指示读数。

2. 由测量线的基本工作原理可知,指示器的读数1是探针所在处|E|对应的检波电流。

任一位置处|E|与I的对应关系应视检波晶体二极管的检波特性而定。

一般,这种关系可通过对二极管定标而确定。

所谓定标,就是找出电场的归一化值|E’|与I的对应关系。

我们知道,当测量线终端短路时:如果我们取任意一零点(波节点)作为坐标起始位置,且坐标用d表示,则:晶体二极管上的检波电压u正比于探针所在处|E’|。

所以上式可用u的归一化值u’来表示。

即:晶体二极管的检波电流I与检波电压u之间的关系为:式中c为比例常数,n为检波率。

式中c’为比例常数。

3. 当测量线的探针插入波导时,在波导中会引入不均匀性,从而影响系统的工作状态。

探针在开槽线中与电场耦合,其效果相当于在等效传输线上并联了一个探针支路。

微波与天线实验报告

微波与天线实验报告

微波与天线实验报告微波与天线实验报告引言:微波与天线是无线通信领域中非常重要的技术。

微波是指频率范围在1GHz至300GHz之间的电磁波,它在通信、雷达、卫星通信等领域得到广泛应用。

天线是将电磁波转换为电信号或将电信号转换为电磁波的装置,它在无线通信中起到传输和接收信号的关键作用。

本实验旨在通过实际操作,深入了解微波与天线的原理和应用。

一、实验目的本实验的目的是通过实际操作,掌握微波与天线的基本原理和实验方法,了解它们在无线通信中的应用。

二、实验设备与材料1. 微波信号发生器2. 微波天线3. 微波功率计4. 微波频谱仪5. 微波衰减器6. 微波衰减器控制器7. 微波衰减器电源8. 射频线缆9. 各种连接线缆10. 计算机三、实验步骤与结果1. 实验一:微波信号发生器的调试与测量a. 将微波信号发生器与微波功率计通过射频线缆连接。

b. 打开微波信号发生器和微波功率计,调节微波信号发生器的频率和功率,观察微波功率计的读数变化。

c. 记录不同频率和功率下的微波功率计读数,并绘制频率与功率的关系曲线。

2. 实验二:微波天线的特性测量a. 将微波天线与微波信号发生器通过射频线缆连接。

b. 调节微波信号发生器的频率和功率,观察微波天线的辐射特性。

c. 测量不同频率和功率下微波天线的增益、方向性等参数,并绘制相应的特性曲线。

3. 实验三:微波天线的阻抗匹配a. 将微波天线与微波信号发生器通过射频线缆连接。

b. 调节微波信号发生器的频率和功率,观察微波天线的阻抗匹配情况。

c. 根据实验结果,调整微波天线的结构和参数,实现最佳的阻抗匹配效果。

四、实验结果分析通过实验一,我们可以得到微波信号发生器的频率与功率的关系曲线,从而了解微波信号发生器的工作特性。

实验二则帮助我们了解微波天线的辐射特性,如增益、方向性等参数,这对于无线通信系统的设计和优化至关重要。

实验三则是为了实现微波天线的阻抗匹配,阻抗匹配的好坏直接影响到系统的传输效率和性能。

微波技术与天线实验

微波技术与天线实验

微波技术与天线实验一、实验课学时分配表二、实验内容:实验一T型波导内场分析实验一、实验目的1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。

2、掌握T型波导功分器的设计方法和工作原理。

二、实验内容使用HFSS进行T型波导功分器的设计实现,创建设计模型,进行求解设置,并运行仿真计算。

最后进行相关的数据后处理。

三、基本原理及要求T型波导功分器又叫T型波导分支器,它能将波导能量从主波导中分路接出,它是微波功率分配器件的一种。

此次设计H面T型分支,使得从一端口输入的功率可以平均的分配给端口2、3,使得2、3端口的TE10波为等幅同向。

同时,通过设置隔片改变各端口的功率分配。

进行扫频设置,观察S参数曲线和电场分布。

实验二T型波导优化设计实验一、实验目的1、进一步熟悉并掌握HFSS的工作界面、操作步骤及工作流程。

2、掌握T型波导功分器的优化设计方法。

二、实验内容使用HFSS进行T型波导功分器的优化设计实现,进行参数扫描分析,利用HFSS的优化设计功能实现3端口输出功率为2端口输出功率的2倍。

三、基本原理及要求T型波导功分器又叫T型波导分支器,它能将波导能量从主波导中分路接出,它是微波功率分配器件的一种。

此次设计H面T型分支,使得从1端口输入的功率不平均的分配给端口2、3,使得2端口的输出功率为3端口的一半。

同时,注意隔片尺寸的大小对于改变各端口的功率分配的作用。

改变波端口激励,实现2端口输入,1、3端口输出。

实验三微带贴片天线设计实验一、实验目的1.熟悉并掌握HFSS设计微带天线的操作步骤及工作流程。

2.掌握ISM频段微带贴片天线的设计方法。

二、实验内容使用HFSS进行微带贴片天线的设计实现,创建设计模型,进行求解设置,设置求解频率为2.45GHz,同时添加1.5-3.5GHz的扫频设置,分析天线在1.5-3.5GHz频段内的电压驻波比,并运行仿真计算。

将谐振频率落在2.45GHz频点上。

最后进行相关的数据后处理。

微波技术与天线实验指导书概要

微波技术与天线实验指导书概要

微波技术与天线实验指导书王东明吴迪信息科学与工程学院实验技术中心实验一频谱分析仪使用实验目的:一、掌握频谱分析仪的使用二、使用频谱分析仪进行信号捕捉与测量实验原理:实验内容要求:测量周围环境800MHz~1GHz的信号,并记录其频谱图并查找分析其所属(移动、联通、小灵通、未知实验二返回损耗测量实验目的:一、了解天线的基础知识。

二、了解常见的天线结构。

三、利用频谱仪测量天线的返回损耗实验原理:天线是射频系统中不可缺少的组成部分,其主要功能是将电磁波发射至空气中或从空气中接收电磁波,相当于射频发射接收电路与空气的信号耦合器。

合适的天线可以改善信号分布增大信噪比、克服覆盖范围内01111in VSWR Z Z⎧+Γ=⎪-Γ⎪⎨+Γ⎪=⎪-Γ⎩(2-41. 辐射效率r η定义为 rr iP P η= (2-5式中, P r 为天线辐射出的功率,单位为W ;P i 为馈入天线的功率,单位为W 。

2. 辐射方向图:用一极坐标图来表示天线的辐射场强度与辐射功率的分布,如图2-1所示。

Φ=00 θ=900Φ=270图2-1 辐射方向图3.半功率角的定义如图2-2所示。

(a按电场定义(b按功率定义图2-2 半功率波束宽度4.旁瓣:在主辐射波瓣旁,还有许多副瓣,沿角度方向展开如图2-3所示。

其中HPBW为半功率波束宽度,辐射最大功率下降3dB时的角度;FNBW为第一零点波束宽度;SLL为旁瓣高度,辐射最大功率与最大旁瓣的差。

角度/deg图2-3 主瓣与旁瓣5. 方向系数D 定义为max avP D P =(2-6式中,P max 为最大功率密度,单位为W/m 2;P av 为平均辐射功率密度,单位为W/m 2。

的薄弱环节,甚至可以降低发射功耗。

一、天线的重要参数6. 天线增益G 定义为r iP G P =(2-1式中,P r 为被测天线距离R 处所接收到的功率密度,单位为W/m 2;P i 为全向性天线距离R 处所接到的功率密度,单位为W/m 2。

微波与天线实验报告讲解

微波与天线实验报告讲解

实验一基本辐射单元方向图一、实验目的基本辐射单元,指的是基本电振子(电偶极子),基本磁振子(磁偶极子),基本缝隙,惠更斯面元等。

它们是构成实际天线的基本单元。

通过本次实验了解这些基本辐射单元在空间产生的辐射场。

二、实验指导实验界面有三个显示区:立体方向图、E面方向图、H面方向图,分别用来显示基本辐射单元在空间产生的辐射场的立体方向图、E面方向图和H面方向图。

界面下端有六个按钮:基本电振子、基本磁振子、基本缝隙、惠更斯面元、Return、Help。

点击按钮基本电振子,则基本电振子的方向图在显示区内显示出来,由显示图形可见基本电振子所辐射的电磁场强度不仅与r有关,而且与观察方向θ有关。

在振子的轴线方向,场强为零;在垂直于振子轴的方向上,场强最大;在其它方向上,场强正比于sinθ。

点击按钮基本磁振子,则基本磁振子的方向图在显示区内显示出来,由显示图形可见基本磁振子所辐射的电磁场的空间图形与基本电振子一样,这是因为基本电振子的辐射是振子上电流产生的辐射与基本磁振子的辐射是振子表面切向磁场产生的磁场是等效的。

点击按钮基本缝隙,则基本缝隙的方向图在显示区内显示出来,由显示图形可见基本缝隙所辐射的电磁场与基本磁振子完全相同,基本缝隙与基本磁振子是等效的。

点击按钮惠更斯面元,则惠更斯面元的方向图在显示区内显示出来,由显示图形可见惠更斯面元所辐射的电磁场在空间是一个对称于面元法线的心脏形方向图。

点击按钮Return,返回天线实验总界面。

实验二对称阵子方向图分析一、实验目的:通过MATLAB编程,熟悉电基本阵子和对称阵子的辐射特性,了解影响对称阵子辐射的因素及其变化对辐射造成的影响二、实验原理:1.电基本振子的辐射电基本振子(Electric Short Dipole)又称电流元,它是指一段理想的高频电流直导线,其长度l远小于波长λ,其半径a远小于l,同时振子沿线的电流I处处等幅同相。

用这样的电流元可以构成实际的更复杂的天线,因而电基本振子的辐射特性是研究更复杂天线辐射特性的基础。

微波技术与天线(第三版)第2章

微波技术与天线(第三版)第2章

EZ 0
j m m n H x 2 H mn sin( x) cos( y)e jz a a b m 0 n 0 kc

j n m n H y 2 H mn cos( x) sin( y)e jz b a b m 0 n 0 kc

第2章 规则金属波导
(2)
与截止波长关系为:
g
2 1 ( ) c来自2 其中, c kc
第2章 规则金属波导
(3)
相速
对于TE、TM波,波速比光速快——快波
群速
v p vg v2
第2章 规则金属波导
(4) 波阻抗
Et Z Ht
(5) 传输功率
第2章 规则金属波导
截止波长: cTM mn 相移常数:
2 2 kc ( m / a ) 2 ( n / b) 2 2
2
g

2 1 ( ) c
第2章 规则金属波导
TM波的场量表达式
j mπ mπ nπ E x 2 Emn cos( x) sin( y )e jz a a b m 1 n 1 k c
分析方法:
1、写出基本方程与边界条件
2、分离变量法,求解纵向波动方程
3、由边界条件,求波动方程特解 4、由横纵关系,求横向量 5、分析场特性
第2章 规则金属波导 场量横纵分离
2 Et k 2 Et 0 2 2 Ez k Ez 0 2 2 H k Ht 0 t 2 H k 2 H 0 z z
麦克斯韦方程组 亥姆霍兹方程
横纵分离
第2章 规则金属波导
2.1导波原理
第2章 规则金属波导
横纵分离
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档