人体热释电红外线传感器的原理和应用
热释电红外传感器原理及其应用

热释电红外传感器原理及其应用热释电红外传感器原理及其应用
热释电红外传感器(thermoelectric infrared sensor,TIRS)是一种利用热释电效应(thermoelectric effect)来检测环境中红外热源的光学传感器。
它能够通过辐射能量与传感器内表面温度的差异来检测非可见的红外辐射,以实现远距离监测和测量热源发射能力的目的。
热释电红外传感器的工作原理是,当热释电芯片内的两个特定的同质金属材料互相接触时,会出现一个电压,这称为热释电效应。
热释电红外传感器将两种金属材质聚集在一起,当热源照射到传感器表面时,会让其中一种材料受热,而另一种材料不受热。
随着材料的表面温度升高,热释电效应将产生一个电压,这一区别值便可以表示出环境中红外辐射强度发生变化的情况。
热释电红外传感器广泛应用于飞机机舱设备房内的温度监控,能够检测空调系统及周边电子设备的温度变化,从而维持机舱温度在所需范围内。
此外,也常用于物流运输、医疗保健及无人机等行业对环境温度进行监控,能够有效降低安全风险,提高工作效率。
此外,热释电红外传感器还可用于检测大气污染物,能够根据环境温度及湿度两种因素来监测大气环境,提供可靠的污染数据以帮助制定行之有效的污染防治措施。
热释电红外传感器工作原理

热释电红外传感器工作原理
热释电红外传感器是一种测量和检测红外辐射的设备,它利用物体发出的红外辐射来探测物体的存在。
其工作原理基于物体的热能状态。
当一个物体的温度高于绝对温度零度时,它会发出红外辐射。
这些红外辐射按照不同的波长和频率发射出去。
热释电红外传感器通过检测这些红外辐射来感知物体的存在。
热释电红外传感器通常由一个红外探测器和一个信号处理单元组成。
红外探测器通常是由热释电材料制成,如锂钽酸锂、锂铌酸锂等。
这些材料能够根据温度的变化而产生电荷。
当物体靠近红外探测器时,物体的红外辐射也会靠近传感器。
这会导致探测器吸收更多的红外辐射,从而使其温度上升。
温度的升高会导致热释电材料中的离子在晶格之间移动,并产生电荷。
这些电荷被收集并转化为电压信号。
信号处理单元会接收并处理来自红外探测器的电压信号。
它会分析信号的幅度和频率,以判断是否存在物体并确定其位置和运动。
通过与预设的阈值进行比较,传感器可以触发适当的响应,如报警、触发摄像头拍摄等。
总之,热释电红外传感器通过测量和分析物体发出的红外辐射来感知其存在。
它的工作原理基于热释电材料的特性,利用物体温度的变化产生电荷,并将其转化为电压信号。
这种传感器可以广泛应用于防盗系统、人体检测、智能家居等领域。
热释电红外传感器原理及其应用

热释电红外传感器原理及其应用热释电红外传感器是一种常用于人体检测、安防监控以及自动化控制等领域的传感器。
其原理基于物体的红外辐射,利用热释电效应将红外辐射转化为电信号,从而实现对物体的探测与识别。
热释电效应是指在某些晶体或陶瓷材料中,当物体通过其表面或附近经过时,由于温度的变化,将会产生电荷的分离和聚集,形成电压信号。
这种效应的基本原理是,当物体辐射红外光线时,物体表面温度会产生微小的波动,使得材料内部的热释电元件发生温度变化,从而引起电荷的分离。
热释电传感器中常用的材料有钛酸锂、氧化锂锭以及掺杂锗的亚胺酯材料等。
在热释电红外传感器的设计中,一般包含了感测元件、前置电路、信号处理模块以及输出电路等组成部分。
感测元件采用特殊材料制成,可将红外辐射转化为微弱电荷信号。
前置电路用于提取和放大感测元件产生的电信号,以提供稳定和可靠的信号源。
信号处理模块可通过滤波、放大、积分等方式对输入信号进行处理,从而实现对目标物体的探测与识别。
输出电路常用于将处理后的信号转换为数字信号或模拟信号,以供其他设备使用。
热释电红外传感器具有很多应用领域。
其中最常见的应用是人体检测。
传感器可通过监测人体散发的红外辐射,实现对人体的检测与识别。
这在安防监控领域得到了广泛的应用。
传感器能够通过对室内环境中的温度变化进行感知,从而实现室内灯光、空调等设备的自动控制。
此外,热释电红外传感器还可应用于汽车行业,用于检测驾驶员和乘客的动作与位置,并通过与车载设备的连接实现自动化控制。
另外,在医疗领域,热释电红外传感器也有广泛的应用。
传感器能够通过检测身体表面的红外辐射,实现对体温的监测与测量。
这在医院、诊所等场所非常重要,可以在短时间内实现对大量人员的体温测量,为疫情防控等提供帮助。
总之,热释电红外传感器是一种基于热释电效应原理的传感器,通过将物体的红外辐射转化为电信号实现对物体的探测与识别。
其应用广泛,包括人体检测、安防监控、自动化控制以及医疗领域等。
热释电传感器的工作原理及应用

热释电传感器的工作原理及应用1. 简介热释电传感器是一种能够将红外辐射转化为电信号的传感器。
它利用材料在温度变化时产生的热释电效应,通过检测物体的红外辐射来实现物体检测、人体检测和热成像等应用。
2. 工作原理热释电传感器的工作原理可以简单概括为以下几个步骤:2.1 材料特性热释电材料的一个主要特性是在温度变化时会产生电荷,即热释电效应。
这些材料通常由特殊的陶瓷或聚合物制成,具有良好的温度灵敏度和稳定性。
2.2 红外辐射的感应当有物体在热释电材料前方时,物体所发出的红外辐射会被热释电材料吸收,并将其转换为热能。
这个过程中,热释电材料表面的温度会发生变化。
2.3 温度差测量热释电传感器内部包含了一个敏感区域,该区域由一对热释电材料组成。
其中一个材料暴露在外部环境中,另一个则被隔离在内部环境中。
由于红外辐射的影响,外部环境中的材料的温度会发生变化,而内部环境中的材料则保持相对稳定的温度。
2.4 电荷生成与输出当温度差发生时,两个热释电材料之间会产生电荷差异。
这个电荷差异会导致传感器内部的电路产生电流或电压的变化。
通过测量这个电流或电压的变化可以推断出外部环境的红外辐射量。
3. 应用领域热释电传感器在多个领域有着重要的应用,以下列举几个常见的应用领域:3.1 人体检测热释电传感器可以通过检测人体的红外辐射来实现人体检测。
当人体进入传感器的检测范围时,传感器会感知到人体产生的红外辐射,并输出相应的信号。
这个特性被广泛应用于自动门禁系统、安防系统等领域。
3.2 物体检测热释电传感器也可以用于物体检测。
通过将传感器安装在需要检测的区域内,当有物体靠近或经过时,传感器可以感知到物体的红外辐射,并输出相应的信号。
这个应用广泛用于智能家居、智能照明等场景中。
3.3 热成像利用热释电传感器可以实现热成像技术。
热释电传感器通过测量不同物体产生的红外辐射,可以将这些辐射转化为对应的电信号,并产生相应的热像,显示出物体的温度分布情况。
热释电人体红外报警器的常用芯片的基本知识

热释电人体红外报警器的常用芯片的基本知识热释电人体红外报警器是一种广泛应用于家庭、商业、办公等领域的安全防范设备。
它可以通过采集人体的红外热量,来确定人体的存在,并发出警报。
其中,常用芯片是热释电传感器(Pyroelectric Sensor)和控制芯片(Control Chip)。
一、热释电传感器热释电传感器是热释电人体红外报警器的核心部件。
它是一种利用热释电效应制成的微型传感器,具有灵敏度高、可靠性好、功耗低等特点。
其工作原理是通过检测物体的红外辐射,将热量转换成电信号输出,在红外辐射强度变化时能够产生电荷,从而有效地提高探测器的灵敏度。
目前,热释电传感器已广泛应用到各种安防领域中。
二、控制芯片控制芯片是热释电人体红外报警器的另一个核心部件,它主要负责控制热释电传感器的输出信号,并处理传感器采集的数据。
常用的控制芯片有两类,一类是数字控制芯片(Digital Control Chip),另一类是模拟控制芯片(Analog Control Chip)。
数字控制芯片适用于高速数字信号处理,而模拟控制芯片适用于需要高精度信号处理的场合。
三、常见问题及解决方案在使用热释电人体红外报警器时,常见的问题有多种。
以下是其中的几个解决方案:(一)、误报问题误报问题是热释电人体红外报警器常见的问题之一。
误报的原因可能是传感器所处环境温度变化大或者某种因素导致的误报。
一般来说,可以通过调节热释电传感器的灵敏度,来解决误报问题。
(二)、漏报问题漏报问题是另一个常见的问题。
漏报的原因可能是传感器使用寿命老化,或者传感器所处环境温度变化较小。
为了解决漏报问题,可以定期更换传感器或增加热释电传感器的数量。
(三)、传感器定位问题传感器定位问题是一个极为重要的问题。
如果传感器安装位置不对,就可能会导致传感器无法正常工作。
在选择传感器安装位置时,应该注意避免在阳光直射或通风不良的地方,以及避免与其他电子设备干扰。
总之,热释电人体红外报警器可以有效地提高家庭、商业、办公等领域的安全防范能力。
热释电红外传感器的工作原理

热释电红外传感器的工作原理热释电红外传感器是一种采用热释电效应来感测红外辐射的传感器。
该传感器能够感知物体的温度和运动状态,具有广泛的应用领域,如安防、自动化、机器人等。
一、热释电效应原理热释电效应是指在非均匀电介质中,当物理量(如温度)发生变化时,电介质中的电荷会发生移动,导致电势的变化。
这种现象叫做热释电效应。
利用这种效应可以制成红外传感器。
二、热释电红外传感器的结构热释电红外传感器由传感器芯片、滤光器、接收器、前置放大器、信号处理电路、输出电路等组成。
传感器芯片通常由热释电材料制成,如聚乙烯、锂铌酸锂等。
滤光器主要过滤掉不需要的光波,只让红外波通过。
接收器将红外波转化为电信号,然后通过前置放大器放大。
信号处理电路对信号进行滤波、增益等处理。
输出电路将处理后的信号转化为可用的电压或电流输出。
三、热释电红外传感器的工作原理1. 当有热源或物体进入传感器的感应区域时,将发射红外辐射波。
2. 经过滤光器的过滤,只有红外波通过,照射到传感器芯片上。
3. 传感器芯片产生电荷的移动,产生电势,经由接收器转化为电信号。
4. 通过前置放大器放大信号之后,通过信号处理电路进行滤波、增益等操作。
5. 处理后的信号通过输出电路转化为可用的电压或电流输出。
四、热释电红外传感器的优缺点1. 优点:响应速度快、结构简单、功耗低、灵敏度高、价格相对较低、在恶劣环境下也可以进行工作。
2. 缺点:受环境影响较大、易受其它电磁辐射的干扰、动态响应能力较差。
综上所述,热释电红外传感器是一种基于热释电效应工作的传感器,其工作原理主要是利用物体的红外辐射,产生电荷移动,最终产生电势并输出信号。
该传感器具有快速响应速度、低功耗、灵敏度高等优点,但受到环境影响较大、易受其它电磁辐射的干扰等缺点。
人体热释电红外传感器原理

人体热释电红外传感器原理
人体热释电红外传感器是一种检测人体红外辐射的传感器,其原理是基于人体的热释电效应。
当人体处于运动状态时,身体会产生一定的热量,这些热量会以红外辐射的形式散发出去。
人体热释电红外传感器通过检测这些红外辐射来感知人体的存在。
传感器的核心部件是一个热敏元件,通常是一组红外探测器。
当人体进入传感器的探测范围内时,红外辐射会被探测器吸收,从而使探测器的温度发生变化。
这种温度变化会被转换成电信号,进而被放大和处理,最终输出一个人体存在的信号。
人体热释电红外传感器具有高灵敏度、快速响应、低功耗等优点,广泛应用于安防、智能家居、自动化控制等领域。
但是,由于传感器只能检测到人体的热辐射,因此在环境温度变化较大或者存在其他热源干扰时,传感器的准确性可能会受到影响。
总之,人体热释电红外传感器是一种基于热释电效应的传感器,通过检测人体产生的红外辐射来感知人体的存在。
其工作原理简单、响应速度快、功耗低,是一种广泛应用于安防、智能家居等领域的传感器。
热释电红外传感器

调试步骤: 调试步骤
1. 接通电源,近距离无人体移动,以下各点电位应为: 接通电源,近距离无人体移动,以下各点电位应为: 传感器输出端( 脚):0.4 ~ 1V; 传感器输出端(2脚): ; IC2输出端:2.5V; UA:3V; UB:2V 输出端: ; ; 如果有问题请检查接线、电阻值和器件。 如果有问题请检查接线、电阻值和器件。 2. 用手在传感器附近晃动,LED1、LED2交替闪亮,则说明 用手在传感器附近晃动, 交替闪亮, 电路工作正常。 电路工作正常。
电路工作原理
3V
2V 同相放大 热释电人体红外传感器
Auf 1 = 1 + 2000 = 112.1 18 2000 = = 42.5 47
反相放大
Auf ≈ 4764
窗口比较器
Auf 2
电路工作原理
3V < 2.5V > 2V 静态3V
2V 静态时两个比较器皆输出低电平, 静态时两个比较器皆输出低电平,LED1、LED2不亮 有人体经过时,热释电人体红外传感器产生变化电压,经高倍 有人体经过时, 释电人体红外传感器产生变化电压, 放大后, 输出电压超出上(下 门限 门限, 放大后,使IC2输出电压超出上 下)门限,LED1(LED2)亮。 亮
热释电人体红外传感器的应用
一、实验目的 二、电路及工作原理 三、特殊元件 四、调试步骤 五、样板
实验目的: 实验目的 1. 了解热释电人体红外传感器的结构和基本原理; 了解热释电人体红外传感器的结构和基本原理; 2. 了解热释电人体红外传感器的应用; 了解热释电人体红外传感器的应用; 3. 熟悉集成运放的线性应用和非线性应用。 熟悉集成运放的线性应用和非线性应用。
特殊元件
滤光片 敏感元件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人体热释电红外线传感器的原理和应用
热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件。
热释电红外传感器不受白天黑夜的影响,可昼夜不停地用于监测,广泛地用于防盗报警。
本文就热释电人体红外线传感器的基本原理及应用作以大致介绍:
一、热释电人体红外线传感器的基本结构和原理
热释电红外(PIR)传感器,亦称为热红外传感器,是一种能检测人体发射的红外线
的新型高灵敏度红外探测元件。
热释电传感器实物图如图所示。
它能以非接触形式检测
出人体辐射的红外线能量的变化,并将其转换成电压信号输出。
将输出的电压信号加以
放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警等。
目前市场上常见
的热释电人体红外线传感器主要有上海赛拉公司的SD02、PH5324,德国Perkinelmer 公
司的LHi954、LHi958,美国Hamastsu公司的P2288,日本Nippon Ceramic公司的
SCA02-1、RS02D等。
虽然它们的型号不一样,但其结构、外型和特性参数大致相同,
大部分可以彼此互换使用。
热释电红外线传感器由探测元、滤光窗和场效应管阻抗变换器等三大部分组成,如图下图所示。
对不同的传感器来说,探测元的制造材料有所不同。
如SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3 制成。
将这些材料做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容。
因为这两个小电容是做在同一硅晶片上的,因此形成的等效小电容能自身产生极化,在电容的两端产生极性相反的正、负电荷。
传感器中两个电容是极性相反串联的。
当传感器没有检测到人体辐射出的红外线信号时,在电容两端产生极性
相反、电量相等的正、负电荷,所以,正负电荷相互抵消,回路中无电流,
传感器无输出。
当人体静止在传感器的检测区域内时,照射到两个电容上的红外线光
能能量相等,且达到平衡,极性相反、能量相等的光电流在回路中相互抵
消,传感器仍然没有信号输出。
当人体在传感器的检测区域内移动时,照射到两个电容上的红外线能量
不相等,光电流在回路中不能相互抵消,传感器有信号输出。
综上所述,传感器只对移动或运动的人体和体温近似人体的物体起作用。
滤光窗是由一块薄玻璃片镀上多层滤光层薄膜而成的,能够有效地滤除7.0~14um波长以外的红外线。
人体的正常体温为36~37.5℃,即309~310.5K,其辐射的最强的红外线的波长为λm=2989/(309~310.5)=9.67~9.64um,中心波长为9.65um,正好落在滤光窗的响应波长的中心。
所以,滤光窗能有效地让人体辐射的红外线通过,而最大限度地阻止阳光、灯光等可见光中的红外线的通过,以免引起干扰。
热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。
由于探测元输出的是电荷信号,不能直接使用,因而需要将其转换为电压形式。
场效应管输入阻抗高达104MΩ,接成共漏极形式来完成阻抗变换。
使用时D端接电源正极,G端接电源负极,S端为信号输出。
对于移动速度非常缓慢的物体,如阳光,两个电容上的红外线光能能量仍然可以看作是相等的,在回路中相互抵消;再加上传感器的响应频率很低(一般为0.1~10Hz),即传感器对红外光的波长的敏感范围很窄(一般为5~15um),因此,传感器对它们不敏感,因而无输出。
被动式红外报警器主要由光学系统、热释电红外传感器、信号滤波和放大、信号处理和报警电路等几部分组成,其结构框图如图2所示。
图中,菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。
当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而加强其能量幅度。
热释电红外传感器是报警器设计中的核心器件,它可以把人体的红外信号转换为电信号以供信号处理部分使用;信号处理主要是把传感器输出的微弱电信号进行放大、滤波、延迟、比较,为报警功能的实现打下基础。
图3 报警器结构图
报警器结构图是将待测目标、菲涅尔透镜、热释电红
外传感器相结合使用时的工作原理示意图。
人体辐射的红
外线中心波长为9~10um,而探测元件的波长灵敏度在
0.2~20um范围内几乎稳定不变。
在传感器顶端开设了一个
装有滤光镜片的窗口,这个滤光片可通过光的波长范围为
7~10um,正好适合于人体红外辐射的探测,而对其它波长
的红外线由滤光片予以吸收,这样便形成了一种专门用作
探测人体辐射的红外线传感器。
如图4所示。
人体红外线探测报警器
本机静态工作电流约10mA,接通电源约1分钟后进入守候状态,只要有人进入监视区便会报警,人离开后约1分钟停止报警。
如果将讯响器改为继电器驱动其它装置即作为其它控制用。
这次我们介绍的报警器是利用探测人体发出的红外线由红外线传感器、信号放大电路、电压比较器、延时电路和音频报警电路等组成。
红外线探测传感器IC1探测到前方人体辐射出的红外线信号时,由IC1的②脚输出微弱的电信号,经三极管VT1等组成第一级放大电路放大,再通过C2输入到运算放大器IC2中进行高增益、低噪声放大,此时由IC2A①脚输出的信号已足够强。
IC2B作电压比较器,它的第⑤脚由R10、VD1提供基准电压,当IC2A①脚输出的信号电压到达IC2B的⑥脚时,两个输入端的电压进行比较,此时IC2B的⑦脚由原来的高电平变为低电平。
IC4为报警延时电路,R14和C6组成延时电路,其时间约为1分钟。
当IC3的⑦脚变为低电平时,C6通过VD2放电,此时IC4的②脚变为低电平,它与IC4的③脚基准电压进行比较,当它低于其基准电压时,IC4的①脚变为高电平,VT2导通,讯响器BL通电发出报警声。
人体的红外线信号消失后,IC3的⑦脚又恢复高电平输出,此时VD2截止。
由于C6两端的电压不能突变,故通过R14向C6缓慢充电,当C6两端的电压高于其基准电压时,IC4的①脚才变为低电平,时间约为1分钟,即持续1分钟报警。
由VT3、R20、C8组成开机延时电路,时间也约为1分钟,它的设置主要是防止使用者开机后立即
报警,好让使用者有足够的时间离开监视现场,同时可防止停电后又来电时产生误报。
该装置采用9-12V直流电源供电,由T降压,全桥U整流,C10滤波,检测电路采用IC5 78L06供电。
本装置交直流两用,自动无间断转换。
制作时,在IC1传感器的端面前安装菲涅尔透镜,因为人体的活动频率范围为0.1-10Hz,需要用菲涅尔透镜对人体活动频率倍增。
安装无误,接上电源进行调试,让一个人在探测器前方7-10m处走动,调整电路中的R12,使讯响器报警即可。
其它部分只要元器件质量良好且焊接无误,几乎不用调试即可正常工作。