《有理数加法的运算律》参考教案
七年级数学上册《有理数加法运算律》教案、教学设计

-通过课堂练习、课后作业和小测验等形式,巩固学生对有理数加法运算的掌握。
-对学生在运算过程中出现的常见错误进行归类和分析,帮助学生避免类似错误的发生。
6.评价反馈机制:
-采用形成性评价和总结性评价相结合的方式,全面评估学生对有理数加法的理解和掌握程度。
-鼓励学生自我评价和同伴评价,培养学生的自我监控和反思能力。
3.小组展示:让各小组代表展示讨论成果,分享他们在讨论过程中的发现和心得。
(四)课堂练习
在本环节,我将设计以下练习题,以检验学生对有理数加法运算的掌握:
1.基础题:针对有理数加法运算规则,设计一些基础题,让学生巩固所学知识。
2.提高题:设计一些包含多个步骤的复合运算题目,提高学生的综合运用能力。
3.应用题:结合决实际问题。
七年级数学上册《有理数加法运算律》教案、教学设计
一、教学目标
(一)知识与技能
1.理解有理数的概念,掌握有理数的分类和性质,特别是正数、负数和零的含义。
2.学会有理数的加法运算,包括同号相加、异号相加、零与任何有理数相加等基本规则。
3.能够运用有理数加法运算律进行简便计算,解决实际问题,提高运算速度和准确性。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-有理数加法运算的基本规则和运算律的理解与掌握。
-能够灵活运用有理数加法运算解决实际问题。
2.教学难点:
-正确理解和应用同号相加、异号相加、零与有理数相加的规则。
-在具体问题中,能够识别并运用加法运算律简化计算过程。
(二)教学设想
1.创设情境导入:
四、教学内容与过程
(一)导入新课
在导入新课环节,我将通过以下方式激发学生的兴趣和好奇心:
有理数加法的运算律教案

一、教学目标1. 让学生理解有理数加法的运算律,掌握有理数加法的运算规则。
2. 培养学生运用有理数加法的运算律解决实际问题的能力。
3. 培养学生合作学习、积极思考的学习态度。
二、教学内容1. 有理数加法的运算律:同号两数相加,取原来的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2. 有理数加法的运算规则:先确定符号,再计算绝对值。
三、教学重点与难点1. 教学重点:让学生掌握有理数加法的运算律,能熟练运用运算律进行计算。
2. 教学难点:理解并掌握有理数加法运算律的应用。
四、教学方法1. 采用问题驱动法,引导学生探究有理数加法的运算律。
2. 运用实例讲解法,让学生通过实际例子理解并掌握运算律。
3. 采用小组讨论法,培养学生的合作学习能力。
五、教学过程1. 导入新课:通过生活实例,引导学生思考有理数加法的运算规律。
2. 探究新知:让学生通过小组讨论,总结出有理数加法的运算律。
3. 实例讲解:运用具体例子,讲解有理数加法运算律的应用。
4. 练习巩固:布置相关练习题,让学生运用所学知识进行计算。
5. 总结反思:让学生总结本节课所学内容,分享学习心得。
六、教学练习(1)2 + 3(2)-2 + 3(3)2 + (-3)(4)-2 + (-3)2. 提高练习:解决实际问题,运用有理数加法的运算律进行计算:(1)小华有2个苹果,小明有3个苹果,他们一共有多少个苹果?(2)小华有-2个苹果,小明有3个苹果,他们一共有多少个苹果?(3)小华有2个苹果,小明有-3个苹果,他们一共有多少个苹果?(4)小华有-2个苹果,小明有-3个苹果,他们一共有多少个苹果?七、课堂小结1. 让学生回顾本节课所学内容,总结有理数加法的运算律及其应用。
2. 强调运用有理数加法的运算律时,要注意先确定符号,再计算绝对值。
八、课后作业1. 完成练习册上的相关练习题。
2. 运用有理数加法的运算律,解决生活中的实际问题。
有理数加法的运算律教案

有理数加法的运算律教案教案:有理数加法的运算律教学目标:1.理解有理数加法的运算律,包括加法交换律、加法结合律和加法逆元素。
2.能够应用有理数加法的运算律解决实际问题。
3.培养学生的逻辑思维和解决问题的能力。
教学准备:1.教师准备演示板、白板、可擦笔、教师用书。
2.学生准备课本、笔和纸。
教学过程:一、导入(5分钟)教师通过提问引导学生进入主题,例如:“当你们两个人一起买了一堆零食,现在想要将大家的零食分到自己的口袋里,你们是如何分配的?”学生可以谈谈自己的做法。
然后引出有理数加法的概念。
二、概念讲解(15分钟)1.教师简要解释有理数加法的概念:有理数加法是指将两个有理数进行相加的运算。
加法的结果称为和。
2.教师引导学生思考加法的交换律:如果把两个有理数a和b相加,结果是a + b。
那么b加a会得到什么结果?3.教师引导学生思考加法的结合律:如果把三个有理数a、b和c 相加,结果是(a + b) + c。
那么a + (b + c)会得到什么结果?三、实例演示(15分钟)1.教师在演示板上列举一些实际生活中的例子,例如:小明在银行存款100元,又向银行贷款50元,结果将会是多少?2.教师引导学生分析问题,写出相应的算式,并计算出结果。
3.教师将过程和答案写在演示板上,引导学生讨论和总结出加法交换律和加法结合律。
四、练习与巩固(15分钟)1.教师出示一些练习题,让学生独立完成。
2.学生互相检查答案,教师讲解解题思路和答案。
五、拓展应用(15分钟)1.教师提供一些拓展应用题,让学生应用加法交换律和加法结合律解决。
2.学生在小组内讨论解题思路,然后和教师一起讨论和对比答案。
3.教师鼓励学生提出自己的解题思路和方法。
六、归纳总结(5分钟)教师与学生共同总结加法交换律和加法结合律的规律,并将其写在板书上。
引导学生发现加法的交换律和结合律以及它们在解决实际问题中的重要性。
七、课堂小结(5分钟)1.教师要求学生用自己的话简要复述加法交换律和加法结合律的概念和运算规律。
七级数学上期有理数加法的运算律教案

七级数学上期有理数加法的运算律教案一、教学目标:1. 让学生理解有理数加法的运算律,掌握加法的交换律、结合律和分配律。
2. 培养学生运用运算律进行简便计算的能力。
3. 提高学生的逻辑思维能力和数学素养。
二、教学内容:1. 有理数加法的交换律:a + b = b + a2. 有理数加法的结合律:(a + b) + c = a + (b + c)3. 有理数加法的分配律:a ×(b + c) = a ×b + a ×c三、教学重点与难点:1. 教学重点:掌握有理数加法的运算律,能够运用运算律进行简便计算。
2. 教学难点:理解并证明有理数加法的运算律。
四、教学方法:1. 采用讲解法、示例法、练习法、讨论法等多种教学方法,引导学生理解和掌握有理数加法的运算律。
2. 通过小组合作、讨论交流,培养学生主动探究、合作学习的意识。
五、教学过程:1. 导入新课:复习实数的概念,引导学生回顾小学学过的加法运算律,为新课的学习做好铺垫。
2. 讲解与示例:讲解有理数加法的运算律,并通过示例解释运算律的含义和应用。
3. 练习与巩固:设计一些练习题,让学生运用运算律进行计算,巩固所学知识。
4. 小组讨论:让学生分组讨论,探索有理数加法运算律的证明方法。
6. 布置作业:设计一些课后作业,让学生进一步巩固有理数加法的运算律。
六、教学评估:1. 课堂问答:通过提问学生,了解他们对有理数加法运算律的理解程度。
2. 练习题解答:检查学生练习题的完成情况,评估他们对运算律的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的能力。
七、教学反思:1. 针对学生的掌握情况,反思教学内容的难易程度是否适合学生。
2. 反思教学方法是否有效,是否需要调整教学方法以提高学生的学习效果。
3. 思考如何更好地激发学生的学习兴趣,提高他们的数学素养。
八、课后作业:1. 请学生运用有理数加法的运算律,解决一些实际问题。
七年级数学上册《有理数的加法运算律》教案、教学设计

1.分组讨论:将学生分成小组,讨论以下问题:
-有理数加法法则在生活中的应用;
-如何利用交换律和结合律简化有理数加法的计算;
-在有理数加法运算中,如何避免常见的错误。
2.汇报交流:每个小组选派代表进行汇报,分享他们的讨论成果和发现的问题。
4.设计不同难度的习题,由浅入深地训练学生的计算能力,让学生在实践中掌握方法;
5.组织小组讨论,让学生在合作中交流思路,学会倾听他人意见,培养团队协作能力。
(三)情感态度与价值观
1.体会到数学运算的严谨性和逻辑性,培养认真细致的学习习惯;
2.在解决数学问题的过程中,增强自信心,形成面对困难的勇气和毅力;
作业要求:
1.认真完成,书写工整,保持卷面整洁;
2.注意解题步骤,规范运算过程;
3.遇到问题及时与同学、老师交流,共同解决;
4.按时提交作业,养成良好的学习习惯。
2.分层次教学:针对学生的认知差异,设计不同难度的教学活动和练习题,使学生在自己的最近发展区内得到有效提升。
3.感知运算规律:通过数轴演示、小组讨论等形式,让学生在操作、观察、交流中感知有理数加法的运算规律,引导他们从特殊到一般,逐步归纳总结出加法法则。
4.知识内化与应用:设计多样化的练习题,包括基础题、提高题和应用题,让学生在练习中巩固所学知识,提高运算速度和准确性。同时,注重引导学生将所学知识应用于解决实际问题,提高他们的应用能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:有理数加法运算的法则,特别是交换律和结合律的运用。
2.难点:从具体实例中抽象出有理数加法的运算规律,以及在实际问题中灵活运用这些规律。
有理数加法的运算律教案

有理数加法的运算律教案一、教学目标1. 让学生理解有理数加法的运算律,并能运用其解决实际问题。
2. 培养学生运用运算律进行有理数加法运算的能力。
3. 引导学生发现运算律在实际生活中的应用,提高学生学习数学的兴趣。
二、教学内容1. 有理数加法的运算律:交换律、结合律、单位元素。
2. 运用运算律进行有理数加法运算。
三、教学重点与难点1. 教学重点:掌握有理数加法的运算律,能运用运算律进行有理数加法运算。
2. 教学难点:理解运算律的意义,并能灵活运用解决实际问题。
四、教学方法1. 采用讲授法,讲解有理数加法的运算律及其运用。
2. 运用案例分析法,让学生通过实际例子体会运算律的作用。
3. 组织学生进行小组讨论,培养学生的合作能力。
五、教学过程1. 导入:通过复习小学学过的加法运算律,引出有理数加法的运算律。
2. 新课讲解:讲解有理数加法的运算律(交换律、结合律、单位元素),并通过例题展示其运用。
3. 案例分析:分析实际生活中的例子,让学生感受运算律在解决实际问题中的应用。
4. 小组讨论:组织学生进行小组讨论,让学生分享自己对运算律的理解和运用方法。
5. 课堂练习:布置练习题,让学生运用所学知识进行有理数加法运算。
6. 总结:对本节课的内容进行总结,强调运算律在有理数加法运算中的重要性。
7. 作业布置:布置课后作业,巩固所学知识。
六、课后反思1. 学生对有理数加法的运算律的理解程度。
2. 学生运用运算律进行有理数加法运算的能力。
3. 学生在实际生活中发现和运用运算律的情况。
4. 对教学方法的改进措施。
七、教学评价1. 学生课堂参与度。
2. 学生课后作业完成情况。
3. 学生对运算律的掌握程度。
4. 学生运用运算律解决实际问题的能力。
八、教学拓展1. 引导学生探索有理数减法的运算律。
2. 组织学生参加数学竞赛,提高学生的数学水平。
3. 开展数学讲座,拓宽学生的数学视野。
九、教学资源1. 教材:《数学》。
2. 课件:有理数加法的运算律。
《有理数加法运算律》优秀教案
第2课时有理数加法运算律【学习目标】1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性.2.能运用加法运算律简化加法运算.【学习重点】运用运算律进行加法简化运算.【学习难点】运用有理数的加法解决问题.行为提示:每组抽一位学生上黑板做,其余学生在座位上完成,组长检查每组完成情况,最后老师给每组评分.情景导入生成问题1.有理数a、b在数轴上对应位置如图,则a+b的值AA.大于0B.小于0C.小于a D.大于b2.下列说法正确的是CA.两数之和必大于任何一个加数B.同号两数相加得正C.两个负数相加,和一定为负D.两个数相加等于它们的绝对值相加行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成。
3.下列运算中正确的个数有B①-3+-3=0;②-10++8=2;③0+-5=-5;④-错误!+错误!=错误!;⑤-错误!+错误!=-7A.1个B.2个C.3个D.4个自学互研生成能力错误!先阅读教材第37页“做一做”,“想一想”的内容,然后再逐一完成下面的问题:问题1计算:1-8+-9,-9+-8;24+-7,-7+4;3[2+-3]+-8,2+[-3+-8];4[10+-10]+-5,10+[-10+-5].【说明】学生通过观察每题中两个算式的特征,再进行计算,验证加法的交换律、结合律在有理数运算中仍然成立.【归纳结论】在有理数运算中,加法的交换律、结合律仍然成立.加法交换律——两个有理数相加,交换加数的位置,和不变:即a+b=b+a;加法结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变:即a+b+c=a+b+c.注意:这里a,b,c表示任意三个有理数.错误!问题2计算:131+-28+28+69;212+-13+8+-7.【说明】学生通过观察、分析、交流,找到最简便的算法,使学生能准确地运用加法的运算律进行简算.【归纳结论】运用加法的交换律、结合律可以使一些运算简便,它的技巧是:1互为相反数的两数相加.2和为整数或整十、整百数相加.3正数和负数分别相加.错误!问题3教材第37页例3【说明】学生通过观察、分析、尝试不同的解法,再通过比较,进一步体会有理数加法的运算律可以使运算简便.解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4550g解法二:把超过标准质量的克数用正数表示,不是的用负数表示,列出10听罐头与标准质量的差值表:行为提示:教师结合各组反馈的疑难问题分配展示任务,各组展示过程中,教师引导其他组进行补充、纠错,最后进行总结评分.展示目标:知识模块一主要展示用字母表示有理数加法运算律;知识模块二主要展示有理数加法运算律的应用技巧;知识模块三展示有理数加法运算律在实际问题中的灵活应用.这10听罐头与标准质量差值的和为-10+5+0+5+0+0+-5+0+5+10=[-10+10]+[-5+5]+5+5=10g.因此,这10听罐头的总质量为454×10+10=4550g问:1这两种解法哪一种更简便?2这10听罐头的平均质量是多少?第2问是对问题3的延伸.【归纳结论】在实际问题中,合理使用正负数,运用运算技巧,把求较大数的和的运算转化为求较小数的和的运算,使问题简单化.交流展示生成新知1.小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行板书规划.知识模块一有理数加法运算律知识模块二运用加法运算律计算知识模块三有理数加法运算律的实际应用检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
北师大版数学七年级上册《有理数的加法运算律》教案
北师大版数学七年级上册《有理数的加法运算律》教案一. 教材分析《有理数的加法运算律》是北师大版数学七年级上册第三章《有理数的混合运算》中的一个重要内容。
本节课主要让学生掌握有理数的加法运算律,并能灵活运用运算律进行简便计算。
教材通过例题和练习,让学生在实际运算中感受运算律的重要性,培养学生的运算能力和逻辑思维能力。
二. 学情分析七年级的学生已经掌握了有理数的基本概念和加法运算,但对运算律的理解和运用还不够熟练。
学生在学习过程中,需要通过实际操作和反复练习,才能更好地理解和掌握运算律。
此外,学生对数学运算的兴趣和积极性也需要激发,以提高学习效果。
三. 教学目标1.让学生掌握有理数的加法运算律,并能灵活运用。
2.培养学生运用运算律进行简便计算的能力。
3.培养学生的运算能力和逻辑思维能力。
4.激发学生对数学运算的兴趣和积极性。
四. 教学重难点1.教学重点:掌握有理数的加法运算律,并能灵活运用。
2.教学难点:理解并运用运算律进行简便计算。
五. 教学方法1.采用问题驱动法,引导学生发现和总结运算律。
2.运用实例讲解,让学生在实际运算中感受运算律的作用。
3.采用分组讨论和合作交流的方式,培养学生的团队协作能力。
4.运用激励评价,激发学生的学习兴趣和积极性。
六. 教学准备1.准备相关例题和练习题,以便进行课堂练习。
2.准备多媒体教学设备,以便进行实例讲解和演示。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,让学生进行有理数的加法计算。
通过计算,引导学生发现有些问题可以通过改变加法顺序,使得计算更加简便。
从而引出本节课的主题——有理数的加法运算律。
2.呈现(10分钟)讲解有理数的加法运算律,并通过实例进行解释。
让学生明确加法运算律的意义和作用。
3.操练(10分钟)让学生分成小组,进行加法运算律的练习。
每组选一道题目,尝试运用加法运算律进行简便计算。
然后,各组汇报结果,互相交流心得。
4.巩固(10分钟)给学生发放一份练习题,要求学生在规定时间内完成。
有理数加法的运算律 精品 【公开课教案】
2.4 有理数的加法 第2课时 有理数加法的运算律一、学习目标:1、知识目标:有理数加法的运算律2、能力目标:掌握简便运算的常用策略,渗透字母表示数的意识。
学会 画图分析法。
3、情感目标:体验数学公式的简洁美,对称美。
感受数学与回答活的密切 联系。
增强自信。
二、学习重点:有理数加法的交换律,结合律。
学习难点:例2综合性较强,为难点。
三、学习过程:一、复习引入:要求学回答回忆上节课的内容。
提问:有理数加法与小学里的算术数加法有何异同?回答1:从运算法则上看,有理数加法要先分类,再确定和的符号,最后进行绝对值的加减运算;小学里只有正数的加法。
回答2:从和与加数的关系上看,小学里的“和”比两个加数都大(或相等),有理数的“和”可能比两个加数都大,可能比两个加数都小,可能大于其中一个而小于另一个加数。
(或相等)上述两方面的比较,若学回答答不出,教提问可做适当引导,第3点是关于运算律的比较,学回答较难联系,可从小学里的简便运算入手:提问:你会计算下列式子吗?83618565+++ 二、合作探究:提问:小学里学的加法运算律对有理数是否适用呢?你会验证吗?在小组里一起交流。
让小组代表发言,提问板书:在有理数的运算中,加法交换律和结合律仍成立。
加法交换律:两个数相加,交换加数的位置,和不变 a+b=b+a 加法结合律:三个数相加,先把前两个数相加,或则先把后两个数相加,和不变。
(a+b )+c=a+(b+c )三、举例应用 例1、计算:(1) 15+(-13)+18;(2) (-2.48)+4.33+(-7.52)+(-4.33)(3)65+(-71)+(-61)+(-76)提问回答共同完成。
小结:1、任意若干个数相加,无论各数相加的先后次序如何,其和不变。
2、简便运算的常用策略:可以把正数或负数分别结合在一起相加;有相反数的先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加。
练一练:2、用简便方法计算,并说明有关理由: (1)(+14)+(-4)+(-1)+(+16)+(-5)(2)(-18.65)+(-7.25)+18.75+7.25(3)(-2.25)+(-85)+(-43)+0.125(4)(-3.5)+[3+(-1.5)]解决实际问题例2、小明遥控一辆玩具赛车,让它从A 地出发,先向东行驶15m ,再向西行驶25m ,然后又向东行驶20m ,再向西行驶35m ,问玩具赛车最后停在何处?一共行驶了多少米?提问:这两问中,你有把握解决哪一问?提问:第一问包含几个意思?回答:两个,要求方向和距离。
有理数加法相关运算律-人教版七年级数学上册教案
有理数加法相关运算律-人教版七年级数学上册教案一、教学目标1.掌握有理数加法的概念;2.理解有理数加法的相关运算律:交换律、结合律、加法逆元;3.通过练习,掌握有理数加法的计算方法;4.培养学生的逻辑思维能力和运算能力。
二、教学内容1.有理数的加法;2.加法的交换律、结合律、加法逆元。
三、教学重点和难点1.掌握加法的交换律、结合律、加法逆元;2.理解运算律的含义。
四、教学过程4.1. 导入新知教师通过生动的例子,如“小明收到了200元红包,他拿出100元给小李,剩下的100元留给自己,这个过程是两个正数相加的过程”,引出有理数的加法。
4.2. 理解加法的交换律4.2.1. 概念解释加法的交换律是指,对于任意两个有理数a、b,都有加法的交换律成立,即a+b=b+a。
4.2.2. 实例解析例如,对于两个有理数3和5,它们的和为3+5=8,若将它们交换,即5+3=8,结果依旧是8。
4.2.3. 总结加法的交换律是指,对于任意两个有理数a、b,都有a+b=b+a成立。
4.3. 理解加法的结合律4.3.1. 概念解释加法的结合律是指,对于任意三个有理数a、b、c,都有加法的结合律成立,即(a+b)+c=a+(b+c)。
4.3.2. 实例解析例如,对于三个有理数2、3、4,它们的和为(2+3)+4=9,若改变它们的顺序,即2+(3+4)=9,结果依旧是9。
4.3.3. 总结加法的结合律是指,对于任意三个有理数a、b、c,都有(a+b)+c=a+(b+c)成立。
4.4. 理解加法的逆元4.4.1. 概念解释加法的逆元是指,对于任意一个有理数a,都有一个相反数-b,使得a+b=0。
4.4.2. 实例解析例如,对于有理数4,它的相反数为-4,它们的和为4+(-4)=0。
4.4.3. 总结加法的逆元是指,对于任意一个有理数a,都有一个相反数-b,使得a+b=0。
4.5. 练习巩固请根据加法的交换律、结合律及加法逆元,计算以下表达式的值:1.(-2)+3;2.2+(-3);3.1+(-1)+3;4.(-3)+(-2)+5;5.4+(-2)+(-2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6有理数的加法
有理数加法的运算律
教学内容:P32-33
教学目的:
1、如何促使学生在已有基础上对运算律的再认识。
2、能够运用运算律对现有的计算进行简便运算。
教学重点(难点):运算律的灵活运用
教学过程:
一、知识导向:
在上一节学习有理数加法法则的基础上,结合小学学过的有关运算律,对多个有理数相加的情况进行运算,并在其中进行灵活运用运算律,促使运用的快与准。
二、新课拆析:
1、知识基础:
其一:有理数的加法法则;
(同号相加、异号相加、互为相反数相加、同0相加)
其二:小学学过的有关加法的运算律。
(加法交换律、加法结合律)
2、知识运用:
(引例1)计算:(20)(30)10
(30)(20)10
(引例2)计算:[(3)(6)](1) 2
(3)[(6)(1)] 2
概括:加法交换律:两个数相加,交换加数的位置,和不变。
a b b a
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,
和不变
(a b)c a(b c)
例:计算
(1)(26)(18)5(16)
(2)( 1.75) 1.5(7.3)( 2.25)(8.5)
例:10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:
2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5
问这10筐苹果总共重多少?
三、巩固训练:
P341、2
四、知识小结:
本节课主要通过能有理数的加法法则及加法的交换律、加法的结合律的学习,能多个有理数的加法进行简化运算。
五、家庭作业:
P34习题2.63、4、5题
六、每日预题:
1、如何计算3比-2大多少?。