最小二乘法求二次方程系数

合集下载

最小二乘法转为二次方程

最小二乘法转为二次方程

最小二乘法转为二次方程最小二乘法是一种用于求解最小化误差平方和的方法,具体应用在回归分析中。

可以将最小二乘法转化为二次方程的形式来求解。

假设有一组数据 (x1, y1), (x2, y2), ..., (xn, yn),其中 x 和 y 分别代表自变量和因变量。

我们假设二次方程 y = ax^2 + bx + c 可以拟合这组数据,其中 a、b、c 是待求的系数。

首先,我们需要构造误差函数 E,它是实际值 y 与预测值ax^2 + bx + c 的差的平方和:E = Σ(yi - axi^2 - bxi - c)^2接下来,我们需要将误差函数 E 对系数 a、b、c 分别求偏导数:∂E/∂a = -2Σxi^2(yi - axi^2 - bxi - c)∂E/∂b = -2Σxi(yi - axi^2 - bxi - c)∂E/∂c = -2Σ(yi - axi^2 - bxi - c)令三个偏导数等于0,我们得到一个包含三个未知数 a、b、c的线性方程组。

解出 a、b、c 的值,即可求出二次方程 y =ax^2 + bx + c。

但是,由于这个线性方程组比较复杂,通常需要使用矩阵运算来求解。

具体来说,我们可以将误差函数 E 写成以下形式:E = (Y - Xb)^T (Y - Xb)其中,Y 是一个 n×1 的向量,包含实际值 y1, y2, ..., yn;X 是一个 n×3 的矩阵,包含自变量的平方项 xi^2,一阶项 xi,和一个全为1的常数项 1;b 是一个 3×1 的向量,包含待求系数a、b、c。

通过对E 求偏导数,我们可以得到一个关于b 的线性方程组:X^T Xb = X^T Y解这个线性方程组,即可得到 b 向量的值,从而求出二次方程y = ax^2 + bx + c。

二次函数回归方程公式

二次函数回归方程公式

二次函数回归方程公式y = ax^2 + bx + c其中,a、b和c是常数,x是自变量,y是对应的因变量。

Step 1: 收集和整理数据首先,需要收集一组自变量和因变量之间的实际观测数据。

这些数据可以来自于实验或现实世界的观测。

Step 2: 构建二次函数回归模型根据收集到的数据,我们可以假设二次函数回归模型为:y = ax^2 + bx + c其中,a、b和c是待定系数。

Step 3: 确定残差残差是实际观测值与回归模型预测值之间的差异。

我们定义残差e为:e = y - ax^2 - bx - cStep 4: 最小化残差的平方和最小二乘法的核心思想是使得残差的平方和最小化。

也就是要最小化以下目标函数:∑(e^2)其中,∑表示求和运算。

Step 5: 求解参数为了最小化目标函数,需要对参数a、b和c求导,并令导数等于零。

通过求解导数方程组,可以得到参数的解析解。

具体求解过程比较繁琐,可以使用数学软件或计算机程序来进行求解。

在实际应用中,一般使用现有的统计软件或编程语言来拟合二次函数回归方程。

例如,在Python编程语言中,可以使用NumPy、Scipy等库来进行二次函数回归的求解。

以下是Python代码的一个示例:```pythonimport numpy as npfrom scipy.optimize import curve_fit#自变量数据x = np.array([1, 2, 3, 4, 5])#因变量数据y = np.array([3, 7, 12, 18, 25])#定义二次函数模型def quadratic_func(x, a, b, c):return a * x**2 + b * x + c#使用最小二乘法拟合数据params, params_covariance = curve_fit(quadratic_func, x, y)a, b, c = params#打印拟合结果print("a =", a)print("b =", b)print("c =", c)```这段代码使用了Scipy库中的curve_fit函数来拟合二次函数回归方程。

二次多项式回归方程

二次多项式回归方程

二次多项式回归方程二次多项式回归方程是一种常用的数学模型,用于拟合二次曲线形状的数据。

它是基于多项式回归的扩展,通过引入平方项的系数来更好地适应具有非线性关系的数据。

二次多项式回归方程的一般形式如下:y = ax^2 + bx + c其中,y表示因变量(依赖变量),x表示自变量(独立变量),a、b、c表示二次多项式回归方程的系数。

在二次多项式回归中,我们通常使用最小二乘法来估计系数的值。

该方法旨在使模型的预测值与实际观测值之间的平方差尽量小。

通过求解最小二乘问题,可以得到最佳拟合的二次多项式回归方程。

为了求解系数a、b、c,可以利用已知的数据点进行拟合。

首先,我们需要收集足够数量的自变量x和对应的因变量y的数据对。

然后,我们可以使用数值计算方法或者统计软件来估计系数的值。

一种常见的方法是使用最小二乘法拟合二次多项式回归方程。

这种方法的基本思想是,通过选择合适的系数值,使得二次多项式回归方程的预测值与已知数据点的观测值之间的残差平方和最小化。

残差表示了预测值与观测值之间的差异。

求解最小二乘问题可以使用线性代数的方法,例如矩阵运算或者求解线性方程组。

具体步骤如下:1. 将数据点表示为矩阵形式:X = [x^2, x, 1]Y = [y]2. 使用最小二乘法的公式计算系数向量:θ = (X^T X)^-1 X^T Y其中,X^T表示X的转置,(X^T X)^-1表示X^T X的逆矩阵。

3. 得到系数向量后,可以得到二次多项式回归方程:y = θ[0]x^2 + θ[1]x + θ[2]这样,我们就得到了二次多项式回归方程,并可以使用该方程进行预测或拟合。

需要注意的是,二次多项式回归方程在某些情况下可能会产生过拟合的问题。

过拟合指的是模型过度拟合训练数据,导致在新数据上的表现不如预期。

为了解决过拟合问题,可以考虑使用正则化技术,如岭回归或Lasso回归,来减小高次项的系数。

另外,二次多项式回归方程也可以进一步扩展为更高阶的多项式回归方程,以适应更复杂的数据模式。

最小二乘法公式

最小二乘法公式

最小二乘法公式-CAL-FENGHAI.-(YICAI)-Company One1最小二乘法公式∑(X--X平)(Y--Y平)=∑(XY--X平Y--XY平+X平Y平)=∑XY--X平∑Y--Y平∑X+nX平Y平=∑XY--nX平Y平--nX平Y平+nX平Y平=∑XY--nX平Y平∑(X --X平)^2=∑(X^2--2XX平+X平^2)=∑X^2--2nX平^2+nX平^2=∑X^2--nX平^2最小二乘公式(针对y=ax+b形式)a=(NΣxy-ΣxΣy)/(NΣx^2-(Σx)^2)b=y(平均)-ax(平均)最小二乘法在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2).. (xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。

Y计= a0 + a1 X (式1-1)其中:a0、a1 是任意实数为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y 计)²〕最小为“优化判据”。

令: φ = ∑(Yi - Y计)² (式1-2)把(式1-1)代入(式1-2)中得:φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)当∑(Yi-Y计)²最小时,可用函数φ 对a0、a1求偏导数,令这两个偏导数等于零。

(式1-4)(式1-5)m a0 + (∑Xi ) a1 = ∑Yi (式1-6)(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9)这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。

二次函数回归方程公式

二次函数回归方程公式

二次函数回归方程公式f(x) = ax^2 + bx + c其中,a、b、c分别为二次项系数、一次项系数和常数项。

为了确定这三个系数的值,我们需要至少三个数据点,即(x1,y1)、(x2,y2)和(x3,y3)。

代入这三个数据点到方程中,得到以下三个方程:y1 = ax1^2 + bx1 + cy2 = ax2^2 + bx2 + cy3 = ax3^2 + bx3 + c将这三个方程整理成矩阵的形式,可以得到:⎡x1^2x11⎡⎡a⎡⎡y1⎡⎡x2^2x21⎡⎡b⎡=⎡y2⎡⎡x3^2x31⎡⎡c⎡⎡y3⎡这是一个形如AX=B的线性方程组,其中A是一个3x3的矩阵,X是矩阵⎡a⎡的解向量,B是由(y1,y2,y3)组成的列向量。

解这个线性方程组,可以使用线性代数中的方法,如求逆矩阵、高斯消元法或矩阵分解等。

解得向量X的分量即为二次项系数a、一次项系数b和常数项c的值。

在实际应用中,可以使用计算软件或编程语言来求解这个方程组,例如使用Python的NumPy库可以很方便地进行矩阵运算和求解线性方程组。

以下是一个简单的Python代码示例,使用最小二乘法拟合数据点,并得到二次函数的回归方程:```import numpy as npdef quadratic_regression(x, y):n = len(x)A = np.column_stack((x**2, x, np.ones(n)))B = np.array(y).reshape(n, 1)X = np.linalg.lstsq(A, B, rcond=None)[0]a, b, c = X.flattenreturn a, b, c#示例数据点x=[1,2,3,4,5]y=[3,6,11,18,27]#拟合数据点a, b, c = quadratic_regression(x, y)#打印回归方程print(f"f(x) = {a}x^2 + {b}x + {c}")```上述代码首先定义了一个quadratic_regression函数,该函数接受一组x和y的数值数据点作为输入,并返回二次函数的回归方程的系数a、b和c的值。

最小二乘法

最小二乘法

第七章 最小二乘法最小二乘法是实验数据处理的一种基本方法。

它给出了数据处理的一条准则,即在最小二乘以一下获得的最佳结果(或最可信赖值)应使残差平方和最小。

基于这一准则所建立的一整套的理论和方法,为随机数据的处理提供了行之有效的手段,成为实验数据处理中应用十分广泛的基础内容之一。

自1805年勒让得(Legendre )提出最小二乘法以来,这一方法得到了迅速发展,并不断完善,成为回归分析、数理统计等方面的理论基础之一,广泛地应用于天文测量,大地测量及其他科学实验的数据处理中。

现代,矩阵理论的发展及电子计算机的广泛应用,为这一方法提供了新的理论工具和得力的数据处理手段。

随着计量技术及其他现代科学技术的迅速发展,最小二乘法在各学科领域将获得更为广泛的应用。

本章仅涉及独立的测量数据的最小二乘法处理。

以等精度线性参数的最小二乘法为中心,叙述最小二乘法原理,正规方程和正规方程的解,以及最小二乘估计的精度估计。

最后给出测量数据最小二乘法处理的几个例子。

7 .1 最小二乘法原理县考察下面的例子。

设有一金属尺,在温度()C t ︒条件下的长度可表示)1(0t y y t α+=式中 y 0——温度为0°C 时的金属尺的长度;α——金属材料的线膨胀系数; t ——测量尺长时的温度。

现要求给出y 0与α的数值。

为此,可在t 1与t 2两个温度条件下分别测得尺的长度l 1与l 2,得方程组()()⎭⎬⎫+=+=20210111t y l t y l αα由此可解得y 0与α。

事实上,由于测量结果l 1与l 2含有测量误差,所得到的y 0与α的值也含有误差。

显而易见,为减小所得y 0与α值的误差,应增加y t 的测量次数,以便利用抵偿性减小测量误差的影响。

设在n t t t ,,,21 温度条件下分别测得金属尺的长度n l l l ,,,21 共n 个结果,可列出方程组⎪⎪⎭⎪⎪⎬⎫+=+=+=)1()1()1(0202101n n t y l t y l t y l ααα)1(0t y y t α+=但由于方程式的数目n 多于待求量的数目,所以无法直接利用代数法求解上述方程组。

第5章-1 曲线拟合(线性最小二乘法)讲解

第5章-1 曲线拟合(线性最小二乘法)讲解
a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
yHale Waihona Puke 1.61 1.641.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62

第四章参数的最小二乘法估计讲解

第四章参数的最小二乘法估计讲解

第四章 最小二乘法与组合测量§1 概述最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。

对于从 事精密科学实验的人们来说, 应用最小乘法来解决一些实际问题, 仍是目前必不 可少的手段。

例如,取重复测量数据的算术平均值作为测量的结果, 就是依据了 使残差的平方和为最小的原则, 又如,在本章将要用最小二乘法来解决一类组合 测量的问题。

另外,常遇到用实验方法来拟合经验公式, 这是后面一章回归分析 方法的内容,它也是以最小二乘法原理为基础。

最小二乘法的发展已经经历了 200 多年的历史,它最先起源于天文和大地测 量的需要, 其后在许多科学领域里获得了广泛应用, 特别是近代矩阵理论与电子 计算机相结合,使最小二乘法不断地发展而久盛不衰。

本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用, 一些深 入的内容可参阅专门的书籍和文献。

§2 最小二乘法原理最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。

对某 量 x 测量一组数据 x 1,x 2, ,x n ,假设数据中不存在系统误差和粗大误差,相互独 立,服从正态分布,它们的标准偏差依次为: 1, 2, n 记最可信赖值为 x ,相 应的残差 v i x i x 。

测值落入 (x i ,x i dx)的概率。

根据概率乘法定理,测量 x 1,x 2, ,x n 同时出现的概率为P i2i 2 exp( 2v ii 2)dx1 1 v PP i1n exp[ 1( i )2 ](dx)n ii ( 2 )n 2 i i显然,最可信赖值应使出现的概率 P 为最大,即使上式中页指数中的因子达 最小,即2 v ii2 Min i i 22[ wvv]w i v i Min再用微分法,得最可信赖值 xnw i x ii1 x nw ii1这里为了与概率符号区别,以 i 表示权因子。

特别是等权测量条件下,有:[vv] v i 2 Min以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的, 称之为最小二乘法原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 设拟合曲线方程为
列表如下
I
0
1
10
1
1
1
10
10
1
3
5
9
27
81
15
45
2
4
4
16
64
256
16
64
3
5
2
25
125
625
10
50
4
6
1
36
216
1296
6
36
5
7
1
49
343
2401
7
49
6
8
2
64
512
4096
16
128
7
9
3
81
729
6561
27
243
8
10
4
100
1000
10000
40
400
(8)
将式(8)中第j个方程乘以 (j=0,1,…,n),然后将新得到的n+1个方程左右两端分别 相加,得
因为
其中
所以
(i=0,1,…,m)
是次数不超过n的多项式,它有m+1>n个相异零点,由代数基本定理,必须有 ,与齐次方程组有非零解的假设矛盾。因此正规方程组(4)必有唯一解 。定理2 设 是正规方程组(4)的解,则 是满足式(1)的最小二乘拟合多项式。
(2)

(3)
(3)是关于 的线性方程组,用矩阵表示为
(4)
式(3)或式(4)称为正规方程组或法方程组。
可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。从式(4)中解出 (k=0,1,…,n),从而可得多项式
(5)
可以证明,式(5)中的 满足式(1),即 为所求的拟合多项式。我们把 称为最小二乘拟合多项式 的平方误差,记作
例如 m=19, =328,h=1, = +ih,i=0,1,…,19,即节点 分布在[328,347],作二次多项式拟合时
① 直接用 构造正规方程组系数矩阵 ,计算可得
严重病态,拟合结果完全不能用。
② 作平移变换
用 构造正规方程组系数矩阵 ,计算可得
比 降低了13个数量级,病态显著改善,拟合效果较好。
②拟合节点分布的区间 偏离原点越远,病态越严重;
③ (i=0,1,…,m)的数量级相差越大,病态越严重。
为了克服以上缺点,一般采用以下措施:
①尽量少作高次拟合多项式,而作不同的分段低次拟合;
②不使用原始节点作拟合,将节点分布区间作平移,使新的节点 关于原 点对称,可大大降低正规方程组的条件数,从而减低病态程度。
数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函数类 中,求 ,使误差 (i=0,1,…,m)的平方和最小,即
=
从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小的曲线 (图6-1)。函数 称为拟合 函数或最小二乘解,求拟合函数 的方法称为曲线拟合的最小二乘法。
53
32
381
3017
25317
147
1025
得正规方程组
解得
故拟合多项式为
*三 最小二乘拟合多项式的存在唯一性
定理1 设节点 互异,则法方程组(4)的解存在唯一。
证 由克莱姆法则,只需证明方程组(4)的系数矩阵非奇异即可。
用反证法,设方程组(4)的系数矩阵奇异,则其所对应的齐次方程组
(7)
有非零解。式(7)可写为
在曲线拟合中,函数类 可有不同的选取方法.
6—1
二 多项式拟合
假设给定数据点 (i=0,1,…,m), 为所有次数不超过 的多项式构成的函数类,现求一 ,使得
(1)
当拟合函数为多项式时,称为多项式拟合,满足式(1)的 称为最小二乘拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。
显然
为 的多元函数,因此上述问题即为求 的极值 问题。由多元函数求极值的必要条件,得
例1:二次方程式计算
Y=a0+a1x+a2x2
y=-6.3+2.4x+1.3x2
下表为自动计算系数,给出9组x和y的数值,自动计算出系数。
原理与多项式拟合说明附后。
第一节 最小二乘法的基本原理和多项式拟合
一 最小二乘法的基本原理
从整体上考虑近似函数 同所给数据点 (i=0,1,…,m)误差 (i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 (i=0,1,…,m)绝对值的最大值 ,即误差 向量 的∞—范数;二是误差绝对值的和 ,即误差向量r的1—范数;三是误差平方和 的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和 来 度量误差 (i=0,1,…,m)的整体大小。
625.00
1945.000
2
30.1
79.25ห้องสมุดไป่ตู้
906.01
2385.425
3
36.0
80.80
1296.00
2908.800
4
40.0
82.35
1600.00
3294.000
5
45.1
83.90
2034.01
3783.890
6
50.0
85.10
2500.00
4255.000
245.3
565.5
9325.83
20029.445
正规方程组为
解方程组得
故得R与T的拟合直线为
利用上述关系式,可以预测不同温度时铜导线的电阻值。例如,由R=0得T=-242.5,即预测温度 T=-242.5℃时,铜导线无电阻。
6-2
例2例2已知实验数据如下表
i
0
1
2
3
4
5
6
7
8
1
3
4
5
6
7
8
9
10
10
5
4
2
1
1
2
3
4
试用最小二乘法求它的二次拟合多项式。
平移公式为:
(9)
③对平移后的节点 (i=0,1,…,m),再作压缩或扩张处理:
(10)
其中 ,(r是拟合次数) (11)
经过这样调整可以使 的数量级不太大也不太小,特别对于等距节点 ,作式(10)和式(11)两项变换后,其正规方程组的系数矩阵设 为A,则对1~4次多项式拟合,条件数都不太大,都可以得到满意的结果。
③ 取压缩因子
作压缩变换
用 构造正规方程组系数矩阵 ,计算可得
又比 降低了3个数量级,是良态的方程组,拟合效果十分理想。
如有必要,在得到的拟合多项式 中使用原来节点所对应的变量x,可写为
仍为一个关于x的n次多项式,正是我们要求的拟合多项式。
i
0
1
2
3
4
5
6
(℃)
19.1
25.0
30.1
36.0
40.0
45.1
50.0
76.30
77.80
79.25
80.80
82.35
83.90
85.10
解 画出散点图(图6-2),可见测得的数据接近一条直线,故取n=1,拟合函数为
列表如下
i
0
19.1
76.30
364.81
1457.330
1
25.0
77.80
证 只需证明,对任意一组数 组成的多项式 ,恒有
即可。
因为 (k=0,1,…,n)是正规方程组(4)的解,所以满足式(2),因此有
故 为最小二乘拟合多项式。
*四 多项式拟合中克服正规方程组的病态
在多项式拟合中,当拟合多项式的次数较高时,其正规方程组往往是病态的。而且
①正规方程组系数矩阵的阶数越高,病态越严重;
变换后的条件数上限表如下:
拟合次数
1
2
3
4
=1
<9.9
<50.3
<435
④在实际应用中还可以利用正交多项式求拟合多项式。一种方法是构造离散正交多项式;另一种方法是利用切比雪夫节点求出函数值后再使用正交多项式。这两种方法都使正规方程 组的系数矩阵为对角矩阵,从而避免了正规方程组的病态。我们只介绍第一种,见第三节。
由式(2)可得
(6)
多项式拟合的一般方法可归纳为以下几步:
(1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;
(2) 列表计算 和 ;
(3) 写出正规方程组,求出 ;
(4) 写出拟合多项式 。
在实际应用中, 或 ;当 时所得的拟合多项式就是拉格朗日或牛顿插值多项式。
例1 测得铜导线在温度 (℃)时的电阻 如表6-1,求电阻R与温度 T的近似函数关系。
相关文档
最新文档