专题24 几何综合问题-决胜2018中考数学压轴题全揭秘精品(原卷版)

合集下载

2018年全国各地中考数学压轴题汇编:几何综合(西北专版)(解析卷)

2018年全国各地中考数学压轴题汇编:几何综合(西北专版)(解析卷)

2018年全国各地中考数学压轴题汇编(西北专版)几何综合参考答案与试题解析一.选择题(共10小题)1.(2018•陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A.B.2C.D.3解:∵AD⊥BC,∴∠ADC=∠ADB=90°.在Rt△ADC中,AC=8,∠C=45°,∴AD=CD,∴AD=AC=4.在Rt△ADB中,AD=4,∠ABD=60°,∴BD=AD=.∵BE平分∠ABC,∴∠EBD=30°.在Rt△EBD中,BD=,∠EBD=30°,∴DE=BD=,∴AE=AD﹣DE=.故选:C.2.(2018•兰州)如图,矩形ABCD中,AB=3,BC=4,EF∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.解:如图所示:过点D作DG⊥BE,垂足为G,则GD=3.∵∠A=∠G,∠AEB=∠GED,AB=GD=3,∴△AEB≌△GED.∴AE=EG.设AE=EG=x,则ED=4﹣x,在Rt△DEG中,ED2=GE2+GD2,x2+32=(4﹣x)2,解得:x=.故选:C.3.(2018•陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA 的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EF=AC,EF∥AC,EH=BD,EH∥BD,∴四边形EFGH是矩形,∵EH=2EF,∴OB=2OA,∴AB==OA,∴AB=EF,故选:D.4.(2018•兰州)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122°D.92°解:∵AD∥BC,∴∠ADB=∠DBC,由折叠可得∠ADB=∠BDF,∴∠DBC=∠BDF,又∵∠DFC=40°,∴∠DBC=∠BDF=∠ADB=20°,又∵∠ABD=48°,∴△ABD中,∠A=180°﹣20°﹣48°=112°,∴∠E=∠A=112°,故选:B.5.(2018•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°解:∵AB=AC、∠BCA=65°,∴∠CBA=∠BCA=65°,∠A=50°,∵CD∥AB,∴∠ACD=∠A=50°,又∵∠ABD=∠ACD=50°,∴∠DBC=∠CBA﹣∠ABD=15°,故选:A.6.(2018•白银)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.7.(2018•青海)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°解:如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°﹣∠C=30°+90°+180°﹣90°=210°,故选:C.8.(2018•新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.9.(2018•白银)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.10.(2018•新疆)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1 C.D.2解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N 的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.二.填空题(共7小题)11.(2018•陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为72°.解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC==108°,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°,故答案为:72°.12.(2018•兰州)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF 的最小值是3﹣3.解:如图,在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE∴∠DCM=∠CDE,∵∠ADF+∠CDE=∠ADC=90°,∴∠DAM+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO=AD=3,在Rt△ODC中,OC==3根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=3﹣3.故答案为:3﹣3.13.(2018•青海)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则=.解:∵四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,∴=,则==.故答案为:.14.(2018•陕西)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是=.解:∵==,==,∴S1=S△AOB,S2=S△BOC.∵点O是▱ABCD的对称中心,=S△BOC=S▱ABCD,∴S△AOB∴==.即S1与S2之间的等量关系是=.故答案为=.15.(2018•白银)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.16.(2018•青海)如图,用一个半径为20cm,面积为150πcm2的扇形铁皮,制作一个无底的圆锥(不计接头损耗),则圆锥的底面半径r为7.5cm.解:解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=20,由Rl=150π得l=15π;由2πr=15π得r=7.5cm.故答案是:7.5cm.17.(2018•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是.解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:三.解答题(共15小题)18.(2018•陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)解:如图所示,点P即为所求:∵DP⊥AM,∴∠APD=∠ABM=90°,∵∠BAM+∠PAD=90°,∠PAD+∠ADP=90°,∴∠BAM=∠ADP,∴△DPA∽△ABM.19.(2018•宁夏)已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE•DC=20,求⊙O的面积.(π取3.14)解:(1)连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠2+∠P=90°,∵OA=OC,∴∠CAO=∠1,∵AC=CP,∴∠P=∠CAO,又∵∠2是△AOC的一个外角,∴∠2=2∠CAO=2∠P,∴2∠P+∠P=90°,∴∠P=30°;(2)连接AD,∵D为的中点,∴∠ACD=∠DAE,∴△ACD∽△EAD,∴=,即AD2=DC•DE,∵DC•DE=20,∴AD=2,∵=,∴AD=BD,∵AB是⊙O的直径,∴Rt△ADB为等腰直角三角形,∴AB=2,∴OA=AB=,=π•OA2=10π=31.4.∴S⊙O20.(2018•陕西)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.证明:(1)连接ON,如图,∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B,∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB,∵NE为切线,∴ON⊥NE,∴NE⊥AB;(2)连接DN,如图,∵CD为直径,∴∠CMD=∠CND=90°,而∠MCB=90°,∴四边形CMDN为矩形,∴DM=CN,∵DN⊥BC,∠1=∠B,∴CN=BN,∴MD=NB.21.(2018•宁夏)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.22.(2018•兰州)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.23.(2018•白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.24.(2018•陕西)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为5.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM 的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP 之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)解:(1)设O是△ABC的外接圆的圆心,∴OA=OB=OC,∵∠A=120°,AB=AC=5,∴△ABO是等边三角形,∴AB=OA=OB=5,(2)当PM⊥AB时,此时PM最大,连接OA,由垂径定理可知:AM=AB=12,∵OA=13,∴由勾股定理可知:OM=5,∴PM=OM+OP=18,(3)设连接AP,OP分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,∴AM=AP=AN,∵∠MAB=∠PAB,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC=∠MAB+∠NAC=60°,∴∠MAN=120°∴M、P、N在以A为圆心,AP为半径的圆上,设AP=r,易求得:MN=r,∵PE=ME,PF=FN,∴PE+EF+PF=ME+EF+FN=MN=r,∴当AP最小时,PE+EF+PF可取得最小值,∵AP+OP≥OA,∴AP≥OA﹣OP,即点P在OA上时,AP可取得最小值,设AB的中点为Q,∴AQ=AC=3,∵∠BAC=60°,∴AQ=QC=AC=BQ=3,∴∠ABC=∠QCB=30°,∴∠ACB=90°,∴由勾股定理可知:BC=3,∵∠BOC=60°,OB=OC=3,∴△OBC是等边三角形,∴∠OBC=60°,∴∠ABO=90°∴由勾股定理可知:OA=3,∵OP=OB=3,∴AP=r=OA﹣OP=3﹣3,∴PE+EF+PF=MN=r=3﹣9∴PE+EF+PF的最小值为(3﹣9)km.25.(2018•兰州)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sinB=,求CF 的长.(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=∠BCO+∠OCA=90°,∵OB=OC,∴∠B=∠BCO,∵∠ACD=∠B,∴∠ACD=∠BCO,∴∠ACD+∠OCA=90°,即∠OCD=90°,∴DC为⊙O的切线;(2)解:Rt△ACB中,AB=10,sinB=,∴AC=6,BC=8,∵∠ACD=∠B,∠ADC=∠CDB,∴△CAD∽△BCD,∴,设AD=3x,CD=4x,Rt△OCD中,OC2+CD2=OD2,52+(4x)2=(5+3x)2,x=0(舍)或,∵∠CEF=45°,∠ACB=90°,∴CE=CF,设CF=a,∵∠CEF=∠ACD+∠CDE,∠CFE=∠B+∠BDF,∴∠CDE=∠BDF,∵∠ACD=∠B,∴△CED∽△BFD,∴,∴,a=,∴CF=.26.(2018•青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:AD=BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.解:(1)∵E是AB边上的中点,∴AE=BE.∵AD∥BC,∴∠ADE=∠F.在△ADE和△BFE中,∠ADE=∠F,∠DEA=∠FEB,AE=BE,∴△ADE≌△BFE.∴AD=BF.(2)过点D作DM⊥AB与M,则DM同时也是平行四边形ABCD的高.=•AB•DM=AB•DM=×32=8,∴S△AED=32﹣8=24.∴S四边形EBCD27.(2018•白银)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=28.(2018•青海)如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(2)若PD=,求⊙O的直径.解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=2.∴⊙O的直径为2.29.(2018•新疆)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(2)若BD=EF,连接EB,DF,判断四边形EBFD的形状,并说明理由.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,∴△DOE≌△BOF.(2)解:结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.30.(2018•青海)请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1:如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.求证:△BCD的面积为a2.(提示:过点D作BC 边上的高DE,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.请用含a的式子表示△BCD的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.试探究用含a的式子表示△BCD的面积,要有探究过程.解:(1)如图1,过点D作DE⊥CB交CB的延长线于E,∴∠BED=∠ACB=90°,由旋转知,AB=AD,∠ABD=90°,∴∠ABC+∠DBE=90°,∵∠A+∠ABC=90°,∴∠A=∠DBE,在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD=;∴S△BCD(2)△BCD的面积为.理由:如图2,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°,∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD=;∴S△BCD(3)如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,∴∠AFB=∠E=90°,BF=BC=a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE=a.∵S△BCD=BC•DE=•a•a=a2.∴△BCD 的面积为.31.(2018•宁夏)空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(2,3,2),组成这个几何体的单位长方体的个数为12个;(2)对有序数组性质的理解,下列说法正确的是①②⑤;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数.(3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积(1,1,1) 1 2 2 2 2S1+2S2+2S3(1,2,1) 2 4 2 4 4S1+2S2+4S3(3,1,1) 3 2 6 6 2S1+6S2+6S3(2,1,2) 4 4 8 4 4S1+8S2+4S3(1,5,1) 5 10 2 10 10S1+2S2+10S3(1,2,3) 6 12 6 4 12S1+6S2+4S3(1,1,7)7 14 14 2 14S1+14S2+2S3(2,2,2)8 8 8 8 8S1+8S2+8S3………………根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)解:(1)这种码放方式的有序数组为(2,3,2),组成这个几何体的单位长方体的个数为2×3×2=12个,故答案为(2,3,2),12;(2)正确的有①②⑤.故答案为①②⑤;(3)S(x,y,z)=2yzS1+2xzS2+2xyS3=2(yzS1+xzS2+xyS3).(4)当S1=2,S2=3,S3=4时S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy)欲使S(x,y,z)的值最小,不难看出x、y、z应满足x≤y≤z(x、y、z为正整数).在由12个单位长方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).而S(1,1,12)=128,S(1,2,6)=100,S(1,3,4)=96,S(2,2,3)=92所以,由12个单位长方体码放的几何体表面积最小的有序数组为:(2,2,3),最小面积为S(2,2,3)=92.。

2018年全国各地中考数学压轴题汇编:几何综合(湖南专版)(原卷)

2018年全国各地中考数学压轴题汇编:几何综合(湖南专版)(原卷)

2018年全国各地中考数学压轴题汇编:几何综合(湖南专版)(原卷)2018年全国各地中考数学压轴题汇编(湖南专版)几何综合1.(2018?长沙)如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形.(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.2.(2018?株洲)如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM=AN.(1)求证:Rt△ABM≌Rt△AND;(2)线段MN与线段AD相交于T,若AT=,求tan∠ABM的值.3.(2018?长沙)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD 交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c <0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y 轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC 的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.4.(2018?湘潭)如图,在正方形ABCD中,AF=BE,AE与DF 相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.5.(2018?株洲)如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC <90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE.(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC;②求OH+HC的最大值.6.(2018?衡阳)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)7.(2018?湘潭)如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.8.(2018?衡阳)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s 的速度沿CA匀速运动,同时动点Q从点A出发以cm/s的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为t(s).(1)当t为何值时,点B在线段PQ的垂直平分线上?(2)是否存在某一时刻t,使△APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP 的面积为S,求S关于t 的函数关系式.9.(2018?邵阳)如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①若OE=,OG=1,求的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)10.(2018?常德)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF 于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.11.(2018?岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).12.(2018?张家界)如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为上一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合).(1)当M在什么位置时,△MAB的面积最大,并求出这个最大值;(2)求证:△PAN∽△PMB.13.(2018?常德)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.。

决胜2018中考数学压轴题全揭秘精品:(压轴题)专题22 动态几何之动点形成的四边形存

决胜2018中考数学压轴题全揭秘精品:(压轴题)专题22 动态几何之动点形成的四边形存

(3)在(2)的条件下,过点 P 作 PF⊥x 轴于点 F,G 为抛物线上一动点,M 为 x 轴上一动点,N 为直线 PF 上一
动点,当以
F、M、G
为顶点的四边形是正方WW.ziyua nku.co m
16.(2016 内蒙古呼伦贝尔市,第 26 题,13 分)如图,抛物线 y x2 2x 3 与 x 轴相交的于 A,B 两点(点 A
在点 B 的左侧),与 y 轴相交于点 C,顶点为 D. (1)直接写出 A,B,C 三点的坐标和抛物线的对称轴; (2)连接 BC,与抛物线的对称轴交于点 E,点 P 为线段 BC 上的一个动点(P 不与 C,B 两点重合),过点 P 作 PF∥DE 交抛物线于点 F,设点 P 的横坐标为 m. ①用含 m 的代数式表示线段 PF 的长,并求出当 m 为何值时,四边形 PEDF 为平行四边形. ②设△BCF 的面积为 S,求 S 与 m 的函数关系式;当 m 为何值时,S 有最大值.
4
11.(2016 山东省东营市)在平面直角坐标系中,平行四边形 ABOC 如图放置,点 A、C 的坐标分别是(0,4)、 (﹣1,0),将此平行四边形绕点 O 顺时针旋转 90°,得到平行四边形 A′B′OC′. (1)若抛物线经过点 C、A、A′,求此抛物线的解析式; (2)点 M 是第一象限内抛物线上的一动点,问:当点 M 在何处时,△AMA′的面积最大?最大面积是多少?并求 出此时 M 的坐标; (3)若 P 为抛物线上一动点,N 为 x 轴上的一动点,点 Q 坐标为(1,0),当 P、N、B、Q 构成平行四边形时, 求点 P 的坐标,当这个平行四边形为矩形时,求点 N 的坐标.
C 三点,其中点 A 的坐标为(0,8),点 B 的坐标为(﹣4,0). (1)求该二次函数的表达式及点 C 的坐标; (2)点 D 的坐标为(0,4),点 F 为该二次函数在第一象限内图象上的动点,连接 CD、CF,以 CD、CF 为邻边 作平行四边形 CDEF,设平行四边形 CDEF 的面积为 S.$来&源: ①求 S 的最大值; ②在点 F 的运动过程中,当点 E 落在该二次函数图象上时,请直接写出此时 S 的值.

2018年全国各地中考数学压轴题汇编:几何综合(华北东北专版)(解析卷)

2018年全国各地中考数学压轴题汇编:几何综合(华北东北专版)(解析卷)

2018年全国各地中考数学压轴题汇编(华北东北专版)几何综合参考答案与试题解析1.(2018•北京)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.2.(2018•河北)如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为13π,求∠AOP的度数及x的值;(2)求x的最小值,并指出此时直线l与所在圆的位置关系;(3)若线段PQ的长为12.5,直接写出这时x的值.解:(1)如图1中,由=13π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==,∴OQ=,∴x=.(2)如图当直线PQ与⊙O相切时时,x的值最小.在Rt△OPQ中,OQ=OP÷=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设OH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.此时x的值为﹣31.5.综上所述,满足条件的x的值为﹣16.5或31.5或﹣31.5.3.(2018•北京)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.4.(2018•天津)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(Ⅰ)如图①,当点D落在BC边上时,求点D的坐标;(Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(Ⅲ)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).解:(Ⅰ)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD==4,∴BD=BC﹣CD=1,∴D(1,3).(Ⅱ)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(Ⅰ)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC﹣BH=5﹣m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5﹣m)2,∴m=,∴BH=,∴H(,3).(Ⅲ)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=•DE•DK=×3×(5﹣)=,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=×D′E′×KD′=×3×(5+)=.综上所述,≤S≤.5.(2018•北京)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH,∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH,∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.6.(2018•天津)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为的中点,求∠ABC和∠ABD的大小;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD 的大小.解:(Ⅰ)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(Ⅱ)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,由DP∥AC,又∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.7.(2018•山西)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z'∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴.同理可得.∴.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;而确定了点Z,Y的位置,这里运用了下面一种图形的变化是D(或位似).A.平移B.旋转C.轴对称D.位似解:(1)四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形.(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).8.(2018•北京)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M 上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;(3)⊙T与△ABC的位置关系分三种情况:①当⊙T在△ABC的左侧时,由d(⊙T,△ABC)=1知此时t=﹣4;②当⊙T在△ABC内部时,当点T与原点重合时,d(⊙T,△ABC)=1,知此时t=0;当点T位于T3位置时,由d(⊙T,△ABC)=1知T3M=2,∵AB=BC=8、∠ABC=90°,∴∠C=∠T3DM=45°,则T3D===2,∴t=4﹣2,故此时0≤t≤4﹣2;∵∠T4DC=∠C=45°,∴T4D===2,∴t=4+2;综上,t=﹣4或0≤t≤4﹣2或t=4+2.9.(2018•包头)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.解:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵DE是⊙A的直径,∴∠DCE=90°,∴∠BEC+∠CDE=90°,∵AD=AC,∴∠CDE=∠ACD,∴∠BCD=∠BEC,(2)∵∠BCD=∠BEC,∠EBC=∠EBC,∴△BDC∽△BCE,∴,∵BC=2,BD=1,∴BE=4,EC=2CD,∴DE=BE﹣BD=3,在Rt△DCE中,DE2=CD2+CE2=9,过点F作FM⊥AB于M,∵∠FAB=∠ABC,∠FMA=∠ACB=90°,∴△AFM∽△BAC,∴,∵DE=3,∴AD=AF=AC=,AB=,∴FM=,过点F作FN⊥BC于N,∴∠FNC=90°,∵∠FAB=∠ABC,∴FA∥BC,∴∠FAC=∠ACB=90°,∴四边形FNCA是矩形,∴FN=AC=,NC=AF=,∴BN=,在Rt△FBN中,BF=,在Rt△FBM中,sin∠ABF=.10.(2018•山西)综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵四边形ABCD是矩形,∴AD∥BC.∴.(依据1)∵BE=AB,∴.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B 都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证法一:过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,∴四边形BENM为矩形.∴BM=EN,∠BEN=90°.∴∠1+∠2=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°.∴∠2+∠3=90°.∴∠1=∠3.∵∠CBE=∠ENF=90°,∴NE=BE.∴BM=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,AB=BE.∴BC=2BM.∴BM=MC.∴FM垂直平分BC.∴点F在BC边的垂直平分线上.11.(2018•呼和浩特)如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC 与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且=.(1)求证:PD是⊙O的切线;(2)若AD=12,AM=MC,求的值.(1)证明:连接OD、OP、CD.∵=,∠A=∠A,∴△ADM∽△APO,∴∠ADM=∠APO,∴MD∥PO,∴∠1=∠4,∠2=∠3,∵OD=OM,∴∠3=∠4,∴∠1=∠2,∵OP=OP,OD=OC,∴∠ODP=∠OCP,∵BC⊥AC,∴∠OCP=90°,∴OD⊥AP,∴PD是⊙O的切线.(2)连接CD.由(1)可知:PC=PD,∵AM=MC,∴AM=2MO=2R,在Rt△AOD中,OD2+AD2=OA2,∴R2+122=9R2,∴R=3,∴OD=3,MC=6,∵==,∴DP=6,∵O是MC的中点,∴==,∴点P是BC的中点,∴BP=CP=DP=6,∵MC是⊙O的直径,∴∠BDC=∠CDM=90°,在Rt△BCM中,∵BC=2DP=12,MC=6,∴BM=6,∵△BCM∽△CDM,∴=,即=,∴MD=2,∴==.12.(2018•包头)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求的值;②连接BE,△D'MH与△CBE是否相似?请说明理由.解:(1)如图1,连接OA,在矩形ABCD中,CD=AB=3,AD=BC=5,∠BAD=90°在Rt△ABD中,根据勾股定理得,BD=,∵O是BD中点,∴OD=OB=OA=,∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴,∴DO2=DE•DA,∴设AE=x,∴DE=5﹣x,∴()2=5(5﹣x),∴x=,即:AE=;(2)如图2,在矩形ABCD中,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AE=CD=3,∵EF⊥EC,∴∠FEC=90°,∴∠AEF+∠CED=90°,∵∠A=90°,∴∠AEF+∠AFE=90°,∴∠CED=∠AFE,∵∠D=∠A=90°,∴△AEF≌△DCE,∴AF=DE=2,∴BF=AB﹣AF=1,过点G作GK⊥BC于K,∴∠EBC=∠BGK=45°,∴BK=GK,∠ABC=∠GKC=90°,∵∠KCG=∠BCF,∴△CKG∽△CBF,∴,设BK=GK=y,∴CK=5﹣y,∴y=,∴BK=GK=,在Rt△GKB中,BG=;(3)①在矩形ABCD中,∠D=90°,∵AE=1,AD=5,∴DE=4,∵DC=3,∴EC=5,由折叠知,ED'=ED=4,D'H=DH,∠ED'H=∠D=90°,∴D'C=1,设D'H=DH=z,∴HC=3﹣z,根据勾股定理得,(3﹣z)2=1+z2,∴z=,∴DH=,CH=,∵D'N⊥AD,∴∠AND'=∠D=90°,∴D'N∥DC,∴△EMN∽△EHD,∴,∵D'N∥DC,∴∠ED'M=∠ECH,∵∠MED'=∠HEC,∴△ED'M∽△ECH,∴,∴,∴,∴;②相似,理由:由折叠知,∠EHD'=∠EHD,∠ED'H=∠D=90°,∴∠MD'H+∠ED'N=90°,∵∠END'=90°,∴∠ED'N+∠NED'=90°,∴∠MD'H=∠NED',∵D'N∥DC,∴∠EHD=∠D'MH,∴∠EHD'=∠D'MH,∴D'M=D'H,∵AD∥BC,∴∠NED'=∠ECB,∴∠MD'H=∠ECB,∵CE=CB=5,∴,∴△D'MH∽△CBE.13.(2018•赤峰)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O 在AB上,⊙O经过A、D两点,交AC于点E,交AB于点F.(1)求证:BC是⊙O的切线;(2)若⊙O的半径是2cm,E是的中点,求阴影部分的面积(结果保留π和根号)解:(1)连接OD .、∵OA=OD ,∴∠OAD=∠ODA ,∵∠OAD=∠DAC ,∴∠ODA=∠DAC ,∴OD ∥AC ,∴∠ODB=∠C=90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.(2)连接OE ,OE 交AD 于K . ∵=,∴OE ⊥AD ,∵∠OAK=∠EAK ,AK=AK ,∠AKO=∠AKE=90°,∴△AKO ≌△AKE ,∴AO=AE=OE ,∴△AOE 是等边三角形,∴∠AOE=60°,∴S 阴=S 扇形OAE ﹣S △AOE =﹣×22=﹣.14.(2018•黑龙江)如图,在Rt △BCD 中,∠CBD=90°,BC=BD ,点A 在CB 的延长线上,且BA=BC ,点E 在直线BD 上移动,过点E 作射线EF ⊥EA ,交CD 所在直线于点F . (1)当点E 在线段BD 上移动时,如图(1)所示,求证:BC ﹣DE=DF . (2)当点E 在直线BD 上移动时,如图(2)、图(3)所示,线段BC 、DE 与DF 又有怎样的数量关系?请直接写出你的猜想,不需证明.(1)证明:如图1中,在BA上截取BH,使得BH=BE.∵BC=AB=BD,BE=BH,∴AH=ED,∵∠AEF=∠ABE=90°,∴∠AEB+∠FED=90°,∠AEB+∠BAE=90°,∴∠FED=∠HAE,∵∠BHE=∠CDB=45°,∴∠AHE=∠EDF=135°,∴△AHE≌△EDF,∴HE=DF,∴BC﹣DE=BD﹣DE=BE=EH=DF.∴BC﹣DE=DF.(2)解:如图2中,在BC上截取BH=BE,同法可证:DF=EH.可得:DE﹣BC=DF.如图3中,在BA上截取BH,使得BH=BE.同法可证:DF=HE,可得BC+DE=DF.15.(2018•通辽)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.解:(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.16.(2018•赤峰)将一副三角尺按图1摆放,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=2cm.(1)求GC的长;(2)如图2,将△DEF绕点D顺时针旋转,使直角边DF经过点C,另一直角边DE与AC 相交于点H,分别过H、C作AB的垂线,垂足分别为M、N,通过观察,猜想MD与ND 的数量关系,并验证你的猜想.(3)在(2)的条件下,将△DEF沿DB方向平移得到△D′E′F′,当D′E′恰好经过(1)中的点G时,请直接写出DD′的长度.解:(1)如图1中,在Rt△ABC中,∵BC=2,∠B=60°,∴AC=BC•tan60°=6,AB=2BC=4,在Rt△ADG中,AG==4,∴CG=AC=AG=6﹣4=2.(2)如图2中,结论:DM+DN=2或DM=DN.理由:∵HM⊥AB,CN⊥AB,∴∠AMH=∠DMH=∠CNB=∠CND=90°,∵∠A+∠B=90°,∠B+∠BCN=90°,∴∠A=∠BCN.∴△AHM∽△CBN,∴=①,同法可证:△DHM∽△CDN,∴=②由①②可得AM•BN=DN•DM,∴=,∴=,∴=,∵AD=BD,∴AM=DN,∴DM+DN=AM+DM=AD=2.或∵△ABC为直角三角形,D为斜边AB的中点,∴CD=BD=AD.又∠B=60°,∴△BDC为等边三角形,∴∠CDB=60°.又∠EDF=90°,∴∠MDA=30°.∵∠A=90°﹣∠B=30°,∴AH=HD,又HM⊥AD,∴MD=.在等边三角形BCD中,CN⊥BD,∴ND=NB.又AD=BD,∴MD=ND.(3)如图3中,作GK∥DE交AB由K.在△AGK中,AG=GK=4,∠A=∠GKD=30°,作GH⊥AB于H.则AH=AG•cos30°=2,可得AK=2AH=4,此时K与B重合.∴DD′=DB=2.17.(2018•哈尔滨)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.18.(2018•黑龙江)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B 坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y 轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.解:(1)在Rt△BOC中,OB=3,sin∠CBO==,设CO=4k,BC=5k,∵BC2=CO2+OB2,∴25k2=16k2+9,∴k=1或﹣1(舍弃),BC=5,OC=4,∵四边形ABCD是菱形,∴CD=BC=5,∴D(5,4).(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t.②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.S=S梯形OCDA﹣S△DQT=×(2+5)×4﹣×(5﹣t)×(5﹣t)=﹣t2+t﹣.(3)如图3中,①当QB=QC,∠BQC=90°,Q(,).②当BC=CQ′,∠BCQ′=90°时,Q′(4,1);③当BC=BQ″,∠CBQ″=90°时,Q″(1,﹣3);综上所述,满足条件的点Q坐标为(,)或(4,1)或(1,﹣3).19.(2018•哈尔滨)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点G,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,=AE•DE=•2a•a=a2,∴S△ADE∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,=AC•DE=•(2a+2a)•a=2a2=2S△ADE;则S△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,=AE•BE=•(2a)•2a=2a2,∴S△ABES△BCE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.20.(2018•齐齐哈尔)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE ∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)连接OD,∵BF=BC=2,且∠ADB=90°,∴∠CBD=∠FBD,∵OE∥BD,∴∠FBD=∠OEB,∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠OEB=∠OBE=∠ADB=90°=30°,∴∠C=60°,∴AB=BC=2,∴⊙O的半径为,∴阴影部分的面积=扇形DOB的面积﹣三角形DOB的面积=..(2018•吉林)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为菱形;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:▱ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,故答案为:菱形;(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.22.(2018•大庆)如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC 于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE•CP;(3)当AB=4且=时,求劣弧的长度.(1)证明:∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,即AC平分∠FAB.(2)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∵CD是直径,∴∠CBD=∠CBP=90°,∴△CBE∽△CPB,∴=,∴BC2=CE•CP;(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°∴的长==π.23.(2018•齐齐哈尔)综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B'C和AD相交于点E,连接B′D.解决问题(1)在图1中,①B′D和AC的位置关系为平行;②将△AEC剪下后展开,得到的图形是菱形;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为1:1或:1;拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为4或6或8或12.解:(1)①BD′∥AC.②将△AEC剪下后展开,得到的图形是菱形;故答案为BD′∥AC,菱形;(2)①选择②证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵将△ABC沿AC翻折至△AB′C,∴∠A CB′=∠ACB,∴∠DAC=∠ACB′,∴AE=CE,∴△AEC是等腰三角形;∴将△AEC剪下后展开,得到的图形四边相等,∴将△AEC剪下后展开,得到的图形四边是菱形.②选择①证明如下,∵四边形ABCD是平行四边形,∴AD=BC,∵将△ABC沿AC翻折至△AB′C,∵B′C=BC,∴B′C=AD,∴B′E=DE,∴∠CB′D=∠ADB′,∵∠AEC=∠B′ED,∠ACB′=∠CAD∴∠ADB′=∠DAC,∴B′D∥AC.(3)①当矩形的长宽相等时,满足条件,此时矩形纸片的长宽之比为1:1;∵∠AB′D+∠ADB′=90°,∴y﹣30°+y=90°,②当矩形的长宽之比为:1时,满足条件,此时可以证明四边形ACDB′是等腰梯形,是轴对称图形;综上所述,满足条件的矩形纸片的长宽之比为1:1或:1;(4)∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠B=30°,∴∠AB′C=∠CDA=30°,∵△AB′D是直角三角形,当∠B′AD=90°,AB>BC时,如图3中,设∠ADB′=∠CB′D=y,∴∠AB′D=y﹣30°,解得y=60°,∴∠AB′D=y﹣30°=30°,∵AB′=AB=4,∴AD=×4=4,∴BC=4,当∠ADB′=90°,AB>BC时,如图4,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠ADB′=90°,∴四边形ACB′D是矩形,∴∠ACB′=90°,∴∠ACB=90°,∵∠B=30°,AB=4,∴BC=AB=×4=6;当∠B′AD=90°,AB<BC时,如图5,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∠B′AD=90°,∵∠B=30°,AB′=4,∴∠AB′C=30°,∴AE=4,BE′=2AE=8,∴AE=EC=4,∴CB′=12,当∠AB′D=90°时,如图6,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=4,∴BC=AB÷=8;∴已知当BC的长为4或6或8或12时,△AB′D是直角三角形.故答案为:平行,菱形,1:1或:1,4或6或8或12;24.(2018•吉林)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=s;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.解:(1)当PQ⊥AB时,BQ=2PB,∴2x=2(2﹣2x),∴x=s.故答案为s.(2)①如图1中,当0<x≤时,重叠部分是四边形PQMN.y=2x×x=2x2.②如图②中,当<x≤1时,重叠部分是四边形PQEN.y=(2﹣x+2tx×x=x2+x③如图3中,当1<x<2时,重叠部分是四边形PNEQ.y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4;综上所述,y=.(3)①如图4中,当直线AM经过BC中点E时,满足条件.则有:tan∠EAB=tan∠QPB,∴=,解得x=.②如图5中,当直线AM经过CD的中点E时,满足条件.此时tan∠DEA=tan∠QPB,∴=,解得x=,综上所述,当x=或时,直线AM将矩形ABCD的面积分成1:3两部分.25.(2018•长春)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为2.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9.解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG,(2)由(1)知,FG=BE,连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,=CG×ME=×6×3=9,∴S四边形CEGM故答案为9.26.(2018•沈阳)如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O 的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.解:(1)连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;(2)∵AB=AC,∴∠B=∠C,∵,∴∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC,设⊙O的半径为r,∵CE=2,∴r=,解得:r=2,∴⊙O的半径为2.27.(2018•长春)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.解:(1)在Rt△ABC中,∠A=30°,AB=4,∴AC=2,∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=APcosA=2t×=t,∴CD=AC﹣AD=2﹣t(0<t<2);(2)在Rt△PDQ中,∵∠DPC=60°,∴∠PQD=30°=∠A,∴PA=PQ,∵PD⊥AC,∴AD=DQ,∵点Q和点C重合,∴AD +DQ=AC ,∴2×t=2,∴t=1;(3)当0<t ≤1时,S=S △PDQ =DQ ×DP=×t ×t=t 2; 当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=2t ﹣2=2(t ﹣1), 在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan ∠CQE=2(t ﹣1)×=2(t ﹣1), ∴S=S △PDQ ﹣S △ECQ =×t ×t ﹣×2(t ﹣1)×2(t ﹣1)=﹣t 2+4t ﹣2, ∴S=;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=PQ=AP=t ,AF=AB=2, ∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t ,∴AP +PF=2t +2t=2,∴t=;。

专题24 几何综合问题-决胜2018中考数学压轴题全揭秘精品(解析版)

专题24 几何综合问题-决胜2018中考数学压轴题全揭秘精品(解析版)

一、选择题1.(2017内蒙古包头市,第12题,3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF 平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.32B.43C.53D.85【答案】A.【分析】根据三角形的内角和定理得出∠CAF+∠CF A=90°,∠F AD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.点睛:本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.考点:相似三角形的判定与性质;勾股定理;角平分线的性质;综合题.2.(2017四川省内江市,第12题,3分)如图,过点A(2,0)作直线l:3y x的垂线,垂足为点A1,过点A 1作A 1A 2⊥x 轴,垂足为点A 2,过点A 2作A 2A 3⊥l ,垂足为点A 3,…,这样依次下去,得到一组线段:AA 1,A 1A 2,A 2A 3,…,则线段A 2016A 2107的长为( )A .20153()2B .20163()2C .20173()2D .20183()2 【答案】B .【分析】根据含30°的直角三角形的性质结合图形即可得到规律“OA n =3()n OA =2×3()n ”,依此规律即可解决问题.【解析】由3y x ,得l 的倾斜角为30°,点A 坐标为(2,0),∴OA =2,∴OA 1=32OA =3, OA 2=32OA 1=32,OA 3=32OA 2=334,OA 4=32OA 3=98,…,∴OA n =3()2n OA =2×3()2n ,∴OA 2016=2×20163()2,A 2016A 2107的长12×2×20163()2=20163()2,故选B . 点睛:本题考查了规律型中点的坐标以及含30度角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”结合图形找出变化规律OA n =3()n OA =2×3()n 是解题的关键. 考点:一次函数图象上点的坐标特征;规律型;综合题.3.(2017四川省泸州市,第11题,3分)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .23【答案】A .【分析】证明△BEF ∽△DAF ,得出EF =12AF ,EF =13AE ,由矩形的对称性得:AE =DE ,得出EF =13DE ,设EF =x ,则DE =3x ,由勾股定理求出DF =22DE EF -=22x ,再由三角函数定义即可得出答案.【解析】∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∵点E 是边BC 的中点,∴BE =12BC =12AD ,∴△BEF ∽△DAF ,∴EF BE AF AD ==12,∴EF =12AF ,∴EF =13AE ,∵点E 是边BC 的中点,∴由矩形的对称性得:AE =DE ,∴EF =13DE ,设EF =x ,则DE =3x ,∴DF =22DE EF -=22x ,∴tan ∠BDE =22EF DF x = =2;故选A . 点睛:本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.考点:矩形的性质;解直角三角形;综合题.学.科.网4.(2017四川省绵阳市,第11题,3分)如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MO MF的值为( )A .12B 5C .23D 3【答案】D .【分析】根据三角形的重心性质可得OC =23CE ,根据直角三角形的性质可得CE =AE ,根据等边三角形的判定和性质得到CM =12CE ,进一步得到OM =16CE ,即OM =16AE ,根据垂直平分线的性质和含30°的直角三角形的性质可得EF 3AE ,MF =12EF ,依此得到MF 3AE ,从而得到MO MF的值. 【解析】∵点O 是△ABC 的重心,∴OC =23CE ,∵△ABC 是直角三角形,∴CE =BE =AE ,∵∠B =30°,∴∠F AE =∠B =30°,∠BAC =60°,∴∠F AE =∠CAF =30°,△ACE 是等边三角形,∴CM =12CE ,∴OM =23CE ﹣12CE =16CE ,即OM =16AE ,∵BE =AE ,∴EF =33AE ,∵EF ⊥AB ,∴∠AFE =60°,∴∠FEM =30°, ∴MF =12EF ,∴MF =3AE ,∴MO MF =163AE AE =3.故选D . 点睛:考查了三角形的重心,等边三角形的判定和性质,垂直平分线的性质,含30°的直角三角形的性质,关键是得到OM =16AE ,MF =3AE . 考点:三角形的重心;相似三角形的判定与性质;综合题.5.(2017四川省达州市,第9题,3分)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )A .2017πB .2034πC .3024πD .3026π【答案】D .【分析】首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.【解析】∵AB =4,BC =3,∴AC =BD =5,转动一次A 的路线长是:904180π⨯ =2π,转动第二次的路线长是:905180π⨯ =52π,转动第三次的路线长是:903180π⨯ =32π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:52π+32π+2π=6π,∵2017÷4=504…1,∴顶点A 转动四次经过的路线长为:6π×504+2π=3026π,故选D .点睛:本题主要考查了探索规律问题和弧长公式的运用,掌握旋转变换的性质、灵活运用弧长的计算公式、发现规律是解决问题的关键.考点:轨迹;矩形的性质;旋转的性质;规律型;综合题.6.(2017德州,第11题,3分)如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b (a >b ),M 在BC 边上,且BM =b ,连接AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转至△NGF ,给出以下五个结论:①∠MAD =∠AND ;②CP =2b b a-;③△ABM ≌△NGF ;④22AMFN S a b =+;⑤A ,M ,P ,D 四点共圆,其中正确的个数是( )A .2B .3C .4D .5【答案】D .【分析】①根据正方形的性质得到∠BAD =∠ADC =∠B =90°,根据旋转的性质得到∴∠NAD =∠BAM ,∠AND =∠AMB ,根据余角的性质得到∠DAM +∠NAD =∠NAD +∠AND =∠AND +∠NAD =90°,等量代换得到∠DAM =∠AND ,故①正确;②根据正方形的性质得到PC ∥EF ,根据相似三角形的性质得到CP =2b b a-;故②正确; ③根据旋转的性质得到GN =ME ,等量代换得到AB =ME =NG ,根据全等三角形的判定定理得到△ABM ≌△NGF ;故③正确;④由旋转的性质得到AM =AN ,NF =MF ,根据全等三角形的性质得到AM =NF ,推出四边形AMFN 是矩形,根据余角的想知道的∠NAM =90°,推出四边形AMFN 是正方形,于是得到S 四边形AMFN =AM 2=a 2+b 2;故④正确;⑤根据正方形的性质得到∠AMP =90°,∠ADP =90°,得到∠ABP +∠ADP =180°,于是推出A ,M ,P ,D 四点共圆,故⑤正确.【解析】①∵四边形ABCD 是正方形,∴∠BAD =∠ADC =∠B =90°,∴∠BAM +∠DAM =90°,∵将△ABM 绕点A 旋转至△ADN ,∴∠NAD =∠BAM ,∠AND =∠AMB ,∴∠DAM +∠NAD =∠NAD +∠AND =∠AND +∠NAD =90°,∴∠DAM =∠AND ,故①正确;②∵四边形CEFG 是正方形,∴PC ∥EF ,∴△MPC ∽△EMF ,∴PC CM EF ME=,∵大正方形ABCD 边长为a ,小正方形CEFG 边长为b (a >b ),BM =b ,∴EF =b ,CM =a ﹣b ,ME =(a ﹣b )+b =a ,∴PC a b b a -=,∴CP =2b b a-;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,∵AB=NG=a,∠B=∠NGF=90°,GF=BM=b,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM ≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,∴S四边形AMFN=AM2=a2+b2;故④正确;⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠ABP+∠ADP=180°,∴A,M,P,D 四点共圆,故⑤正确.故选D.点睛:本题考查了四点共圆,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质,旋转的性质,勾股定理,正确的理解题意是解题的关键.考点:四点共圆;相似三角形的判定与性质;正方形的性质;旋转的性质;综合题.7.(2017山东省淄博市,第12题,4分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.52B.83C.103D.154【答案】C.【分析】延长FE交AB于点D,作EG⊥BC、作EH⊥AC,由EF∥BC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、∠DAE=∠HAE,从而知四边形BDEG是正方形,再证△DAE≌△HAE、△CGE≌△CHE得AD=AH、CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,由AC=10可得x=2,即BD=DE=2、AD =4,再证△ADF ∽△ABC 可得DF 的长,据此得出EF =DF ﹣DE =103. 【解析】如图,延长FE 交AB 于点D ,作EG ⊥BC 于点G ,作EH ⊥AC 于点H ,∵EF ∥BC 、∠ABC =90°,∴FD ⊥AB ,∵EG ⊥BC ,∴四边形BDEG 是矩形,∵AE 平分∠BAC 、CE 平分∠ACB ,∴ED =EH =EG ,∠DAE =∠HAE ,∴四边形BDEG 是正方形,在△DAE 和△HAE 中,∵∠DAE =∠HAE ,AE =AE ,∠ADE =∠AHE ,∴△DAE ≌△HAE (SAS ),∴AD =AH ,同理△CGE ≌△CHE ,∴CG =CH ,设BD =BG =x ,则AD =AH =6﹣x 、CG =CH =8﹣x ,∵AC =22AB AC +=2268+=10,∴6﹣x +8﹣x =10,解得:x =2,∴BD =DE =2,AD =4,∵DF ∥BC ,∴△ADF ∽△ABC ,∴AD DF AB BC =,即468DF =,解得:DF =163,则EF =DF ﹣DE =163﹣2=103,故选C .点睛:本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键.考点:相似三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;综合题.8.(2017广东省深圳市,第12题,3分)如图,正方形ABCD 的边长是3,BP =CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE •OP ;③S △AOD =S 四边形OECF ;④当BP =1时,tan ∠OAE =1316,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C .【分析】由四边形ABCD 是正方形,得到AD =BC ,∠DAB =∠ABC =90°,根据全等三角形的性质得到∠P =∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据相似三角形的性质得到AO 2=OD •OP ,由OD ≠OE ,得到OA2≠OE•OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE ﹣S△DOF,即S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE,QE,QO,OE,由三角函数的定义即可得到结论.【解析】∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,∵AD=AB,∠DAP=∠ABQ,AP=BQ,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴AO OPOD OA=,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∵∠FCQ=∠EBP,∠Q=∠P,CQ=BP,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,∵AD=CD,∠ADC=∠DCE,DF=CE,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE ﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴43PB PAEB DA==,∴BE=34,∴QE=134,∵△QOE∽△P AD,∴1345QO OE QEPA AD PD===,∴QO=135,OE=3920,∴AO=5﹣QO=125,∴tan∠OAE=OEOA=1316,故④正确.故选C.点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;解直角三角形;综合题.9.(2017广西贵港市,第12题,3分)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC 边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是12,其中正确结论的个数是()A.2B.3C.4D.5【答案】D.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解析】∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON ≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=12x(2﹣x)=﹣12x2+x,∴当x=1时,△MNB的面积有最大值12,此时S△OMN的最小值是1﹣12=12,故⑤正确;综上所述,正确结论的个数是5个,故选D.点睛:本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定与性质,相似三角形的判定以及勾股定理的综合应用,解题时注意二次函数的最值的运用.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;二次函数的最值;最值问题;综合题.10.(2017江苏省无锡市,第9题,3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5B.6C.25D.32【答案】C.【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH ,BD ,由△AOF ∽△DBH ,可得OA OF BD BH =,延长即可解决问题. 【解析】如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB =20,面积为320,∴AB •DH =32O ,∴DH =16,在Rt △ADH 中,AH =22AD DH - =12,∴HB =AB ﹣AH =8,在Rt △BDH 中,BD =22DH BH +=85,设⊙O 与AB 相切于F ,连接AF .∵AD =AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF +∠ABE =90°,∠ABE +∠BDH =90°,∴∠OAF =∠BDH ,∵∠AFO =∠DHB =90°,∴△AOF ∽△DBH ,∴OA OF BD BH =,∴885OF =,∴OF =25.故选C . 点睛:本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.考点:切线的性质;菱形的性质;综合题.11.(2017浙江省台州市,第10题,4分)如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH ,△CFG 分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB为( )A . 53B .2C . 52D .4 【答案】A .【分析】设重叠的菱形边长为x ,BE =BF =y ,由矩形和菱形的对称性以及折叠的性质得:四边形AHME 、四边形BENF 是菱形,得出EN =BE =y ,EM =x +y ,由相似的性质得出AB =4MN =4x ,求出AE =AB ﹣BE =4x ﹣y ,得出方程4x ﹣y =x +y ,得出x =23y ,AE =53y ,即可得出结论.点睛:本题考查了折叠的性质、菱形的判定与性质、矩形的性质、相似多边形的性质等知识;熟练掌握菱形的判定与性质是解决问题的关键.考点:翻折变换(折叠问题);菱形的性质;矩形的性质;综合题.学.科.网12.(2017浙江省杭州市,第10题,3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=21【答案】B.【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴EM AQMC CQ=y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC ,∴AQ ∥EM ,∵E 为AC 中点,∴CM =QM =12CQ =3,∴EM =3y ,∴DM =12﹣3﹣x =9﹣x ,在Rt △EDM 中,由勾股定理得:x 2=(3y )2+(9﹣x )2,即2x ﹣y 2=9,故选B .点睛:本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.考点:解直角三角形;线段垂直平分线的性质;等腰三角形的性质;综合题. 13.(2017衢州,第9题,3分)如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A . 53B . 35C . 37D . 45 【答案】B .【分析】根据折叠的性质得到AE =AB ,∠E =∠B =90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF =DF ;易得FC =F A ,设F A =x ,则FC =x ,FD =6﹣x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6﹣x )2,解方程求出x .【解析】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE =AB ,∠E =∠B =90°,又∵四边形ABCD 为矩形,∴AB =CD ,∴AE =DC ,而∠AFE =∠DFC ,在△AEF 与△CDF 中,∵∠AFE =∠CFD ,∠E =∠D ,AE =CD ,∴△AEF ≌△CDF (AAS ),∴EF =DF ;∵四边形ABCD 为矩形,∴AD =BC =6,CD =AB =4,∵Rt △AEF ≌Rt △CDF ,∴FC =F A ,设F A =x ,则FC =x ,FD =6﹣x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6﹣x )2,解得x =133,则FD =6﹣x =35.故选B .点睛:本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.考点:翻折变换(折叠问题);矩形的性质;综合题.14.(2017湖北省武汉市,第10题,3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【答案】D.【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解析】如图:故选D.点睛:本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.考点:等腰三角形的判定与性质;分类讨论;综合题;操作型.15.(2017湖北省随州市,第10题,3分)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE 绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A.1个B.2个C.3个D.4个【答案】B.【分析】根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据当AB=BC时,四边形ABCD为正方形进行判断,即可得出当AB<BC时,AM=DE+BM不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM成立;根据N不是AM的中点,可得点N不是△ABM的外心.【解析】∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD =CF ,AE =FE ,又∵ME ⊥AF ,∴ME 垂直平分AF ,∴AM =MF =MC +CF ,∴AM =MC +AD ,故①正确; 当AB =BC 时,即四边形ABCD 为正方形时,设DE =EC =1,BM =a ,则AB =2,BF =4,AM =FM =4﹣a ,在Rt △ABM 中,22+a 2=(4﹣a )2,解得a =1.5,即BM =1.5,∴由勾股定理可得AM =2.5,∴DE +BM =2.5=AM ,又∵AB <BC ,∴AM =DE +BM 不成立,故②错误;∵ME ⊥FF ,EC ⊥MF ,∴EC 2=CM ×CF ,又∵EC =DE ,AD =CF ,∴DE 2=AD •CM ,故③正确;∵∠ABM =90°,∴AM 是△ABM 的外接圆的直径,∵BM <AD ,∴当BM ∥AD 时,MN BM AN AD =<1,∴N 不是AM 的中点,∴点N 不是△ABM 的外心,故④错误.综上所述,正确的结论有2个,故选B .点睛:本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.考点:相似三角形的判定与性质;全等三角形的判定与性质;矩形的性质;三角形的外接圆与外心;旋转的性质;综合题. 16.(2017湖南省长沙市,第12题,3分)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点C ,D 重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G .设正方形ABCD 的周长为m ,△CHG 的周长为n ,则mn 的值为( )A .22B .21 C .215- D .随H 点位置的变化而变化 【答案】B .【分析】设CH =x ,DE =y ,则DH =4m ﹣x ,EH =4m ﹣y ,然后利用正方形的性质和折叠可以证明△DEH ∽△CHG ,利用相似三角形的对应边成比例可以把CG ,HG 分别用x ,y 分别表示,△CHG 的周长也用x ,y 表示,然后在Rt △DEH 中根据勾股定理可以得到222m m x x y -=,进而求出△CMG 的周长.【解析】设CH =x ,DE =y ,则DH =4m ﹣x ,EH =4m ﹣y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME + ∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG ,∴CG CM MG DM DE EM ==,即 44CG x MG m m y x y ==--,∴CG =()4m x x y -,MG =()4m x y y -,△CMG 的周长为n =CM +CG +MG =22mx x y -,在Rt △DEM 中,DM 2+DE 2=EM 2,即(4m ﹣x )2+y 2=(4m ﹣y )2,整理得222m m x x y -=,∴ n =CM +MG +CG =22mx x y -=2my y =2m ,∴m n =21.故选B . 点睛:本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用. 考点:翻折变换(折叠问题);综合题.17.(2017甘肃省兰州市,第14题,4分)如图,在正方形ABCD 和正方形DEFG 中,点G 在CD 上,DE =2,将正方形DEFG 绕点D 顺时针旋转60°,得到正方形DE ′F ′G ′,此时点G ′在AC 上,连接CE ′,则CE ′+CG ′=( )A 26B 31C 32D 36【答案】A .【分析】解法一:作G ′I ⊥CD 于I ,G ′R ⊥BC 于R ,E ′H ⊥BC 交BC 的延长线于H .连接RF ′.则四边形RCIG ′是正方形.首先证明点F ′在线段BC 上,再证明CH =HE ′即可解决问题.解法二:首先证明CG ′+CE ′=AC ,作G ′M ⊥AD 于M .解直角三角形求出DM ,AM ,AD 即可;【解析】解法一:作G ′I ⊥CD 于I ,G ′R ⊥BC 于R ,E ′H ⊥BC 交BC 的延长线于H .连接RF ′.则四边形RCIG ′是正方形.∵∠DG ′F ′=∠IGR =90°,∴∠DG ′I =∠RG ′F ′,在△G ′ID 和△G ′RF 中,∵G ′D = G ′F ,∠D G ′I =∠R G ′F ′,G ′I = G ′R ,∴△G ′ID ≌△G ′RF ,∴∠G ′ID =∠G ′RF ′=90°,∴点F ′在线段BC上,在Rt△E′F′H中,∵E′F′=2,∠E′F′H=30°,∴E′H=12E′F′=1,F′H=3,易证△RG′F′≌△HF′E′,∴RF′=E′H,RG′RC=F′H,∴CH=RF′=E′H,∴CE′=2,∵RG′=HF′=3,∴CG′=2RG′=6,∴CE′+CG′=26.故选A.解法二:作G′M⊥AD于M.易证△DAG'≌△DCE',∴AG'=CE',∴CG′+CE′=AC,在Rt△DMG′中,∵DG′=2,∠MDG′=30°,∴MG′=1,DM=3,∵∠MAG′=45°,∠AMG′=90°,∴∠MAG′=∠MG′A=45°,∴AM=MG′=1,∴AD=1+3,∵AC=2AD,∴AC=26.故选A.点睛:本题考查旋转变换、正方形的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.考点:旋转的性质;正方形的性质;综合题.学.科.网18.(2017黑龙江省龙东地区,第20题,3分)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△H S△HBG=tan∠DAG⑤线段DH的最小值是252.A.2B.3C.4D.5【答案】C .【分析】首先证明△ABE ≌△DCF ,△ADG ≌△CDG (SAS ),△AGB ≌△CGB ,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解析】∵四边形ABCD 是正方形,∴AB =CD ,∠BAD =∠ADC =90°,∠ADB =∠CDB =45°,在△ABE 和△DCF 中,∵AB =CD ,∠BAD =∠ADC ,AE =DF ,∴△ABE ≌△DCF (SAS ),∴∠ABE =∠DCF ,在△ADG 和△CDG 中,∵AD =CD ,∠ADB =∠CDB ,DG =DG ,∴△ADG ≌△CDG (SAS ),∴∠DAG =∠DCF ,∴∠ABE =∠DAG ,∵∠DAG +∠BAH =90°,∴∠BAE +∠BAH =90°,∴∠AHB =90°,∴AG ⊥BE ,故③正确,同法可证:△AGB ≌△CGB ,∵DF ∥CB ,∴△CBG ∽△FDG ,∴△ABG ∽△FDG ,故①正确,∵S △H S △HBG =BG =BC =CD =tan ∠FCD ,又∵∠DAG =∠FCD ,∴S △H S △HBG =tan ∠FCD ,tan ∠DAG ,故④正确取AB 的中点O ,连接OD 、OH ,∵正方形的边长为4,∴AO =OH =12×4=2,由勾股定理得,OD =2242+ =25,由三角形的三边关系得,O 、D 、H 三点共线时,DH 最小,DH 最小=252-.无法证明DH 平分∠EHG ,故②错误,故①③④⑤正确,故选C .点睛:本题考查了正方形的性质,全等三角形的判定与性质,三角形的三边关系,勾股定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,难点在于⑤作辅助线并确定出DH 最小时的情况. 考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;解直角三角形;综合题.19.(2017四川省攀枝花市,第10题,3分)如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H .若3EGH S ∆=,则ADF S ∆=( )A .6B .4C .3D .2【答案】A .【分析】通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE =∠DAF ,BE =DF ,由正方形的性质就可以得出EC =FC ,就可以得出AC 垂直平分EF ,得到EG =GF ,根据相似三角形的性质得到S △EFC =12,设AD =x ,则DF =x ﹣26,根据勾股定理得到AD =632+,DF =326-,根据三角形的面积公式即可得到结论.【解析】∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°.∵△AEF 等边三角形,∴AE =EF =AF ,∠EAF =60°,∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,∵AE =AF ,AB =AD ,∴Rt △ABE ≌Rt △ADF (HL ),∴BE =DF ,∵BC =CD ,∴BC ﹣BE =CD ﹣DF ,即CE =CF ,∴△CEF 是等腰直角三角形,∵AE =AF ,∴AC 垂直平分EF ,∴EG =GF ,∵GH ⊥CE ,∴GH ∥CF ,∴△EGH ∽△EFC ,∵S △EGH =3,∴S △EFC =12,∴CF =26,EF =43,∴AF =43,设AD =x ,则DF =x ﹣26,∵AF 2=AD 2+DF 2,∴(43)2=x 2+(x ﹣26)2,∴x =632+,∴AD =632+,DF =326-,∴S △ADF =12AD •DF =6.故选A . 点睛:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,相似三角形的判定和性质,勾股定理的运用,等边三角形的性质的运用,解答本题的关键是运用勾股定理的性质.考点:正方形的性质;等边三角形的性质;综合题.20.(2017四川省雅安市,第12题,3分)如图,四边形ABCD 中,AB =4,BC =6,AB ⊥BC ,BC ⊥CD ,E 为AD 的中点,F 为线段BE 上的点,且FE =13BE ,则点F 到边CD 的距离是 ( )A .3B .103 C .4 D .143【答案】C .【分析】过点D 作DG ⊥AB ,交BA 的延长线于点G ,过点E 作EH ⊥BG 于点H ,过点F 作FP ⊥BG 于点P ,延长PF 交CD 于点M ,则FM 即为点F 到边CD 的距离,则四边形BCDG ,四边形BCMP 为矩形,得到PM 的长.再由三角形中位线定理得EH 的长,再由相似三角形的性质得到PF 的长,从而得到结论.点睛:作出恰当的辅助线是解答本题的关键.考点:矩形的判定与性质;三角形中位线定理;相似三角形的判定与性质;综合题.21.(2017山东省莱芜市,第12题,3分)如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE 分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣5;③(S四边形CDEF)2=9+25;④DF2﹣DG2=7﹣25.其中正确结论的个数是()A.1B.2C.3D.4【答案】B.【分析】①先根据正五方形ABCDE的性质得:∠ABC=180°﹣3605=108°,由等边对等角可得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,得∠CDF=∠CFD=(180°-72°)÷2=54°,可得∠FDG=18°;②证明△ABF∽△ACB,得AB EGAC ED=,代入可得FG的长;③如图1,先证明四边形CDEF是平行四边形,根据平行四边形的面积公式可得:(S四边形CDEF)2= 10+5④如图2,▱CDEF是菱形,先计算EC=BE=4﹣FG=15S四边形CDEF=12FD•EC=210254+,可得FD2=10﹣5【解析】①∵五方形ABCDE是正五边形,∴AB=BC,∠ABC=180°﹣3605=108°,∴∠BAC=∠ACB=36°,∴∠ACD=108°﹣36°=72°,同理得:∠ADE=36°,∵∠BAE=108°,AB=AE,∴∠ABE=36°,∴∠CBF=108°﹣36°=72°,∴BC=FC,∵BC=CD,∴CD=CF,∴∠CDF=∠CFD=(180°-72°)÷2=54°,∴∠FDG=∠CDE﹣∠CDF﹣∠ADE=108°﹣54°﹣36°=18°;所以①正确;②∵∠ABE=∠ACB=36°,∠BAC=∠BAF,∴△ABF∽△ACB,∴AB EGAC ED=,∴AB•ED=AC•EG,∵AB=ED=2,AC=BE=BG+EF﹣FG=2AB﹣FG=4﹣FG,EG=BG﹣FG=2﹣FG,∴22=(2﹣FG)(4﹣FG),∴FG=3+5>2(舍),FG=3﹣5;所以②正确;③如图1,∵∠EBC=72°,∠BCD=108°,∴∠EBC+∠BCD=180°,∴EF∥CD,∵EF=CD=2,∴四边形CDEF是平行四边形,过D作DM⊥EG于M,∵DG=DE,∴EM=MG=12EG=12(EF﹣FG)=12(2﹣3+5)=512-,由勾股定理得:DM=22DE EM-=22512()2-- =10254+,∴(S四边形CDEF)2=EF2×DM2=4×1025+=10+25;所以③不正确;④如图2,连接EC,∵EF=ED,∴▱CDEF是菱形,∴FD⊥EC,∵EC=BE=4﹣FG=4﹣(3﹣5)=1+5,∴S四边形CDEF=12FD•EC=2×10254+,12×FD×(1+5)=1025+,FD2=10﹣25,∴DF2﹣DG2=10﹣25﹣4=6﹣25,所以④不正确;本题正确的有两个,故选B.点睛:本题考查了相似三角形的判定和性质,勾股定理,正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握正五边形的性质是解题的关键.考点:正多边形和圆;相似三角形的判定与性质;综合题.学.科.网22.(2017辽宁省鞍山市,第8题,3分)如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=22.其中正确结论的个数是()A.4B.3C.2D.1【答案】A.【分析】①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②根据已知条件得到四边形BMDE是平行四边形,求得BM=DE=12BC,根据线段垂直平分线的性质得到DM垂直平分CF,于是得到结论,③根据三角形的面积公式即可得到结论;④设AE=a,AB=b,则AD=2a,根据相似三角形的性质即可得到结论.【解析】如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,S△DCF=4S△DEF∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;②∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故②正确;③∵点E是AD边的中点,∴S△DEF=12S△ADF,∵△AEF∽△CBA,∴AF:CF=AE:BC=12,∴S△CDF=2S△ADF=4S△DEF,故③正确;④设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有2b aa b=,即b2a,∴tan∠CAD=2CD bAD a=2.故④正确;故选A.点睛:本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例. 考点:相似三角形的判定与性质;矩形的性质;解直角三角形;综合题.23.(2016山东省潍坊市)关于x 的一元二次方程22sin 0x x a -+=有两个相等的实数根,则锐角α等于( )A .15°B .30°C .45°D .60° 【答案】B .【分析】由方程有两个相等的实数根,结合根的判别式可得出sin α=12,再由α为锐角,即可得出结论. 【解析】∵关于x 的一元二次方程22sin 0x x a -+=有两个相等的实数根,∴△=2(2)4sin 0α--=,解得:sin α=12,∵α为锐角,∴α=30°.故选B . 考点:根的判别式;特殊角的三角函数值.24.(2016福建省莆田市)如图,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若AE =3,则sin ∠BFD 的值为( )A .13 B 22 C 2 D .35【答案】A .【分析】由题意得:△AEF ≌△DEF ,故∠EDF =∠A ;由三角形的内角和定理及平角的知识问题即可解决. 【解析】∵在△ABC 中,∠ACB =90°,AC =BC =4,∴∠A =∠B ,由折叠的性质得到:△AEF ≌△DEF ,∴∠EDF =∠A ,∴∠EDF =∠B ,∴∠CDE +∠BDF +∠EDF =∠BFD +∠BDF +∠B =180°,∴∠CDE =∠BFD .又∵AE =DE =3,∴CE =4﹣3=1,∴在直角△ECD 中,sin ∠CDE =13CE ED =.故选A . 考点:翻折变换(折叠问题);等腰直角三角形;锐角三角函数的定义.。

最新-2018年全国中考数学压轴题全析全解 精品

最新-2018年全国中考数学压轴题全析全解 精品

2018年全国中考数学压轴题全析全解1、(2018重庆)如图1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P. (1) 当11AC D ∆平移到如图3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;(2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x 的值,使重叠部分的面积等于原ABC ∆面积的14. 若存在,求x 的值;若不存在,请说明理由.[解](1)12D E D F =.因为1122C D C D ∥,所以12C AFD ∠=∠.又因为90ACB ∠=︒,CD 是斜边上的中线,所以,DC DA DB ==,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠ 所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =CB D A 图1122图3C 2D 2C 1BD 1A 图2P(2)因为在Rt ABC ∆中,8,6AC BC ==,所以由勾股定理,得10.AB = 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是ABC ∆的AB 边上的高,为245. 设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆=⨯⨯=- 又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==. 所以234,55PC x PF x == ,22216225FC P S PC PF x ∆=⨯=而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=--- 所以21824(05)255y x x x =-+≤≤ (3) 存在. 当14ABC y S ∆=时,即218246255x x -+= 整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原ABC ∆面积的142、(2018浙江金华)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .(1)求直线AB 的解析式; (2)若S 梯形OBCD,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P,O,B 为顶点的 三角形与△OBA 相似.若存在,请求出所有符合条件 的点P 的坐标;若不存在,请说明理由.[解] (1)直线AB 解析式为:y=33-x+3.(2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去) ∴ C(2,33) 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1. ∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30°过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23. ∵ 在Rt △P MO 中,∠OPM =30°, ∴ OM =21OP =43;PM =3OM =433.∴3P (43,433).方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.∴33-x+3=3x ,解得x =43.此时,3P (43,433).④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标). 当∠OPB =Rt ∠时,点P 在x轴上,不符合要求.综合得,符合条件的点有四个,分别是:1P (3,33),2P (1,3),3P (43,433),4P (43,43).3、(2018山东济南)如图1,已知Rt ABC △中,30CAB ∠=,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P . (1)求PA 的长;(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;(3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相.切.,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.[解]CD图1图2(1) 在Rt ABC △中,305CAB BC ∠==,, 210AC BC ∴==.AE BC ∥,APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==. :3:4PA AC ∴=,3101542PA ⨯==. (2)BE 与⊙A 相切.在Rt ABE △中,AB =15AE =,tanAE ABE AB ∴∠===60ABE ∴∠= . 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,, BE ∴与⊙A 相切.(3)因为5AD AB ==,r 的变化范围为5r <<当⊙A 与⊙C 外切时,10R r +=,所以R 的变化范围为105R -<<;当⊙A 与⊙C 内切时,10R r -=,所以R 的变化范围为1510R <<+ 4、(2018山东烟台)如图,已知抛物线L 1: y=x 2-4的图像与x 有交于A 、C 两点, (1)若抛物线l 2与l 1关于x 轴对称,求l 2的解析式; (2)若点B 是抛物线l 1上的一动点(B 不与A 、C 重合),以AC 为对角线,A 、B 、C 三点为顶点的平行四边形的第四个顶点定为D ,求证:点D 在l 2上;(3)探索:当点B 分别位于l 1在x 轴上、下两部分的图像上时,平行四边形ABCD 的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。

2018年全国各地中考数学压轴题汇编:几何综合(浙江专版)(原卷)

2018年全国各地中考数学压轴题汇编:几何综合(浙江专版)(原卷)

2018年全国各地中考数学压轴题汇编(浙江专版)几何综合1.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.2.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.3.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.4.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.5.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.6.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.7.在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.8.如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.9.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.10.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC 沿直线AD折叠,点C的对应点E落在BD上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.11.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.12.如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若=,求BC的长;②当为何值时,AB•AC的值最大?13.小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q的位置特殊化;把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2.此时她证明了AE=AF,请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).14.如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN 于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长.②若△BED为等腰三角形,求所有满足条件的BD的长.(3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC∥BE时,记△OFP 的面积为S1,△CFE的面积为S2,请写出的值.15.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.16.如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C 是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A交x 轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.。

专题19 几何变换综合题-决胜2018中考数学压轴题全揭秘精品(原卷版)

专题19 几何变换综合题-决胜2018中考数学压轴题全揭秘精品(原卷版)

一、选择题1.(2017四川省达州市,第9题,3分)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π2.(2017临沂,第14题,3分)如图,在平面直角坐标系中,反比例函数kyx=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10C.226D.2293.(2017新疆乌鲁木齐市,第10题,4分)如图,点A(a,3),B(b,1)都在双曲线3yx=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.52B.62C.21022D.24.(2017湖北省恩施州,第12题,3分)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E 关于y轴对称,抛物线2y ax bx c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A.5B.4C.3D.25.(2017湖北省咸宁市,第8题,3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(32,0)B.(2,0)C.(52,0)D.(3,0)6.(2017辽宁省营口市,第8题,3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数kyx的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.33yx=-B.3yx=-C.3yx=-D.3yx=7.(2016浙江省湖州市)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4B.174C.32D.258.(2016湖北省鄂州市)如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.13 29.(2016四川省广元市)如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B 的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.(45-,125)B.(25-,135)C.(12-,135)D.(35-,125)10.(2016江苏省镇江市)如图,在平面直角坐标系中,坐标原点O是正方形OABC的一个顶点,已知点B 坐标为(1,7),过点P(a,0)(a>0)作PE⊥x轴,与边OA交于点E(异于点O、A),将四边形ABCE 沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于()A.54B.43C.2D.311.(2015北海,第12题,3分)如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是()A.(4,8)B.(5,8)C.(245,325)D.(225,365)12.(2015南宁,第11题,3分)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4B.5C.6D.713.(2015无锡,第10题,2分)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.35B.45C.23D.3214.(2015泸州,第11题,3分)如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l 翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为()A.13 B.152C.272D.1215.(2015绵阳,第12题,3分)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC 折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A .34B .45C .56D .6716.(2015鄂州,第8题,3分)如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =( )A .43B .34C .53D .5417.(2015绥化,第9题,3分)如图,在矩形ABCD 中,AB =10,BC =5.若点M 、N 分别是线段ACAB 上的两个动点,则BM +MN 的最小值为( )A .10B .8C .53D .618.(2015泰安,第20题,3分)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB =6,BC =46,则FD 的长为( )A .2B .4C 6D .2319.(2015淄博,第11题,4分)如图,在一张矩形纸片的一端,将折出的一个正方形展平后,又折成了两个相等的矩形,再把纸片展平,折出小矩形的对角线,并将小矩形的对角线折到原矩形的长边上.设MN 的长为251)线段的有( )A .0种B .1种C .2种D .3种20.(2015宁波,第10题,4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 2处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为h 2015,到BC 的距离记为h 2015.若h 1=1,则h 2015的值为( )A .201521B .201421C .2015211- D .2014212-21.(2015本溪,第9题,3分)如图,在平面直角坐标系中,直线AB 与x 轴交于点A (﹣2,0),与x 轴夹角为30°,将△ABO 沿直线AB 翻折,点O 的对应点C 恰好落在双曲线k y x=(0k ≠)上,则k 的值为( )A .4B .﹣2C 3D .322.(2015武汉,第10题,3分)如图,△ABC ,△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( )A .23B 31C 2D 3123.(2015庆阳,第12题,3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,3)B.(2n﹣1,3)C.(4n+1,3)D.(2n+1,3)24.(2015枣庄,第9题,3分)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.34B.716C.212-D.21-25.(2015抚顺,第10题,3分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A . 3B . 1.5C . 23D .326.(2015广元,第9题,3分)如图,把RI △ABC 放在直角坐标系内,其中∠CAB =90°, BC =5.点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 扫过的面积为( )A .4B .8C .16D .8227.(2015黔西南州,第10题,4分)在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A 、B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 的延长线与x 轴交于点N (n ,0),如图3,当m =3时,n 的值为( )A .423-B .432-C .332-D .332二、填空题28.(2017湖南省常德市,第16题,3分)如图,有一条折线A 1B 1A 2B 2A 3B 3A 4B 4…,它是由过A 1(0,0),B 1(2,2),A 2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y =kx +2与此折线恰有2n (n ≥1,且为整数)个交点,则k 的值为 .29.(2017山东省菏泽市,第14题,3分)如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线33y x=-上,再将△AB1O1绕点B1逆时针旋转到△A1B1O1的位置,使点O1的对应点O2落在直线33y x=-上,依次进行下去…若点B的坐标是(0,1),则点O12的纵坐标为.30.(2017湖南省张家界市,第14题,3分)如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.31.(2017四川省内江市,第25题,6分)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=430,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且P A+AB+BQ最小,此时P A+BQ= .32.(2017安徽省,第14题,5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.33.(2017山东省东营市,第15题,4分)如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.34.(2017山东省泰安市,第24题,3分)如图,∠BAC=30°,M为AC上一点,AM=2,点P是AB上的一动点,PQ⊥AC,垂足为点Q,则PM+PQ的最小值为.35.(2017浙江省温州市,第15题,5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数kyx(k≠0)的图象恰好经过点A′,B,则k的值为.36.(2016福建省南平市)如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为435;④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是.37.(2016山东省济南市)如图1,在矩形纸片ABCD中,AB=83,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME/NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG= .38.(2016福建省宁德市4分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是39.(2016福建省宁德市4分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D、E分别是AB、AC的中点,点G、F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是40.(2016内蒙古呼伦贝尔市,第17题,3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC 绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.41.(2015宁夏,第14题,3分)如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线45y x上一点,则点B与其对应点B′间的距离为.42.(2015泰州,第16题,3分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP 翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.43.(2015攀枝花,第15题,4分)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.44.(2015宜宾,第15题,3分)如图,一次函数的图象与x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,得△ACB.若C(32,32),则该一次函数的解析式为.45.(2015达州,第14题,3分)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为.46.(2015凉山州,第26题,5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.47.(2015内江,第14题,5分)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.48.(2015孝感,第16题,3分)如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD 与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③QN=33;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是3.其中正确结论的序号是.49.(2015鄂州,第16题,3分)如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为.50.(2015随州,第16题,3分)在▱ABCD中,AB<BC,已知∠B=30°,AB=23,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为.51.(2015梅州,第14题,3分)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为.52.(2015河南省,第15题,3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.53.(2015牡丹江,第20题,3分)矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为.54.(2015绥化,第21题,3分)在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A'处,则AP的长为__________.+的菱形ABCD中,∠A=60°,点E,F分别在AB,55.(2015包头,第19题,3分)如图,在边长为31AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,则EG的长为.56.(2015天津市,第18题,3分)在每个小正方形的边长为1的网格中.点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(1)如图①,当BE=52时,计算AE+AF的值等于;(2)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).57.(2015山西省,第16题,3分)如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为.58.(2015西宁,第20题,2分)如图,△ABC是边长为1的等边三角形,BD为AC边上的高,将△ABC 折叠,使点B与点D重合,折痕EF交BD于点D1,再将△BEF折叠,使点B于点D1重合,折痕GH交BD1于点D2,依次折叠,则BD n= .59.(2015滨州,第17题,4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.60.(2015杭州,第16题,4分)如图,在四边形纸片ABCD 中,AB =BC ,AD =CD ,∠A =∠C =90°,∠B =150°.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD = .61.(2015盘锦,第17题,3分)如图,直线33y x =-+与x 轴交于点B ,与y 轴交于点A ,以线段AB 为边,在第一象限内作正方形ABCD ,点C 落在双曲线k y x =(0k ≠)上,将正方形ABCD 沿x 轴负方向平移a 个单位长度,使点D 恰好落在双曲线k y x=(0k ≠)上的点D 1处,则a = .62.(2015绵阳,第18题,3分)如图,在等边△ABC 内有一点D ,AD =5,BD =6,CD =4,将△ABD 绕A 点逆时针旋转,使AB 与AC 重合,点D 旋转至点E ,则∠CDE 的正切值为 .63.(2015孝感,第16题,3分)如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD 与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③QN=33;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是3.其中正确结论的序号是.64.(2015福州,第16题,4分)如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.65.(2015大庆,第18题,3分)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A 点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A 经过的路线与x轴围成图形的面积为.66.(2015重庆市,第18题,4分)如图,在矩形ABCD中,AB=46,AD=10.连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为.67.(2015朝阳,第16题,3分)如图,在Rt△AOB中,∠AOB=90°,AO=3,BO=1,AB的垂直平分线交AB于点E,交射线BO于点F.点P从点A出发沿射线AO以每秒23个单位的速度运动,同时点Q 从点O出发沿OB方向以每秒1个单位的速度运动,当点Q到达点B时,点P、Q同时停止运动.设运动的时间为t秒.(1)当t= 时,PQ∥EF;(2)若P、Q关于点O的对称点分别为P′、Q′,当线段P′Q′与线段EF有公共点时,t的取值范围是.68.(2015沈阳,第16题,4分)如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K .若正方形ABCD 边长为3,则AK = .三、解答题69.(2017四川省宜宾市,第24题,12分)如图,抛物线2y x bx c =-++与x 轴分别交于A (﹣1,0),B (5,0)两点. (1)求抛物线的解析式;(2)在第二象限内取一点C ,作CD 垂直X 轴于点D ,链接AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位,当点C 落在抛物线上时,求m 的值;(3)在(2)的条件下,当点C 第一次落在抛物线上记为点E ,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q ,使以点B 、E 、P 、Q 为顶点的四边形是平行四边形?若存在,请出点Q 的坐标;若不存在,请说明理由.70.(2017山东省潍坊市,第24题,12分)边长为6的等边△ABC 中,点D 、E 分别在AC 、BC 边上,DE ∥AB ,EC =23(1)如图1,将△DEC 沿射线方向平移,得到△D ′E ′C ′,边D ′E ′与AC 的交点为M ,边C ′D ′与∠ACC ′的角平分线交于点N ,当CC ′多大时,四边形MCND ′为菱形?并说明理由.(2)如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E ′C ,连接AD ′、BE ′.边D ′E ′的中点为P .①在旋转过程中,AD ′和BE ′有怎样的数量关系?并说明理由; ②连接AP ,当AP 最大时,求AD ′的值.(结果保留根号)71.(2017内蒙古赤峰市,第25题,12分)△OP A 和△OQB 分别是以OP 、OQ 为直角边的等腰直角三角形,点C 、D 、E 分别是OA 、OB 、AB 的中点.(1)当∠AOB =90°时如图1,连接PE 、QE ,直接写出EP 与EQ 的大小关系;(2)将△OQB 绕点O 逆时针方向旋转,当∠AOB 是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB 绕点O 旋转,当∠AOB 为钝角时,延长PC 、QD 交于点G ,使△ABG 为等边三角形如图3,求∠AOB 的度数.72.(2017四川省南充市,第25题,10分)如图1,已知二次函数2y ax bx c =++(a 、b 、c 为常数,a ≠0)的图象过点O (0,0)和点A (4,0),函数图象最低点M 的纵坐标为38-,直线l 的解析式为y =x .(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.73.(2017四川省自贡市,第25题,12分)如图1,在平面直角坐标系,O为坐标原点,点A(﹣1,0),点B(0,3).(1)求∠BAO的度数;(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2,S1与S2有何关系?为什么?(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.74.(2017天津,第24题,10分)将一个直角三角形纸片ABO放置在平面直角坐标系中,点A3,0),点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;(2)如图②,当P为AB中点时,求A'B的长;(3)当∠BP A'=30°时,求点P的坐标(直接写出结果即可).75.(2017临沂,第25题,11分)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.76.(2017山东省烟台市,第23题,10分)【操作发现】(1)如图1,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①求∠EAF的度数;②线段AE,ED,DB之间的数量关系.77.(2017山东省青岛市,第23题,10分)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究一:求不等式|x ﹣1|<2的解集 (1)探究|x ﹣1|的几何意义如图①,在以O 为原点的数轴上,设点A ′对应的数是x ﹣1,有绝对值的定义可知,点A ′与点O 的距离为|x ﹣1|,可记为A ′O =|x ﹣1|.将线段A ′O 向右平移1个单位得到线段AB ,此时点A 对应的数是x ,点B 对应的数是1.因为AB =A ′O ,所以AB =|x ﹣1|,因此,|x ﹣1|的几何意义可以理解为数轴上x 所对应的点A 与1所对应的点B 之间的距离AB . (2)求方程|x ﹣1|=2的解因为数轴上3和﹣1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,﹣1. (3)求不等式|x ﹣1|<2的解集因为|x ﹣1|表示数轴上x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x 的范围.请在图②的数轴上表示|x ﹣1|<2的解集,并写出这个解集. 探究二:探究22)()(b y a x -+-的几何意义 (1)探究22y x +的几何意义如图③,在直角坐标系中,设点M 的坐标为(x ,y ),过M 作MP ⊥x 轴于P ,作MQ ⊥y 轴于Q ,则P 点坐标为(x ,0),Q 点坐标为(0,y ),OP =|x |,OQ =|y |,在Rt △OPM 中,PM =OQ =|y |,则MO =222222||||y x y x PM OP MO +=+=+=,因此,22y x + 的几何意义可以理解为点M (x ,y )与点O (0,0)之间的距离MO . (2)探究22)5()1(-+-y x 的几何意义如图④,在直角坐标系中,设点A ′的坐标为(x ﹣1,y ﹣5),由探究二(1)可知,A ′O =22)5()1(-+-y x ,将线段A ′O 先向右平移1个单位,再向上平移5个单位,得到线段AB ,此时点A 的坐标为(x ,y ),点B 的坐标为(1,5),因为AB =A ′O ,所以AB =22)5()1(-+-y x ,因此22)5()1(-+-y x 的几何意义可以理解为点A (x ,y )与点B (1,5)之间的距离AB .(3的几何意义请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程. (4)22)()(b y a x -+-的几何意义可以理解为: . 拓展应用:(1)22)1()2(++-y x +22)5()1(+++y x 的几何意义可以理解为:点A (x ,y )与点E (2,﹣1)的距离和点A (x ,y )与点F (填写坐标)的距离之和.(2)22)1()2(++-y x +22)5()1(+++y x 的最小值为 (直接写出结果)78.(2017南京,第27题,11分)折纸的思考. 【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD (AB >BC )(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②). 第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,折出PB ,PC ,得到△PBC .(1)说明△PBC 是等边三角形. 【数学思考】(2)如图④,小明画出了图③的矩形ABCD 和等边三角形PBC ,他发现,在矩形ABCD 中把△PBC 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm ,另一边长为a cm ,对于每一个确定的a 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a 的取值范围. 【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.79.(2017江苏省徐州市,第27题,9分)如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点.(1)探求AO到OD的数量关系,并说明理由;(2)如图②,若P,N分别为BE,BC上的动点.①当PN+PD的长度取得最小值时,求BP的长度;②如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值= .80.(2017河南省,第22题,10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.81.(2017湖北省十堰市,第24题,10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则:①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.82.(2017湖北省襄阳市,第24题,10分)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF 与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.83.(2017湖南省岳阳市,第23题,10分)问题背景:已知∠EDF的顶点D在△ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记△ADM的面积为S1,△BND 的面积为S2.(1)初步尝试:如图①,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2时,则S1S2= ;(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转至如图②所示位置,求S1S2的值;(3)延伸拓展:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.(Ⅰ)如图③,当点D在线段AB上运动时,设AD=a,BD=b,求S1S2的表达式(结果用a,b和α的三角函数表示).(Ⅱ)如图④,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1S2的表达式,不必写出解答过程.84.(2017湖南省郴州市,第26题,12分)如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM 上,且OA=6cm,点D从O点出发,沿OM的方向以1c m/s的速度运动,当D不与点A重合时,将△ACD 绕点C逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE 是等边三角形;(2)如图2,当6<t <10时,△BDE 的周长是否存在最小值?若存在,求出△BDE 的最小周长;若不存在,请说明理由;(3)如图3,当点D 在射线OM 上运动时,是否存在以D 、E 、B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.85.(2017辽宁省大连市,第25题,12分)如图1,四边形ABCD 的对角线AC ,BD 相交于点O ,OB =OD ,OC =OA +AB ,AD =m ,BC =n ,∠ABD +∠ADB =∠ACB .(1)填空:∠BAD 与∠ACB 的数量关系为 ;(2)求nm 的值; (3)将△ACD 沿CD 翻折,得到△A ′CD (如图2),连接BA ′,与CD 相交于点P .若CD =512 ,求PC 的长.86.(2017辽宁省盘锦市,第25题,14分)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,点O 为AB 中点,点P 为直线BC 上的动点(不与点B 、点C 重合),连接OC 、OP ,将线段OP 绕点P 顺时针旋转60°,得到线段PQ ,连接BQ .(1)如图1,当点P 在线段BC 上时,请直接写出线段BQ 与CP 的数量关系.(2)如图2,当点P 在CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P 在BC 延长线上时,若∠BPO =15°,BP =4,请求出BQ 的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.(2017内蒙古包头市,第12题,3分)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC =3,AB =5,则CE 的长为( )A . 32B . 43C . 53D .852.(2017四川省内江市,第12题,3分)如图,过点A (2,0)作直线l :33y x的垂线,垂足为点A 1,过点A 1作A 1A 2⊥x 轴,垂足为点A 2,过点A 2作A 2A 3⊥l ,垂足为点A 3,…,这样依次下去,得到一组线段:AA 1,A 1A 2,A 2A 3,…,则线段A 2016A 2107的长为( )A .20153()2B .20163()2C .20173()2D .20183()2 3.(2017四川省泸州市,第11题,3分)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A 2B .14C .13D 24.(2017四川省绵阳市,第11题,3分)如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MO MF 的值为( )A .12B .54C .23D .33 5.(2017四川省达州市,第9题,3分)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )A .2017πB .2034πC .3024πD .3026π6.(2017德州,第11题,3分)如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b (a >b ),M 在BC 边上,且BM =b ,连接AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转至△NGF ,给出以下五个结论:①∠MAD =∠AND ;②CP =2b b a-;③△ABM ≌△NGF ;④22AMFN S a b =+;⑤A ,M ,P ,D 四点共圆,其中正确的个数是( )A .2B .3C .4D .57.(2017山东省淄博市,第12题,4分)如图,在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为( )A .52B .83C . 103D .154 8.(2017广东省深圳市,第12题,3分)如图,正方形ABCD 的边长是3,BP =CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE •OP ;③S △AOD =S 四边形OECF ;④当BP =1时,tan ∠OAE =1316,其中正确结论的个数是( )A .1B .2C .3D .49.(2017广西贵港市,第12题,3分)如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2;⑤若AB =2,则S △OMN 的最小值是12,其中正确结论的个数是( )A .2B .3C .4D .510.(2017江苏省无锡市,第9题,3分)如图,菱形ABCD 的边AB =20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO =10,则⊙O 的半径长等于( )A.5B.6C.25D.3211.(2017浙江省台州市,第10题,4分)如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的116时,则AEEB为()A.53B.2C.52D.412.(2017浙江省杭州市,第10题,3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=2113.(2017衢州,第9题,3分)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B 落在点E处,CE交AD于点F,则DF的长等于()A . 53B . 35C . 37D . 45 14.(2017湖北省武汉市,第10题,3分)如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .715.(2017湖北省随州市,第10题,3分)如图,在矩形ABCD 中,AB <BC ,E 为CD 边的中点,将△ADE 绕点E 顺时针旋转180°,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME ⊥AF 交BC 于点M ,连接AM 、BD 交于点N ,现有下列结论:①AM =AD +MC ;②AM =DE +BM ;③DE 2=AD •CM ;④点N 为△ABM 的外心.其中正确的个数为( )A .1个B .2个C .3个D .4个16.(2017湖南省长沙市,第12题,3分)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点C ,D 重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G .设正方形ABCD 的周长为m ,△CHG 的周长为n ,则mn 的值为( )A .22B .21 C .215 D .随H 点位置的变化而变化17.(2017甘肃省兰州市,第14题,4分)如图,在正方形ABCD 和正方形DEFG 中,点G 在CD 上,DE =2,将正方形DEFG 绕点D 顺时针旋转60°,得到正方形DE ′F ′G ′,此时点G ′在AC 上,连接CE ′,则CE ′+CG ′=( )A .26B .31C .32D .3618.(2017黑龙江省龙东地区,第20题,3分)如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE =FD ,连接BE 、CF 、BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △H S △HBG =tan ∠DAG ⑤线段DH 的最小值是252-.A .2B .3C .4D .519.(2017四川省攀枝花市,第10题,3分)如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H .若3EGH S ∆=,则ADF S ∆=( )A .6B .4C .3D .220.(2017四川省雅安市,第12题,3分)如图,四边形ABCD 中,AB =4,BC =6,AB ⊥BC ,BC ⊥CD ,E 为AD 的中点,F 为线段BE 上的点,且FE =13BE ,则点F 到边CD 的距离是 ( )A .3B .103C .4D .14321.(2017山东省莱芜市,第12题,3分)如图,正五边形ABCDE 的边长为2,连结AC 、AD 、BE ,BE 分别与AC 和AD 相交于点F 、G ,连结DF ,给出下列结论:①∠FDG =18°;②FG =3﹣5;③(S 四边形CDEF )2=9+25;④DF 2﹣DG 2=7﹣25.其中正确结论的个数是( )A .1B .2C .3D .422.(2017辽宁省鞍山市,第8题,3分)如图,在矩形ABCD 中,点E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②DF =DC ;③S △DCF =4S △DEF ;④tan ∠CAD =22.其中正确结论的个数是( )A .4B .3C .2D .123.(2016山东省潍坊市)关于x 的一元二次方程22sin 0x x a +=有两个相等的实数根,则锐角α等于( )A .15°B .30°C .45°D .60°24.(2016福建省莆田市)如图,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若AE =3,则sin ∠BFD 的值为( )A.13B.223C.24D.3525.(2016浙江省湖州市)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4B.174C.32D.2526.(2016湖北省武汉市)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.827.(2016贵州省六盘水市)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.702nB.1702n+C.1702n-D.2702n+28.(2016山东省威海市)如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A .512BD BC -=B .AD ,AE 将∠BAC 三等分 C .△ABE ≌△ACD D .S △ADH =S △CEG 29.(2016山东省德州市)在矩形ABCD 中,AD =2AB =4,E 是AD 的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E 旋转,三角板的两直角边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AEM =α(0°<α<90°),给出下列四个结论:①AM =CN ;②∠AME =∠BNE ;③BN ﹣AM =2;④S △EMN =22cos α. 上述结论中正确的个数是( )A .1B .2C .3D .430.(2016山东省淄博市)如图,直线l 1∥l 2∥l 3,一等腰直角三角形ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB =90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则AB BD的值为( )A .425B .345C .528D .20223 31.(2016贵州省铜仁市)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .532.(2016四川省泸州市)如图,矩形ABCD 的边长AD =3,AB =2,E 为AB 的中点,F 在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.225B.9220C.324D.42533.(2016四川省资阳市)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=6,EF=2,∠H=120°,则DN的长为()A.3B.63+C.63-D.236-34.(2016湖北省鄂州市)如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.13 235.(2016四川省攀枝花市)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是642+)A.2B.3C.4D.536.(2016黑龙江省牡丹江市)如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE ⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=12AF;⑤2EG=FG•DG,其中正确结论的个数为()A.2B.3C.4D.537.(2016黑龙江省龙东地区)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=45;④S四边形ECFG=2S△BGE.A.4B.3C.2D.138.(2016山东省泰安市)如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O 于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于()A .1:2B .1:3C .1:2D .2:339.(2016黑龙江省龙东地区)若点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =2,则△ABC 的面积为( )A .23+B .233C .23+或23-D .423+或23- 40.(2016湖北省鄂州市)如图所示,AB 是⊙O 的直径,AM 、BN 是⊙O 的两条切线,D 、C 分别在AM 、BN 上,DC 切⊙O 于点E ,连接OD 、OC 、BE 、AE ,BE 与OC 相交于点P ,AE 与OD 相交于点Q ,已知AD =4,BC =9,以下结论:①⊙O 的半径为132 ,②OD ∥BE ,③PB =181313, ④tan ∠CEP =23其中正确结论有( )A .1个B .2个C .3个D .4个41.(2015南通)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为( )A .2.5B .2.8C .3D .3.242.(2015南宁)如图,AB 是⊙O 的直径,AB =8,点M 在⊙O 上,∠MAB =20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN =1,则△PM N 周长的最小值为( )A .4B .5C .6D .743.(2015雅安)如图所示,MN 是⊙O 的直径,作AB ⊥MN ,垂足为点D ,连接AM ,AN ,点C 为AN 上一点,且AC AM =,连接CM ,交AB 于点E ,交AN 于点F ,现给出以下结论:①AD =BD ;②∠MAN =90°;③AM BM =;④∠ACM +∠ANM =∠MOB ;⑤AE =12MF . 其中正确结论的个数是( )A .2B .3C .4D .544.(2015贵港)如图,已知P 是⊙O 外一点,Q 是⊙O 上的动点,线段PQ 的中点为M ,连接OP ,OM .若⊙O 的半径为2,OP =4,则线段OM 的最小值是( )A .0B .1C .2D .345.(2015宜昌)如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O ,三角尺的直角顶点C 落在直尺的10cm 处,铁片与直尺的唯一公共点A 落在直尺的14cm 处,铁片与三角尺的唯一公共点为B ,下列说法错误的是( )A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm246.(2015河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:43y kx=+与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA 上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.1247.(2015南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.133B.92C.4133D.2548.(2015攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A.239πB.439πC.29πD.49π49.(2015梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.95B.185C.365D.72550.(2015咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大B.由大到小C.不变D.先由小到大,后由大到小51.(2015常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB与扇形A1O1B1是相似扇形,且半径OA:O1A1=k(k为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③11ABkA B=;④扇形AOB与扇形A1O1B1的面积之比为2k.成立的个数为()A.1个B.2个C.3个D.4个52.(2015邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015π B.3019.5π C.3018π D.3024π二、填空题53.(2017四川省内江市,第16题,5分)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=56,则CE= .54.(2017四川省内江市,第25题,6分)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=430,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且P A+AB+BQ最小,此时P A+BQ= .55.(2017四川省绵阳市,第17题,3分)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AB=1:3,则MD+12MA DN的最小值为.56.(2017四川省绵阳市,第18题,3分)如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM=13AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是112,则ACH∠tan1的值是.57.(2017四川省达州市,第16题,3分)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE 翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④3S=阴影.其中正确结论的序号是.58.(2017广东省广州市,第16题,3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是203;④OD=53其中正确的结论是(填写所有正确结论的序号).59.(2017南宁,第16题,3分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=23,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为.60.(2017广西河池市,第18题,3分)如图,在矩形ABCD中,AB=2,E是BC的中点,AE⊥BD于点F,则CF的长是.61.(2017广西贺州市,第18题,3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF 交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为.62.(2017浙江省嘉兴市,第15题,4分)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=13,tan∠BA3C=17,计算tan∠BA4C= ,…按此规律,写出tan∠BA n C= (用含n的代数式表示).63.(2017浙江省嘉兴市,第16题,4分)一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC 与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH 的长是.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为.(结果保留根号)64.(2017浙江省宁波市,第18题,4分)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为.65.(2017浙江省绍兴市,第16题,5分)如图,∠AOB=45°,点M、N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P、M、N构成等腰三角形的点P恰好有三个,则x的值是.66.(2017湖北省十堰市,第16题,3分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=43NF;③38BMMG=;④12CGNF ANGDS S=.其中正确的结论的序号是.67.(2017湖北省咸宁市,第16题,3分)如图,在Rt △ABC 中,BC =2,∠BAC =30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:①若C 、O 两点关于AB 对称,则OA =23; ②C 、O 两点距离的最大值为4;③若AB 平分CO ,则AB ⊥CO ;④斜边AB 的中点D 运动路径的长为2π; 其中正确的是 (把你认为正确结论的序号都填上).68.(2017四川省成都市,第25题,4分)如图1,把一张正方形纸片对折得到长方形ABCD ,再沿∠ADC 的平分线DE 折叠,如图2,点C 落在点C ′处,最后按图3所示方式折叠,使点A 落在DE 的中点A ′处,折痕是FG ,若原正方形纸片的边长为6cm ,则FG = cm .69.(2017四川省遂宁市,第15题,4分)如图,正方形ABCD 的边长为4,点E 、F 分别从点A 、点D 以相同速度同时出发,点E 从点A 向点D 运动,点F 从点D 向点C 运动,点E 运动到D 点时,E 、F 停止运动.连接BE 、AF 相交于点G ,连接CG .有下列结论:①AF ⊥BE ;②点G 随着点E 、F 的运动而运动,且点G 的运动路径的长度为π;③线段DG 的最小值为252;④当线段DG 最小时,△BCG 的面积8855S =其中正确的命题有 .(填序号)70.(2016云南省曲靖市)如图,在矩形ABCD 中,AD =10,CD =6,E 是CD 边上一点,沿AE 折叠△ADE ,使点D 恰好落在BC 边上的F 处,M 是AF 的中点,连接BM ,则sin ∠ABM = .71.(2016湖北省咸宁市)如图,边长为4的正方形ABCD 内接于点O ,点E 是AB 上的一动点(不与A 、B 重合),点F 是BC 上的一点,连接OE 、OF ,分别与AB 、BC 交于点G ,H ,且∠EOF =90°,有以下结论:①AE BF =;②△OGH 是等腰三角形;③四边形OGBH 的面积随着点E 位置的变化而变化; ④△GBH 周长的最小值为42+.其中正确的是 (把你认为正确结论的序号都填上).72.(2016甘肃省兰州市)对于一个矩形ABCD 及⊙M 给出如下定义:在同一平面内,如果矩形ABCD 的四个顶点到⊙M 上一点的距离相等,那么称这个矩形ABCD 是⊙M 的“伴侣矩形”.如图,在平面直角坐标系xOy 中,直线l :33y x =-交x 轴于点M ,⊙M 的半径为2,矩形ABCD 沿直线运动(BD 在直线l 上),BD =2,AB ∥y 轴,当矩形ABCD 是⊙M 的“伴侣矩形”时,点C 的坐标为 .73.(2016江苏省无锡市)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO 上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.74.(2016福建省龙岩市)如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10= .75.(2016山东省德州市)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.76.(2016江苏省盐城市)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF= .77.(2016内蒙古赤峰市)如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE 的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于cm.78.(2016重庆市)正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE 沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=2.则四边形ABFE′的面积是.79.(2016河北省)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__ ___°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___ ____°.[来源:学80.(2016广西桂林市)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH= .81.(2016山东省济南市)如图1,在矩形纸片ABCD中,AB=83,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME/NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG= .82.(2016湖北省鄂州市)如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB为直角三角形时,AP= .83.(2016辽宁省葫芦岛市)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线12y x=于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和12y x=于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为.(用含正整数n的代数式表示)84.(2016浙江省舟山市)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q 随之在x轴的非负半轴上运动,如果PQ=3,那么当点P运动一周时,点Q运动的总路程为.85.(2015鄂州)已知点P是半径为1的⊙O外一点,P A切⊙O于点A,且P A=1,AB是⊙O的弦,AB=2,连接PB,则PB= .86.(2015广元)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确结论是________ (只需填写序号).87.(2015荆州)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数kyx=(0k≠)的图象经过圆心P,则k= .88.(2015常州)如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.三、解答题89.(2017江苏省盐城市,第26题,12分)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tan B=tan C=43,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.90.(2017江苏省苏州市,第27题,10分)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若1227S S ,求sin A 的值.91.(2017江苏省连云港市,第27题,14分)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCD EFGH S S 矩形四边形.(S表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S四边形EFGH =S矩形ABCD +S.如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD 与S 之间的数量关系,并说明理由. 迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH=11,HF 29EG 的长.(2)如图5,在矩形ABCD 中,AB =3,AD =5,点E 、H 分别在边AB 、AD 上,BE =1,DH =2,点F 、G 分别是边BC 、CD 上的动点,且FG 10EF 、HG ,请直接写出四边形EFGH 面积的最大值.92.(2017江西省,第23题,12分)我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A 叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△P AB的“旋补三角形”?若存在,给予证明,并求△P AB的“旋补中线”长;若不存在,说明理由.93.(2017河北,第25题,11分)平面内,如图,在ABCD中,AB=10,AD=15,tan A=43.点P为AD边上任意一点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠A tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留π).94.(2017丽水,第24题,12分)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A 关于BE的对称点F,且点F落在矩形ABCD的内部,连接AF,BF,EF,过点F作GF⊥AF交AD于点G,设ADn AE=.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示ADAB的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.95.(2017浙江省嘉兴市,第23题,10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A 重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=3,DM=4时,求DH的长.96.(2017浙江省宁波市,第26题,14分)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,当DH=BG时,求△BGH与△ABC的面积之比.97.(2017浙江省杭州市,第23题,12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.98.(2017浙江省温州市,第24题,14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是P A,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD 上),连结AC,DE.(1)当∠APB=28°时,求∠B和CM的度数;(2)求证:AC=AB.(3)在点P的运动过程中.①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.99.(2017浙江省绍兴市,第22题,12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°.①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD;(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.100.(2017金华,第23题,10分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能合成一个无缝隙,无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段,;S矩形AE S▱ABCD= .(2)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.101.(2017天门,第24题,10分)在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求MEMD的值.102.(2017湖北省十堰市,第24题,10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则:①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.103.(2016山东省济南市)在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD 上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF= 度,线段BE、EF、FD之间的数量关系为.(2)如图3,当但点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD 之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.。

相关文档
最新文档