超重低音音箱制作

合集下载

超重低音音箱

超重低音音箱

高保真音箱制作实例精选(5)超重低音音箱科林也许有的朋友用普通的立体声音箱欣赏电影和动态较大的交响乐时会觉得缺少那种身临其境的感觉,这是因为普通的立体声音箱的频率下限通常都在100Hz以上,所以,用它重放电影或者动态较大的交响乐时,是听不到那震撼人心的超重低音效果的。

在本期,笔者介绍一款超重低音音箱,供读者参考。

扬声器选择超重低音音箱一般都工作在大功率、大动态下,在这种情况下,扬声器的音盆振膜会进行大幅度的往返运动,若扬声器性能不佳的话,很容易产生杂音甚至损坏。

因此,低音扬声器尽量选用名厂的产品,在该款超重低音音箱中,笔者选用的是惠威公司生产的10英寸低音扬声器,型号是D10。

该款低音扬声器的振膜材料采用矿物混合类高强度、高阻尼材料,这种材料的振膜硬度较大,不会在运动时产生多余的振动,使重放出来的声音准确、干净。

音圈采用ASV铝骨架材料,机械强度高,承受功率大,很适合在大动态条件下工作。

另外,该款扬声器采用了大口径100mm音圈与大型钕铁硼磁路系统相配合,在钕铁硼磁路系统中有一个金属导磁板,该金属导磁板不但可以将钕铁硼磁路封闭,使磁路具有防磁效果,还可以在磁隙当中形成稳定的具有对称漏磁场的对称驱动磁场,使长冲程音圈获得对称驱动力,减少音圈电感和音圈运动中产生的反电动势之间相互调制,确保重放声音的准确性。

D10扬声器参数如附表所示。

箱体制作超重低音音箱通常都在大动态环境中工作,在这种情况下,音箱的箱体一定要坚实,在受到剧烈振动时也不能有丝毫的变形。

这款超重低音音箱的箱体材料采用了厚度为20mm的松木板,其高、宽、深分别为420mm×300mm×350mm(有效容积约28L)。

为了将低频信号充分地释放出来,笔者在音箱的前面加了两个小口径倒相管,并将该款音箱的内部设计成迷宫倒相式。

前面板尺寸如图1所示。

倒相管长度以及音箱内部结构如图2所示。

将箱体用铁角板固定后(详细方法见本刊7期文章),再往音箱内部倒入2kg熔化的沥青,把各板交接处灌实,如果沥青与木板不易粘连,则可以事先在需要灌沥青的地方错落地钉一些小铁钉即可。

用8英寸单元的低音扬声器制作的二分频音箱

用8英寸单元的低音扬声器制作的二分频音箱

用8英寸单元的低音扬声器制作的二分频音箱其制作数据、方法和调试如下。

一、喇叭的直径、阻抗、外圆尺寸、频率范围、灵敏度、功率等电性能参数数据,都是制作的必要条件。

较理想是一款飞乐低音单元,8英寸8Ω,谐振频率25Hz~7kHz (比早期频率下潜将近50Hz,频响范围相当宽),功率100W,灵敏度89d8,外圆直径φ210mm(音箱外圆的台阶尺寸),内径是φ185mm(内径是指挖音箱孔的尺寸)。

高音单元所选用的是银笛高音1英寸8Ω,谐振频率为1.5kHz~22kHz,磁液冷却型,较之一般频率为20Hz~20000Hz的要低500Hz、高2kHz,功率80W,灵敏度99dB,外圆最大直径φ102mm,内径约φ80mm。

认为,有这么好的数据支撑,理论上效果应该不亚于前面讲述的丹麦二分频音箱。

二、音箱的挖孔音箱的挖孔较麻烦,常常阻碍一些发烧友动手的兴趣,怕挖的孔不圆,不好看,放弃了制作音箱的环节,对爱好者来说是不全面的。

有很多东西是由于不了解,也就无从下手。

的操作步骤是,把图示尺寸用圆规、直尺或三角尺画在箱体面板上,用电钻或手摇钻在面板圆弧的内边钻上1~2个孔,把曲线锯的锯片插入孔中,慢慢把圆孔锯好。

背板上接线柱可不挖方孔,直接用直径φ5~6mm钻头钻两个孔,用M5的铜螺丝固定上,作接线柱用。

对于正负极的区分,用红色或黑色漆涂刷在任一个极的螺母外边,以便与功放输出的正负极对应连接。

三、箱体的制作由喇叭口径尺寸确立箱体容积,几个板面尺寸见下图(a)所示。

分别如下:面板为高420mm、宽260mm的2块,背板高420mm、宽224mm的2块,上顶板和下底板宽260mm、深300mm的4块,侧板高420mm、宽282mm的4块。

然后再根据喇叭的数据,先在地上按1:1的比例摆放几个不同的平面图,看看效果,再以最佳的效果图按比例缩图,绘在图纸上,如下图(b)所示。

有了资料图,下一步的工作就不会茫然,给制作程序带来相当大的帮助。

低音炮音箱制作

低音炮音箱制作

低音炮音箱制作引言:低音炮音箱是一种具有强大低频输出的音箱系统,主要用于增强音乐或电影等音频内容的低音效果。

它们通常由一个或多个低音驱动器和一个放大器组成,能够产生令人震撼的低音效果。

本文将介绍低音炮音箱的制作过程,包括选材、设计和搭建等方面。

一、选材1. 外壳材料选择合适的外壳材料对于低音炮音箱的效果有重要影响。

常见的材料包括木材、MDF板材和聚合板等。

木材是常见材料,因其稳定性和共鸣特性,在制作音箱时能够提供更好的音质效果。

MDF板材具有较高的密度和刚性,适用于制作大功率低音炮音箱。

聚合板则是一种经济实用的选择。

2. 低音驱动器低音驱动器是低音炮音箱的关键部件,其性能决定了音箱的低音输出效果。

在选择低音驱动器时,需要考虑驱动器的尺寸、功率和灵敏度等因素。

较大的低音驱动器可以提供更好的低音延展和动态效果,而高功率和灵敏度可以提供更大的音量输出。

二、设计1. 音箱尺寸和内部结构低音炮音箱的尺寸和内部结构对音箱的低音输出效果起着至关重要的作用。

一般来说,较大的音箱体积可以产生更强的低音效果,但也会增加音箱的重量和体积。

在设计过程中,需要根据预计的使用场景和需求,权衡尺寸与音质之间的平衡。

2. 低音炮箱体设计低音炮箱体设计的目的是为驱动器提供一个合适的环境,以最大限度地发挥其性能。

设计时需要考虑壁板的加固和防震措施,以减少共振和振动对音质的影响。

此外,还需要考虑进出气流的通道设计和反射板的设置,以增强低音的传播和扩散。

三、搭建1. 绘制设计图纸在搭建低音炮音箱之前,先制作一份详细的设计图纸。

图纸应包括音箱的尺寸、驱动器位置和连接方式等。

通过绘制设计图纸,可以更好地理解音箱的结构和组装方式,并为后续的搭建工作提供指导。

2. 制作音箱外壳首先,根据设计图纸,使用合适的工具和材料制作音箱的外壳。

根据选择的外壳材料,进行相关的加工,包括切割、组装和打磨等。

确保外壳的尺寸和结构符合设计要求,并且表面光滑平整。

LspCAD设计ASW带通式音箱(俗称低音炮音箱)

LspCAD设计ASW带通式音箱(俗称低音炮音箱)

LspCAD设计ASW带通式音箱(俗称低音炮音箱)ASW带通式音箱(俗称低音炮、超低频音箱),它是由密闭箱和倒相箱组合而成。

也可以把它看作一个长方形的密闭箱,中间装一块隔板,把箱体分成二个音室,其中一个音室装个倒相管变为倒相箱,另一个就成了密闭箱,中间隔板开个孔装上喇叭,喇叭尾部在密闭室内。

顾名思义,这种音箱低频响应有一个双峰带通的特性,其中频率较高的那个峰是密闭箱的声共振形成的,频率较低的那个峰是倒相箱的声共振形成的。

曲线两侧3dB点对应的频率即fL(低频截止频率)和fH(高频截止频率)。

FL与fH之间的频带即为音箱的额定带宽。

从上图可以看出双峰带通曲线与80dB有两个交点(大约在-3dB),频率低的是fL约23Hz,频率高的是fH约113Hz,那么它的带宽(23~113)Hz。

曲线凹谷所对的频率约50Hz,这是该箱体的共振频率。

可见,这种音箱不仅要求fc(密闭箱的共振频率)和fb(倒相管的调谐频率)配合适当,而且要求密闭箱的Q值和前方倒相箱配合适当,才能获得较平坦的响应,适宜的带宽和灵敏度以及较好的瞬态特性。

而这些因素又彼此互相影响,需要精心调节才有好的效果。

下面我们用JustMLS软件进行计算。

打开软件,在菜单栏内点“文件”——“新建”——“音箱”——“带通式1”,见下图:跳出一个“查找范围”框,选择已存入的单元“MW-YD12.unt”打开后,返回。

在菜单栏里选择“音箱/滤波器”——“音箱”,左键点击,出现一个“带通式音箱类型-1”的小框。

框内又有三个小框,后音室、前音室、导孔。

把Ql改成7。

把窗口里面的“一米间距半开放”也打开,平铺在页面上。

打开“表格优化”“表格优化”中有二个选项,1,带通波纹, 2,灵敏度。

下面先把它们的关系搞清楚。

一,带通波纹(反映了带通内响应曲线起伏度的大小,有三种不同阻尼状态下的期望响应。

)1. 0dB(可获得0dB响应不均匀度和最佳的瞬态响应)2. 0.35dB(响应曲线不均匀度为0.35dB,瞬态响应稍差。

一个超重低音炮的制作过程(图解)业余制作

一个超重低音炮的制作过程(图解)业余制作

一个超重低音炮的制作过程(图解)业余制作喇叭为南鲸15寸低音南鲸YD390-8HL的参数,阻抗:8欧,功率:400W,灵敏度:99土2dB,外径:390mm,磁体尺寸:220mm,材质:进口布边纸盆,有效振动半径:165mm,等效容积:135L,频响范围:40-3000Hz,振动质量:150g,Q 值:0.4箱体用鑫鑫木业买来的18mm一级中密度板两张,价格大概76元/张。

工具:手持式切割机、曲线锯、手电钻、电动螺丝刀、角尺、钢板尺、板锉、毛刷…箱体尺寸设计比例为1:1.1:1.4箱体内应去除支撑,分频器与单元所占容积,在计算出的箱体容积后再乘以 1.1倍,所得约140升按比例分配内部净容积尺寸为450x495x630mm,外部尺寸522x567x900mm.由于是有源音箱,所以在右侧留了一个腔'装电源与功放部分。

跟据喇叭的参数来设计箱体.本单元Q值为0.4谐振频率40Hz所以适合做倒相箱几个音箱设计的重要公式调谐比 h=fB/fofB为箱体谐振频率 fo为扬声器单元谐振频率调谐比h、声顺比a也可查表得出音箱箱体容积V=Veq/aVeq为扬声器单元等效容积倒相管截面积S>=0.8fBVdVd为扬声器单元振膜的最大位移体积倒相管长度L=C2S/4兀2fb2V-0.82根号S(cm)C为声速344m/s几点说明1.倒相管截面积可用两个面积和相等的代换,但不能太小否则出现象吹口哨一样的风音。

2音箱的宽深高不能为整数倍。

3扬声器位置不能放在箱体几何中间位置。

4倒相孔不能离喇叭太近,防止低音短路。

好了,就想起这几点中密度板尺寸裁好后,连接处刷胶后用自攻螺丝固定,内部连接角处贴方木条加固,另处还能起密封作用,并且内部用方木支撑增加强度。

两块前障板先开喇叭孔后粘接成一体,开孔时要开出一大一小,粘成一体时就形成沉孔。

待箱体胶凝结实后,用密封胶将箱内各边缝涂胶密封.待密封胶凝固硬以后,箱体内部刷N层清漆,进一步密封及增加强度。

12寸惠威喇叭diy制作大低音炮音箱做好啦附图纸

12寸惠威喇叭diy制作大低音炮音箱做好啦附图纸

12寸惠威喇叭diy制作大低音炮音箱做好啦附图纸
惠威K12喇叭,330W三肯管功放,4月16日到的货,那个兴奋啊2厘米的板子,都已经在床上“干”出来了,可惜要上班,没有见到“干”的过程,也就没偷拍到了。

这个是箱子中间的加强板,有型吧!!- - 。

装一半了,有点样子,嘿嘿美丽的背影哈哈已经搬到家里来啦,那个重啊。

估计有4,50斤背影2 电脑房,试音中,可惜房间左右十几个平米,音量可能开一点点,不然整个房间都开始震动了,震感至少6极哈哈? DIY真的不容易,不过回想起来乐趣多多。

超重低音——自制水泥音箱

超重低音——自制水泥音箱

是 防止 制 作 伤害 刊
也 是 女
后面 浇 措水 怍辟 备
维普资讯

品 恤 R用 束柑
般{ 采 用 鞍 较 档 的
管 有 憎 £腥
甚 兰 葛材
水泥 剖 谴 的啻 箱
但 数
维普资讯
杆 首 器 同 足 g 箱 的 桶 奇 向
注 缝 从椭 的侧 壁打 孔膏
一 口 函一
朴音 器阎 定好 ±扃 莅上 摇商 音 体 在 顶鼎捶 上 喇叭单 体 吉们 耥 f 捅 ,拉 出业的 线 也峨 f铁曾
一 条 往下接 连结 端于
作 者 采 用 的 是 一 百 盎 加 元 l台
^ 民 7 0元 上 ) 0 的
雁 智 档 挑 许 午 是
耐 音 辅
质 量应 请
并 是 锚 7 将买 的 岛轴 上 所有 单体 下采 好应有自 甸防 护 即
维普资讯
棺值 { 事对 啬 辐 艟 7 解舯 馕 良 省都 知 邋
矗 现
辑稿 件 的捌 料 在讯 尢
度上 响 音 质
特 别琏 慨 B 的
T ”.
瑚 诡 说寓 理 性 ^的 材 莲
创_ 墨 摊 呐低 音触 世
生 r 的潲 费 啦 旨箱 窖 舄 制造 白 型 壳 件 勺

教你制作低音炮(图)

教你制作低音炮(图)

教你制作低音炮(图)多媒体低音炮以后我试过两种方法:1. 在普通的家庭音响上加滤波电路,然后用大音箱回放重低音。

其优点是效果好缺点是大音箱使用不方便。

2. 自制功放、音箱的优点是使用灵活方便,音质好。

缺点是制作的难度大。

对比以上两种方法各自的优缺点,和我制作过程中的经验做了以下的改动。

原设计中自制的功放很复杂,特别是其中用到了n级的电容。

制作时稍有不慎便有“画虎不成反类犬”的效果。

所以功放部分还是采用一般功放加滤波电容的做法。

功放可以在旧货市场上买到,40W足够。

价格比自己做的还便宜。

其具体办法是在声卡接功放之间加一个简单的电路,如下图如果觉得低音不足,还有部分高音混入。

这时可适当换稍小的电容就可解决。

最好是买一个一转二的立体声的插头,一个孔接原音箱,另一个接低音炮。

电路可以直接焊在旧功放的输入接口上,元件有1/8W 22K电阻4只,68n(0.068uF)电容4只,一根声卡接功放线。

这样就能回放100Hz以下的低音了。

既然是低音炮,那么就要遵循低音回放的原理。

不过最好不要用现成的箱体做。

因为现在很多的箱体质量不是很好,而且其尺寸比例和设计比较差。

最主要的是要封好原有的喇叭孔也很不容易。

其具体的做法如下图,值得注意的是音盆安装时最好靠后,否则会妨碍装导音孔。

音盆用6.5英寸的低音喇叭,值得注意的是两个音盆的极性要反接。

也就是其中一个的正极接另一个的负极,另外一个极性也如法炮制。

然后从一个音盆上接线到接线盒上。

我个人经验最好在接线盒和音盆之间在加一个分频器。

一般的电子市场上都有卖的,20元以下,有线圈和电容的那一种。

只用低音的部分,高音的部分闲置不用。

这样就可以进一步地将未滤掉的中音滤掉。

关于箱体的制作,我采用的是旧电脑桌的合成板(呵呵,奢侈吧)。

如果你正打算换电脑桌,那就恭喜你了。

原因很简单,它质密而且容易加工。

音箱内一定要加吸音棉,而且每一面都要。

音箱成型时最后上前面板,一定要用沥青将所有的接缝都密封起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自已制作超低音音箱此文向大家详细介绍了自己制作超低音音箱的方法,超低音音箱又叫做辅助低音喇叭,是一种专门用于重放低音效果的音箱。

主要分以下内部逐步介绍.箱体的结构草图和思路十分简单的制作过程成形后的样子,还满专业哦在本文的开头我要郑重的提醒大家,虽然我们尽可能的把自己动手制作音箱的方法介绍的更加简单,但是亲手设计和制作一部超低音音箱(又叫做辅助低音喇叭)绝对不会如同从商场里买回一个低音喇叭然后塞到木头箱子里那么简单。

当然,因为只需精心的制作和调试一只扬声器,而不需要为不同音域发音设备的配合而手忙脚乱,所以制作一个超低音音箱又要比制作一个全音域的音箱要容易的多。

同时,由于超低音音箱的放音频率范围处在人耳可辨声频谱的低频区,人耳对于这个频率范围内声音的敏感程度要大大低于中频和高频区,所以自己制作出一部能让自己有点成就感的音箱还是有可能性的。

实质上超低音音箱的工作原理有点类似于汽车引擎里边的活塞,活塞在自己有限的行程内往复运动,而超低音音箱则在有限的频率范围内工作。

显然,超低音音箱工作的目的是将你音响系统的低音范围下潜的更低,这样一来你的家庭影院系统将带给你更加震撼的效果。

一般说来,超低音音箱放音的频率范围在20Hz至100Hz之间,因而要制作一个超低音音箱首先必不可少的就是一个个头足够大的低音喇叭。

需要注意的是,现在市场上出售的一些所谓超低音音箱和发烧友们眼中真正的超低音音箱是有所区别的。

你从那些市售的音箱中所听到的音效其实是依靠其频响范围内的波峰推动的,但是这种工作方式对于音频采样的还原效果却毫无正向的推动作用。

而商家则利用普通消费者对技术不甚了解的空子,将这个问题隐瞒过去,或者绕过这个问题,而诱导消费者把超低音和低音效果混为一谈,并且极力向消费者展示其产品的低音效果,由此误导消费者。

而当采用适当的技术手段测试这些音箱时,你会发现,在超低音的频率范围内,这些所谓的超重低音音箱根本无法完成一架真正的超低音音箱所能完成的任务。

好在无论是低音炮还是超低音音箱都有一套完整的技术规范,从基本的数学理论到实际的技术参数都可以在资料当中查到,这些背景知识可以帮助你初步判别产品的真伪优劣。

判别的最直接方式就是观察并分析这个音箱所使用的扬声器的规格,一般情况下,这个规格参数是由扬声器厂家来提供的。

如果打算自制一台超低音音箱的话,那么首先就要明确自身的需求,然后根据这个需求来选择一个合适的扬声器,之后为之配上一个合适的外壳,根据需要选择合适的滤波单元。

在下面的页面中我们将讨论一下如何选择上述那些部件,并且介绍一下自己制作发烧级超低音音箱的方法。

前面已经提到过,这次DIY的目的是设计制作一台既能在其工作频率范围内提供线性的声压级别,同时又能提供精准的音频采样还原效果的超低音音箱,从摇滚乐中快速变化的低音鼓到声音频率变化平滑的爵士乐再到家庭影院级电影声效中雷鸣般的爆炸声,都应该能够真实表现出来才行。

要想将快速低音鼓和雷鸣般的爆炸声在超低音音箱中完美的表现出来绝非易事,因为二者之间似乎存在着一定的矛盾。

其中的后者,爆炸声的效果需超低音的声压周期能够持续很长一段时间,然而想准确再现低音鼓的声响效果,使其听起来没有一种迟滞或者拖沓的感觉,则需要超低音扬声器的振动周期较短,从而能够跟上和捕捉到快速变化的鼓声细节。

在这一点上,绝大多数市售的所谓超重低音扬声器都是达不到要求的。

所以你就会发现,市售的那些专门为家庭影院而定制的超重低音音箱在播放快节奏的音乐时效果就不太理想,反之亦然。

家庭影院产品要求超低音音箱能够大幅度振动从而使大量空气随之振动以达到准确还原爆炸声或者其它低频效果的目的,而音乐播放则要求音箱能够低幅度但快节奏的振动从而有效的控制空气的运动来实现声音频率的快速变化效果。

显然一架优质的超低音音箱应该既能满足家庭影院的低音需求,又能满足音乐频率的快速变化,换而言之,应当是两种特性的联合体。

带动空气振动的能力主要是由音箱中的锥形纸盆提供的,这个纸盆的表面积大小及其振幅决定了其工作特性。

不过不必依靠负责而繁琐的数学运算,同样可以简单的将工作原理这样理解:打个比方说,如果你有两只扬声器,其中一只的纸盆的有效表面积是另外一只的一半,那么如果想带动同样多的空气振动,那么纸盆小一些的那个扬声器其振幅就要达到另外一个的两倍。

不过遗憾的是制作一只表面积大的纸盆要比制作一只表面积小而振幅大的纸盆要容易的多。

这在一定程度上是由驱动纸盆运动的机械原理决定的,音圈悬浮在扬声器的磁场区域里,只有一个很小的范围可以进行线性运动。

这就是本次DIY所使用的PEERLESS XLS10 10"扬声器一只典型扬声器的振幅(或称作偏移量)一般为+/-8mm,如果将这个幅度增大,扬声器虽然还能工作,但是由于音圈已不完全处在磁场范围内,故而扬声器会进入非线性工作区,进而发生声音的非线性失真。

这显然是我们不希望看到的,因为它使得原始音频当中出现了新的频率成分,从而改变了原来的面貌。

但是简单的增加锥形纸盆的锥径长度也不是解决问题的办法,因为纸盆需要达到一定的刚度才能确保整体一致的振动,否则就会出现锥形中心部分与边缘振动不同步的状况。

显然纸盆越大,就需要越强的磁场和声圈来驱动其振动,这样出现振动不同步的可能性也就越大。

一般来说,15"已经是使用常规材料、常规工艺制造纸盆尺寸的极限了。

在我们今天的DIY工作中,根据需要,可以选用10"或者12"纸盆的扬声器,它们都可以在精确度、纸盆有效面积和最大声压级这几个指标中取得相对的平衡,基本满足我们的要求。

选择一款合适的10"或者12"扬声器绝非一件容易的事情,因为目前出现的扬声器种类众多,各有所长。

所以首先我们要明确选材的标准,这对于判断扬声器的指标是否符合我们的要求非常重要。

我们将设计要求罗列如下:1. 紧凑设计,纸盆的尺寸需要外壳拥有30升容积2. 封闭型音箱或者有导向孔箱体,或者无源辐射器箱体3. 带有放大器均衡和有源滤波器的有源音箱系统4. 可在最大声压级达到100 dB的状态下使声音频率下潜到5. 整套系统的总体造价控制在800美元(约700欧元)以内我们所寻找的10"或12"扬声器需要有较大的振动幅度,可以带动更多的空气振动,但是它同时还需要装备有足够强劲的音圈和磁场系统以保证灵敏度达到要求。

同时其还必须拥有一个很低的谐振频率,低等效容积和低Q值,这样一来,它才既能够装进一个相对较小的外壳当中,又能够提供准确和足够深度的低音下潜。

经过一番挑选,我们认为了Peerless出品的XLS10 (830452)和XLS12 (830500)基本符合我们的要求。

根据它们的型号您应该可以看出,前者为10"扬声器,而后者为12"的。

我们最终选择了10"扬声器XLS10。

那么为什么选择它呢?还有我们的30升有效容积音箱是怎么设计的呢?别急,下面您就将看到。

实际上,将音箱外壳设计成密封式的并不利于低音效果的还原,因为它会使得滚降幅度达到12dB/oct,在-3dB点(F3, fsb)之下。

这就意味着声压级会在-3dB点之前迅速衰降。

但是实际上滚降在很大程度上决定于外壳的响度与扬声器Q值的乘积,Q值越低则滚降幅度越低。

不过密闭型外壳也有一些优点,刚好可以适用于我们今天的设计。

例如低Q值的扬声器在小型密闭外壳当中往往可以提供高速和准确的响应,从而可以为追踪音频变化提供帮助。

除此之外,密闭外壳可以阻碍空气流动,从而对于限制纸盆在低频范围内的振动幅度也有一定的作用。

将XLS10装入30升容积外壳意味着总质量因数,即扬声器的Q 值和外壳结合的参数要下降到0.3。

而通常这个参数在0.5到0.7之间才是理论上在密闭型音箱中准确还原低频分量的指标。

因此在这个音箱当中F3值应当达到78Hz而同时需要一个非常低的Q值,这样频率范围才能向下扩展到需求的范围,同时频率响应曲线的斜率也要下降到- 6db/octave以下为了证实XLS10能够在密闭音箱中达到其它一些需求,我们还需要进行模拟计算,不过这次是针对电源输入功率的预计。

我们需要的声压级是20Hz 100dB。

而XLS10的额定输入功率是300瓦。

但是这个数值意味着如果我们不调整扬声器最大振幅的话,根本达不到设计的要求。

显然扬声器需要工作在最大振幅之下。

下面两张图片分别说明了在300瓦输入功率下频率与声压级和振幅的关系:在第二张图片上可以看到,在频率到达30Hz点时扬声器已到达线性工作的最大振幅,在20Hz时振幅达到17.4mm,已经越过了线性工作范围。

因而为了确保扬声器线性工作,总质量因数必须达到0.3,然而此时XLS10无法在密闭30升音箱中在20Hz时达到100db声压级。

同样也可以试用60升音箱,将音量加倍,或者使用15升音箱,将音量减半,得到的结果时相同的。

显然下一步我们需要试用的是带有导向孔的音箱外壳,在同等音量下,看一看能否得到更理想的结果。

一个带有导向孔的,或者叫做低音反射音箱具有通过调谐孔扩展低频响应范围的功能。

这个调谐孔和扬声器协调工作以使之达到更低的频响范围。

实质上当从调谐孔(即导向孔)发出的声波与从扬声器发出的声波在频响范围或更低的范围内是同相位时,这样就起到了将低频分量输出放大的作用,同时,由于这种放大作用的存在,可以使得扬声器工作幅度的下降得以实现。

不过缺点是,当这个声波与扬声器振动的声波发生180度的反相时,理论上声波将被全部衰耗掉,而实际上也将受到很大的衰减,这就使得扬声器振幅必须加大。

而另外一个缺点就是这种方式提升了谐振频率的阻抗,这使得声圈的工作温度大大增加,同时有可能引入谐波失真。

幸好在我们的工作过程中,XLS10扬声器没有遭受到这些不利因素的困扰,其通风性能良好的四层全铝音圈使得上述因素的影响降低到了最小。

将XLS10装入30升有效容积的外壳意味着导向孔的最大直径将受到限制,因为其大小必须符合外壳尺寸的要求。

当然如果是一个较长的导向孔可以通过弯曲的方式置入外壳之内,但是这样会增加设计的复杂程度。

除去端口的长度我们还需要使用加倍扩张的导向孔来防止端口引入的噪声带来的影响,因为这个噪声对于声压级的影响非常强烈,有可能使得整个设计前功尽弃。

为了得到一个平坦的频率响应曲线,我们建议将导向孔输出的频率调谐在25Hz为佳,此时系统的频响曲线如下图所示:显然这个曲线已经比上一页中采用封闭式音箱时的频率响应曲线好了不少。

曲线显示导向孔音箱可以提供更低的频率输出,但是美中不足的是,该曲线在20Hz点左右开始发生急剧变化,而这会很大程度上影响到20Hz时的声压级和振幅,而此时导向孔的直径已经达到了72mm,这足以使噪音有可乘之机。

相关文档
最新文档