厌氧生化处理
厌氧生物处理的影响因素

厌氧生物处理的影响因素厌氧生物处理的基本原理三阶段论——1979年由Bryant提出1) 水解阶段:碳水化合物(脂肪、蛋白质)在水解发酵菌作用下转化为糖类、挥发性脂肪酸VFA、(较高级有机酸)氨基酸、水和二氧化碳;2) 酸化阶段(产酸产乙酸阶段):挥发性脂肪酸在产氢产乙酸菌作用下转化成H2、CO2、乙酸: CH3CH2COOH→CO2↑+CH3COOH+H2↑3) 产甲烷阶段:最后两组生理不同的产甲烷菌,有共同的产物:4H2+CO2→CH4↑+2H2O —— (28%)CO2被还原的反应2CH3COOH→2CH4↑+2CO2↑ —— (72%)乙酸脱羧的反应 ,CH3COOH脱羧。
厌氧生物处理的影响因素(1) 温度。
存在两个不同的最佳温度范围(55℃左右,35℃左右)。
通常所称高温厌氧消化和低温厌氧消化即对应这两个最佳温度范围。
甲烷菌对温度的适应性很差,根据其生存的适宜温度范围,甲烷菌可分为两类,即中温甲烷菌(适宜温度33-35℃)和高温甲烷菌(适宜温度50-53℃)。
当温度超出适宜温度范围时,厌氧消化反应速率则急剧下降。
厌氧消化的允许温度波动范围为±1.5-2.0℃。
当波动范围为±3℃时,就会严重抑制消化速率。
当波动范围超过±5℃时,就会使有机酸大量积累而破坏厌氧消化过程的正常运行。
(2) pH值。
厌氧消化最佳pH值范围为6.8~7.2。
产酸细菌对酸碱度不及甲烷细菌敏感,其适宜的pH值范围较广,在4.5-8.0之间。
产甲烷菌要求环境介质pH值在中性附近,最适宜pH值为7.0-7.2,pH6.6-7.4较为适宜。
在厌氧法处理废水的应用中,由于产酸和产甲烷大多在同一构筑物内进行,故为了维持平衡,避免过多的酸积累,常保持反应器内的pH值在6.5-7.5(最好在6.8-7.2)的范围内。
(3) 有机负荷。
① 厌氧生物反应器的有机负荷通常指的是容积负荷,其直接影响处理效率和产气量。
厌氧的基本原理及影响其效果的因素

厌氧生化法的基本原理及影响其效果的因素一、厌氧生化法的基本原理废水厌氧生物处理是在无分子氧条件下通过厌氧微生物(包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程,也称为厌氧消化。
厌氧生物处理是一个复杂的微生物化学过程,依靠三大主要类群的细菌,即水解产酸细菌、产氢产乙酸细菌和产甲烷细菌的联合作用完成。
因而粗略地将厌氧消化过程分为三个连续的阶段,即水解酸化阶段、产氢产乙酸阶段和产甲烷阶段,如下图所示:(1)水解酸化(2)产氢产乙酸(3)产甲烷第一阶段为水解酸化阶段。
复杂的大分子、不溶性有机物先在细胞外酶的作用下水解为小分子、溶解性有机物,然后渗入细胞体内,分解产生挥发性有机酸、醇类、醛类等。
这个阶段主要产生较高级脂肪酸。
含氮有机物分解产生的NH除了提供合成细胞物质的氮源外,在水中部分电离,形成NHHCO,具有缓冲消化液PH值的作用。
第二阶段为产氢产乙酸阶段。
在产氢产乙酸细菌的作用下,第一阶段产生的各种有机酸被分解转化成乙酸和H2 ,在降解奇数碳素有机酸时还形成CO2 。
第三阶段为产甲烷阶段。
产甲烷细菌将乙酸、乙酸盐、CO2 和H2 等转化成甲烷。
虽然厌氧消化过程可分为以上三个阶段,但是在厌氧反应器中,三个阶段是同时进行的,并保持某种程度的动态平衡。
这种动态平衡一旦被PH值、温度、有机负荷等外加因素所破坏,贝y首先将使产甲烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,甚至会导致整个厌氧消化过程停滞。
二、影响厌氧处理效果的因素水解产酸细菌和产氢产乙酸细菌,可统称为不产甲烷菌,它包括厌氧细菌和兼性细菌,尤以兼性细菌居多。
与产甲烷菌相比,不产甲烷菌对PH值、温度、厌氧条件等外界环境因素的变化具有较强的适应性,且其增殖速度快。
而产甲烷菌是一群非常特殊的、严格厌氧的细菌,它们对环境条件的要求比不产甲烷菌更严格,而且其繁殖的世代期更长。
因此,产甲烷细菌是决定厌氧消化效率和成败的主要微生物,产甲烷阶段是厌氧过程速率的限制步骤。
厌氧生物处理的特点

厌氧生物处理的特点厌氧生物处理,也称为厌氧消化或厌氧发酵,是一种在无氧环境下利用微生物将有机废弃物转化为甲烷、二氧化碳等小分子有机物和无机物的生物技术。
这种处理方法在环境保护、能源利用以及农业废弃物处理等领域具有广泛的应用前景。
本文将详细介绍厌氧生物处理的特点。
厌氧生物处理具有高效性。
在无氧环境下,微生物通过厌氧呼吸将有机物转化为能量和新的细胞物质。
由于没有氧气竞争,厌氧微生物能够更有效地利用有机物中的能量,使得处理效率高于传统的好氧处理方法。
厌氧生物处理能够产生能源。
在转化有机物的过程中,厌氧微生物会产生大量的甲烷和二氧化碳等小分子有机物,这些物质可以用于生产燃料和化工产品。
因此,厌氧生物处理不仅解决了废弃物处理问题,还为能源生产提供了新的途径。
再者,厌氧生物处理对环境的影响较小。
由于处理过程中不需要氧气,因此不会产生大量的氧化还原产物,对环境造成的污染较小。
同时,由于厌氧处理能够产生甲烷等可燃性气体,可以减少温室气体的排放,对气候变化产生积极影响。
厌氧生物处理能够促进农业废弃物的利用。
农业废弃物如畜禽粪便、秸秆等是丰富的有机资源,通过厌氧消化技术可以将其转化为能源和有机肥,促进农业废弃物的资源化利用。
厌氧生物处理具有高效性、能源产生、环境友好和促进农业废弃物利用等特点,使得它在废弃物处理、能源生产和环境保护等领域具有广泛的应用前景。
然而,厌氧生物处理也存在一些挑战,如启动慢、对水质和气候的适应性差等问题,需要进一步研究和改进。
未来,随着科技的进步和环保意识的增强,厌氧生物处理将在更多领域得到应用和发展。
污水厌氧生物处理的新工艺——IC厌氧反应器引言随着城市化进程的加快,污水处理已成为一个重要的环境问题。
厌氧生物处理作为一种污水处理技术,通过微生物的作用将有机污染物转化为无机物,具有节能、环保等优点。
然而,传统厌氧生物处理工艺存在处理效率低、效果差等问题,因此研发新型的厌氧生物处理工艺势在必行。
浅谈运用厌氧与好氧生化工艺处理氨氮总氮

浅谈运用厌氧与好氧生化工艺处理氨氮总氮氨氮和总氮是水体中常见的污染物,对环境和生物造成严重的危害。
常用的处理氨氮和总氮的生化工艺包括厌氧处理和好氧处理。
本文将对这两种生化工艺进行浅谈。
厌氧处理是利用厌氧菌将有机物和氨氮转化为甲烷、二氧化碳和硫化氢等产物的过程。
厌氧生化处理氨氮的主要机理是厌氧菌通过硝酸盐的还原反应将氨氮转化为亚硝酸盐,进一步还原生成氮气。
在该过程中,厌氧菌可以利用有机物作为电子供体,也可以利用无机物(如硫酸盐和硫化物)作为电子供体。
厌氧处理的优点是产生的有机物和能量可以进一步利用,如甲烷可以作为能源利用,同时还能减少处理过程中的氧需求。
但是,厌氧处理过程相对较慢,需要较长的处理时间。
好氧处理是利用好氧菌将有机物和氨氮氧化为二氧化碳和水的过程。
好氧生化处理氨氮的机理是好氧菌通过氨氧化反应将氨氮转化为亚硝酸盐,然后再通过硝化反应将亚硝酸盐转化为硝酸盐。
在该过程中,好氧菌需要充足的氧气供应来完成氧化反应。
好氧处理的优点是反应速度相对较快,处理效果较好,适用于对水质要求较高的情况。
但是,好氧处理过程需要供应大量的氧气,增加了处理设备和运行成本。
在实际应用中,通常将厌氧处理和好氧处理结合起来进行废水的综合处理。
首先进行厌氧处理,通过将氨氮还原为亚硝酸盐以减少氨氮的浓度,然后再进行好氧处理,将亚硝酸盐氧化为硝酸盐,进一步降低氨氮和总氮的浓度。
这种联合处理的好处是可以充分利用两个过程的优势,提高处理效率,同时减少废水中的氮污染物。
除了厌氧和好氧生化工艺外,还可以采用生物膜工艺进行氨氮和总氮的处理。
生物膜工艺是利用生物膜固定好氧菌和厌氧菌来处理废水,通过菌膜上的各类菌的协同作用,将废水中的有机物和氮污染物转化为无害物质。
生物膜工艺相比传统的生化工艺有更高的处理效率和更好的稳定性,适用于处理高浓度氨氮和总氮的废水。
综上所述,厌氧和好氧生化工艺是常用的处理氨氮和总氮的方法,可以根据不同的水质和处理要求选择合适的工艺组合。
厌氧生物处理

(2)升流式厌氧污泥床(UASB) • 该工艺由于具有厌氧过滤及厌氧活性污 泥法的双重特点,作为能够将污水中的 污染物转化成再生清洁能源——沼气的 一项技术。对于不同含固量污水的适应 性也强,且其结构、运行操作维护管理 相对简单,造价也相对较低,技术已经 成熟,正日益受到污水处理业界的重视 ,得到广泛的欢迎和应用。
ABR反应器示意图
⑥厌氧迁移式污泥床反应器(AMBR)
• AMBR工艺类似ABR工艺,在每个隔室里增加了机 械搅拌,通过周期性改变进出水的方向来保持大 量的污泥,使每个上流式污泥床保持一致。有实 验证明,AMBR处理工艺在15℃和20℃时处理脱 脂牛奶,水力停留时间4~12h,有机负荷为 1·0~3·0kgCOD/m3·d,在更高COD负荷,在15℃时 COD的去除率为59%;在20℃时,COD负荷为1·0~2·0 kg COD/m3·d COD的去除率为80~95%。
注:(a)EGSB; (b)IC; ©UFB 第三代反应器结构示意图
④ASBR反应器
• ASBR法的主要特征是以序批式间歇的方 式运行,通常由一个或几个ASBR反应器组 成.运行时,废水分批进入反应器,与其中的 厌氧颗粒污泥发生生化反应,直到净化后 的上清液排出,完成一个运行期。ASBR法 一个完整的运行操作周期按次序应分为四 个阶段:进水期、反应期、沉降期和排水 期,如下图所示:
五、现代厌氧反应器技术的发展方向
5.1 两相或多级厌氧处理技术
第三代厌氧反应器特点比较
• 厌氧反应器的处理效率主要决定于反应器所能保有的 微生物浓度及其生化反应速率,而传质条件对生化反应 速率起着重要的作用。针对这些因素,新一代的反应 器具有一些共同的特性: • 1)微生物均以颗粒污泥固定化的方式存在于反应器中, 单位容积达微生物持有量更高; • 2)能承受更高的水力负荷,具有较高的有机污染物净化 效能; • 3)具有较大的高径比,占地面积小,动力消耗小; • 4)颗粒污泥与有机物之间具有更好的传质,使反应器的 处理能力大大提高. • 他们也具有各自的特点,也有各自的不足,具体见下 表:
好氧生物处理法与厌氧生物处理发的区别

04 好氧生物处理法与厌氧生 物处理法的比较
处理过程比较
反应条件
好氧生物处理法在有氧条件下进行,而厌氧生物处理法在无氧条件 下进行。
微生物种类
好氧生物处理法主要利用好氧微生物,如细菌和真菌,而厌氧生物 处理法主要利用厌氧微生物,如甲烷菌。
反应速度
好氧生物处理法的反应速度较快,而厌氧生物处理法的反应速度较 慢。
处理效果比较
污染物去除效率
剩余污泥
好氧生物处理法对有机物和氨氮的去 除效率较高,而厌氧生物处理法对有 机物和硫化物的去除效率较高。
Hale Waihona Puke 好氧生物处理法产生的剩余污泥较少, 而厌氧生物处理法产生的剩余污泥较 多。
能源利用
厌氧生物处理法可以产生甲烷作为能 源,而好氧生物处理法则没有这种能 源利用方式。
应用范围比较
适用条件
好氧生物处理法适用于处理可生化性较好的废水,而厌氧生物处理法适用于处理高浓度 有机废水。
能源需求
好氧生物处理法需要消耗大量的氧气,而厌氧生物处理法则不需要氧气。
适用领域
好氧生物处理法广泛应用于城市污水处理和工业废水处理领域,而厌氧生物处理法则广 泛应用于农业废弃物和城市垃圾等有机废弃物资源化利用领域。
厌氧微生物主要包括产酸菌和产甲烷菌,产酸菌将有机物转化为酸和醇,产甲烷 菌将酸和醇转化为甲烷和二氧化碳。
厌氧生物处理法的应用场景
厌氧生物处理法适用于处理高浓度有机废水、低浓度有机 废水、中低浓度有机废水等。
厌氧生物处理法在能源回收方面具有较大潜力,可将产生 的甲烷进行燃烧或发电,实现能源的循环利用。
对于某些有机物去除效果不佳。
处理效果不稳定
02
受水质、温度等因素影响较大。
污水处理-厌氧生物处理方法

2、气化阶段: 有机酸、醇、醛等中间产物在甲烷菌的作用下转化为生物气,也可称消化气,主体是CH4,因此气化阶段常称甲烷化阶段。该阶段除产生CH4外,还产生CO2和微量H2S。
1)厌氧生物处理的早期目的和过程
液化阶段: 兼性厌氧菌作用,大量氢产生,也称氢发酵阶段,有机酸大量积累,pH迅速下降,污泥带有粘性,呈灰黄色,并发出恶臭,污泥称为酸性发酵污泥。 气化阶段: 专性厌氧菌作用,需隔绝光和空气,最佳pH值7.2-7.5,有机酸浓度不超过2000mg/L,最佳50-500mg/L, 碱度不应超过5000mg/L,最佳2000-3000mg/L 污泥呈黑色,稳定不易腐化,无甚恶臭,易于脱水,这种污泥成为熟污泥或消化污泥。
早期的厌氧处理研究主要针对污泥消化,即将污泥中的固态有机物降解为液态和气态的物质。 污泥的消化过程明显分为两个阶段:固态有机物先液化,称液化阶段;接着降解产物气化,称气化阶段;整个过程历时半年以上。
1)厌氧生物处理的早期目的和过程
1、液化阶段 最显著的特征是液态污泥的PH值迅速下降,不到10天,降到最低值(例如在室温下,露在空气中的食物几天内就变馊发酸),所以又称酸化阶段。 污泥中的固态有机物如淀粉、纤维素、油脂、蛋白质等,在无氧环境中降解时,转化为有机酸、醇、醛、水分子等液态产物和C02、H2、NH3、H2S等气体分子。由于转化产物中有机酸是主体,所以导致PH值下降。 又由于产生的NH3溶解于水后产生的NH4OH具有碱性,产生中和反应并经过长时间的过程后使PH值回升,并进入气化阶段。
2、酸碱度、pH值
三、厌氧消化的影响因素与控制要求
厌氧装置适宜在中性或稍偏碱性的状态下运行。最适pH值为7.0~7.2,pH6.6~7.4较为适宜。 pH值和温度是影响甲烷细菌生长的两个重要环境因素。 影响微生物对营养物的吸收; pH强烈地影响酶的活性,进而影响微生物细胞内的生物化学过程。
简述好氧生化处理与厌氧生化处理

简述好氧生化处理与厌氧生化处理好氧生化处理和厌氧生化处理是两种常见的污水处理方法。
好氧生化处理是指在氧气存在的情况下,利用微生物将有机物质分解为无机物质的过程。
而厌氧生化处理则是在缺氧或无氧的情况下,利用厌氧微生物将有机物质分解为无机物质的过程。
下面将分别介绍这两种处理方法的原理、优缺点以及应用场景。
一、好氧生化处理好氧生化处理是一种利用好氧微生物将有机物质分解为无机物质的过程。
在好氧条件下,微生物通过氧化反应将有机物质分解为二氧化碳、水和微生物生物质等无机物质。
好氧生化处理的主要优点是处理效果稳定,处理效率高,处理后的水质好,适用于处理有机物质浓度较高的污水。
但是,好氧生化处理需要大量的氧气供应,因此能耗较高,处理成本也较高。
好氧生化处理的应用场景主要包括城市污水处理厂、工业废水处理厂等。
在城市污水处理厂中,好氧生化处理通常是在初级处理和中级处理之后进行的,用于进一步降解有机物质,提高水质。
在工业废水处理厂中,好氧生化处理通常是在生化处理的前期进行的,用于降解有机物质,减轻后续处理的负担。
二、厌氧生化处理厌氧生化处理是一种利用厌氧微生物将有机物质分解为无机物质的过程。
在缺氧或无氧条件下,厌氧微生物通过还原反应将有机物质分解为甲烷、二氧化碳、硫化氢等无机物质。
厌氧生化处理的主要优点是能耗低,处理成本较低,同时还能产生甲烷等可再生能源。
但是,厌氧生化处理对环境条件要求较高,处理效果不稳定,处理效率也较低。
厌氧生化处理的应用场景主要包括农村生活污水处理、有机废弃物处理等。
在农村生活污水处理中,厌氧生化处理通常是在初级处理之后进行的,用于降解有机物质,同时还能产生甲烷等可再生能源。
在有机废弃物处理中,厌氧生化处理通常是在前期进行的,用于降解有机物质,减轻后续处理的负担。
好氧生化处理和厌氧生化处理是两种常见的污水处理方法。
好氧生化处理适用于处理有机物质浓度较高的污水,处理效果稳定,但处理成本较高;厌氧生化处理适用于处理有机物质浓度较低的污水,能耗低,但处理效果不稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厌氧反应的基本知识
一、厌氧反应概述
利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程,称为废水的生物处理。
根据代谢过程对氧的需求,微生物又分为好氧、厌氧和介于两者间的兼性微生物。
厌氧生物处理就是利用厌氧微生物的代谢过程,在无需提供氧的情况下,把有机物转化为无机物和少量的细胞物质,这些无机物包括大量的生物气(即沼气)和水。
厌氧是一种低成本废水处理技术,把废水治理和能源相结合,特别适合发展中国家使用。
二、反应机理
厌氧反应过程是对复杂物质(指高分子有机物以悬浮物和胶体形式存在于水中)生物降解的复杂的生态系统。
其反应过程可分为四个阶段:
2.1水解阶段
被细菌胞外酶分解成小分子。
例如:纤维素被纤维酶水解为纤维二糖和葡萄糖,淀粉被淀粉酶分解为麦牙糖和葡萄糖,蛋白质被蛋白酶水解为短肽和氨基酸等,这些小分子的水解产物能被溶解于水,并透过细胞为细胞所利用。
2.2发酵阶段
小分子的化合物在发酵菌(即酸化菌)的细胞内转化为更为简单的化合物,并分泌到细胞外。
这一阶段主要产物为挥发性脂肪酸(VFA)醇类、乳酸、CO2、氢、氨、硫化氢等。
2.3产酸阶段
上一阶段产物被进一步转化为乙酸、氢、碳酸以及新的细胞物质。
3.4产甲烷阶段
在这一阶段乙酸、氢、碳酸、甲酸和甲醇等被转化为甲烷、二氧化碳和新细胞物质。
三、厌氧反应器类型:
3.1普通厌氧反应池。
3.2厌氧接触工艺。
3.3升流厌氧污泥床(UASB)反应器。
3.4厌氧颗粒污泥膨胀床(EGSR)。
3.5厌氧滤料(AF)。
3.6厌氧流化床反应器。
3.7厌氧折流反应器(ABR)。
3.8厌氧生物转盘。
3.9厌氧混台反应器等。