串口工作方式

合集下载

串口的工作原理

串口的工作原理

串口的工作原理
串口的工作原理是通过串行通信方式传输数据的一种通信方式。

串口通信采用的是一根传输线来进行数据的传输,通过发送方将数据以位的形式依次发送,接收方则将接收到的位逐个接收并还原为数据。

在串口通信中,发送方将数据通过发送引脚(TX)发送出去,并通过一定的协议将数据进行编码,如使用异步通信时,会采用起始位、数据位、停止位等方式进行编码。

接收方通过接收引脚(RX)接收数据,解码后还原为传输的数据。

串口通信的特点是可以一对一连接、长距离传输、通信速率较低,可以连接各种设备,如计算机、微控制器、传感器等。

串口通信的工作原理是通过发送方和接收方之间的数据传输来实现数据的交流和传输,其速率和数据位数可以根据实际需求进行配置和调整。

在串口通信中,发送方和接收方需要事先约定好通信的协议、数据位数、停止位、校验位等参数,以保证数据的准确传输。

由于串口通信采用的是用位来表示数据,所以传输的数据在传输过程中相对稳定可靠,不易受到传输干扰的影响。

总而言之,串口通信通过串行传输方式将数据按位发送和接收,通过发送方和接收方之间的协议和参数的约定,实现了数据的可靠传输。

由于其简单可靠的特点,在许多场景下仍然被广泛应用。

串口工作方式

串口工作方式

80C51串行口的应用举例
1、串行口方式0的应用
方式0时,串行口为同步移位寄存器的输入输出方式。 主要用于扩展并行输入或输出口。 74LS164可用于扩展并行输出口,74LS165可用于扩 展输入口。 数据由RXD(P3.0)引脚输入或输出,同步移位脉冲 由TXD(P3.1)引脚输出。发送和接收均为8位数据,低 位在先,高位在后。波特率固定为fosc/12。
方式2和方式3
方式2或方式3时为11位数据的异步通信口。TXD为数据发 送引脚,RXD为数据接收引脚
空 闲 起 始 位 D0 LSB

停 止 位 D7 MSB 空 闲
1帧共11位 数据位9位
RB8/TB8
方式2和方式3时起始位1位,数据9位(含1位附加的第9位, 发送时为SCON中的TB8,接收时为RB8),停止位1位,一 帧数据为11位。方式2的波特率固定为晶振频率的1/64或1/32, 方式3的波特率由定时器T1的溢出率决定。
;启动并行输出
;开始串行输出 ;等待中断 ;显示延迟一段时间 ;清发送中断标志 准备右边一位显示 ;关闭并行输出 ;启动并行输出 ;再一次串行输出 ;中断返回
MOV SBUF,A ACALL DELAY
查询方式程序清单: ORG 2000H MOV SCON ,#00H MOV A ,#80H LOOP1: CLR P1.0 SETB LOOP : JNB SBR : ACALL DELAY CLR TI P1.0 ;开始串行输出 ;等待中断 ;启动并行输出 ;显示延迟一段时间 ;清发送中断标志 TI, $ MOV SBUF,A ;主程序起始地址 ;串行口方式0初始化 ;最左一位发光二极管先亮
(1)方式2和方式3输出
写入SBUF TXD TI(中断标志) 起始

串行通信工作方式

串行通信工作方式
2、数据接收
在RI=0的条件下,用指令置REN=1即可开始串行接收。TXD端输出移位脉冲,数据依次 由低到高以fosc/12波特率经RXD端接收到SBUF中,一帧数据接收完成后硬件置接收中断标 志位RI为1。若要再次接收一帧数据,应该用指令MOV A,SBUF将上一帧数据取走,并用指 令将RI清零。用方式0通信时,多用查询方式。
1.2 串行工作方式1
方式1是一帧10位的异步串行通信方式,包括1个起始位,8个数据 位和一个停止位。波特率可变,由定时器/计数器T1的溢出率和SMOD (PCON.7)决定。其帧格式如下:
起始 D0 D1 D2 D3 D4 D5 D6 D7 停止
1、 数据发送
发送时只要将数据写入SBUF,在串行口由硬件自动加入起始位和停 止位,构成一个完整的帧格式。然后在移位脉冲的作用下,由TXD端串 行输出。一帧数据发送完毕后硬件自动置TI=1。再次发送数据前,用指 令将TI清零。
单片机原理与应用
串行通信工作方式
80C51串行通信共有4种工作方式,由串行控制寄存器SCON 中SM0 SM1决定。
1.1 串行工作方式0(同步移位寄存器工作方式)
以RXD(P3.0)端作为数据移位的输入/输出端, 以TXD(P3.1)端输出移位脉冲。 移位数据的发送和接收以8位为一帧,不设起始位和停止位,无论输入 /输出,均低位在前高位在后。 其帧格式为:
1.3 串行工作方式2
串行接口工作方式2为9位异步通信接口,传送一帧数据有11位。1位起 始位(低电平信号),8位数据位(先低位后高位),1位可编程位,1位停止位 (高电平信号)。其格式如下:
起始位
数据位
0
D0
D1
D2
D3
D4
D5 D6

串口的工作原理

串口的工作原理

串口的工作原理
串口是用于数据传输的通信接口,它通过传递一个字节序列来完成数据的发送和接收。

串口的工作原理主要包括以下几个方面:
1. 传输格式:串口通信采用串行传输方式,即按照比特顺序逐个传输数据位。

常见的传输格式有起始位、数据位、奇偶校验位和停止位组成。

起始位用于同步接收端和发送端的时钟信号,数据位用于传递实际的数据,奇偶校验位用于检测传输过程中发生的位错误,停止位用于表示数据传输结束。

通过这些格式要求可以保证数据的正确传输和接收。

2. 波特率:串口通信采用一种称为波特率(Baud Rate)的指
标来衡量数据传输速率,即每秒传输的比特数。

常见的波特率有9600 bps、115200 bps等。

发送和接收端在通信之前必须事
先约定一个相同的波特率。

3. 缓冲区:串口通信中,发送和接收的数据通过缓冲区进行中转。

发送端将待发送的数据存储在发送缓冲区中,然后根据波特率逐个比特进行数据的发送。

接收端会不断读取接收缓冲区中的数据,然后进行后续的处理。

4. 握手协议:为了保证数据的可靠传输,串口通信中还有一些握手协议,如RTS/CTS(请求发送/清除发送)和DTR/DSR (数据终端就绪/数据设备就绪)。

通过这些握手信号,发送
端和接收端可以进行数据发送的控制和同步。

5. 数据传输协议:串口通信中的数据传输可以采用不同的协议,如RS-232、RS-485等。

这些协议规定了数据传输的电气特性、物理接口和通信规范。

总之,串口通过比特连续传输实现数据的发送和接收,通过传输格式、波特率、缓冲区、握手协议和数据传输协议等机制保证数据的可靠传输和接收。

串口通讯原理

串口通讯原理

串口通讯原理串口通讯是一种常见的数据传输方式,它通过串行传输数据,将数据一位一位地发送和接收。

串口通讯常用于计算机与外部设备之间的数据传输,例如打印机、调制解调器、传感器等。

本文将介绍串口通讯的原理和工作方式。

一、串口通讯的基本原理串口通讯使用两根信号线进行数据传输,分别是发送线(TX)和接收线(RX)。

发送线用于将数据从发送端发送到接收端,接收线则用于将数据从接收端传输到发送端。

这两根信号线通过一对电缆连接在一起。

在串口通讯中,数据是按照一定的格式进行传输的。

常见的格式包括起始位、数据位、校验位和停止位。

起始位用于标识数据传输的开始,数据位用于传输实际的数据,校验位用于检测数据传输的准确性,停止位用于标译数据传输的结束。

二、串口通讯的工作方式串口通讯的工作方式可以分为同步和异步两种。

同步传输是指发送端和接收端的时钟信号保持同步,数据按照时钟信号的边沿进行传输。

异步传输则是指发送端和接收端的时钟信号不同步,数据通过起始位和停止位进行同步。

在同步传输中,发送端和接收端需要事先约定好时钟信号的频率和相位,以确保数据的准确传输。

而在异步传输中,发送端和接收端只需要约定好数据的格式,不需要同步时钟信号,因此更加灵活。

三、串口通讯的优缺点串口通讯具有以下优点:1. 简单易用:串口通讯的硬件接口简单,使用方便。

2. 跨平台性:串口通讯可以在不同的操作系统和设备之间进行数据传输。

3. 可靠性高:串口通讯的传输稳定可靠,不容易出错。

然而,串口通讯也存在一些缺点:1. 传输速率较低:串口通讯的传输速率相对较低,无法满足高速数据传输的需求。

2. 连接距离有限:串口通讯的连接距离较短,一般不超过几十米。

3. 线路复杂:串口通讯需要使用专用的串口线缆,线路较为复杂。

四、串口通讯的应用领域串口通讯广泛应用于各个领域,包括工业自动化、通信设备、医疗设备等。

例如,在工业自动化领域,串口通讯常用于PLC(可编程逻辑控制器)和外部设备之间的数据传输;在通信设备领域,串口通讯常用于调制解调器和计算机之间的数据传输。

串口通讯方法的三种实现

串口通讯方法的三种实现

串口基本信息用一台电脑实验串口自发自收,实验前要将串口(以9针为例)的发送引脚(2脚)和接受引脚(3脚)短接。

三线连接:适用于计算机之间尤其是PC机和单片机之间的数据通信。

其连接信号对为(TxD,RxD)、(RxD,TxD)、(SG,SG)。

即发送数据TxD端和接受数据RxD端交叉连接,信号地SG对应连接。

七线交叉连接:适用于同型号的计算机之间的连接,如PC机间的数据通信。

其连接信号对为:(TxD,RxD)、(RxD,TxD)、(SG,SG)、(RTS,CTS)、(CTS,RTS)、(DSR.DTR)、(DTR,DSR)。

其中,TxD、RxD、SG与前面信号的含义相同,RTS为请求发送,CTS为准许发送,DSR为数据装置准备好,DTR为数据终端准备好。

在本地连接的微机系统中,RTS、CTS、DTR、DSR用作硬件联络控制信号。

目前使用的串口连接线有DB9和DB25两种连接器,用户可以国家使用的具体机器选择相应的连接器。

一个串口通讯类在/network/serialport.shtml。

PC机的RS-232接口的电平标准是-12V标示“1”,和+12V表示“0”,有些单片机的信号电平时TTL 型,即大于2.4v表示“1”,小于0.5v表示“0”,因此采用RS-232总线进行异步通信是,发送端和接受端要有一个电平转换接口。

串口通讯方法的三种实现串口是计算机上一种非常通用的设备通信协议。

大多数计算机包含两个基于RS232的串口。

串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS一232口。

同时,串口通信协议也可以用于获取远程采集设备的数据。

串口通信(Serial Communication),是指外设和计算机间,通过数据信号线、地线、控制线等,按位进行传输数据的一种通讯方式。

串口通信方便易行,应用广泛。

在Windows应用程序的开发中,我们常常需要面临与外围数据源设备通信的问题。

51单片机串行口的工作方式

51单片机串行口的工作方式
☞再比如要显示“3” 须令a b c d g 为“0” 电平,e f h为“1”电平。
hgfedcba
a
fg b
e
c
dh
共阳极
累加器 A hgfedcba
0C0H = “0”
0B0H = “3”
例:利用串行口工作方式0扩展出8位并行I/O 口,驱动共阳LED数码管显示0—9。
VCC TxD RxD
☞方式2的波特率 = fosc 2SMOD/64 即: fosc 1/32 或 fosc 1/64 两种
☞奇偶校验是检验串行通信双方传输的数据正确与 否的一个措施,并不能保证通信数据的传输一定正 确。
换言之:如果奇偶校验发生错误,表明数据传输 一定出错了;如果奇偶校验没有出错,绝不等于数 据传输完全正确。
☞ REN:串行口接收允许位。 REN=1 允许接收
☞ TB8,RB8,TI,RI等位由运行中间的情况 决定,可先写成 “0”
三、工作方式2: 9位UART(1+8+1+1位)两种波特率
☞由于波特率固定,常用于单片机间通讯。 数据由8+1位组成,通常附加的一位 (TB8/RB8)用于“奇偶校验”。
☞ 溢出率:T1溢出的频繁程度 即:T1溢出一次所需时间的倒数。
☞ 波特率 =
2SMOD fosc 32 12(2n - X)
其中:X 是定时器初值
☞ 初值 X = 2n -
2SMOD fosc 32 波特率 12
常用波特率和T1初值查表
☞表格有多种, 晶振也不止一种
串口波特率 (方式1,3)
74LS164
hgfedcba
A B
CLK
CLR
74LS164

51单片机串口工作方式0和1解析

51单片机串口工作方式0和1解析

RXD
7.1.1 串行口控制寄存器SCON b7 b6 b5 b4 b3 b2 b1 TI b0 RI
SM0 SM1 SM2 REN TB8 RB8
9FH 9EH 9DH 9CH 9BH 9AH 99H 98H
SM0、SM1 —— 串行接口工作方式定义位
• SM0、SM1 = 00 —— 方式 0,8位同步移位寄存器 • SM0、SM1 = 01 —— 方式 1,10 位异步接收发送 • SM0、SM1 = 10 —— 方式 2,11 位异步接收发送 • SM0、SM1 = 11 —— 方式 3,11 位异步接收发送 注意: 方式 0 的特点,方式 2、方式 3 的差异
寄存器 SCON、PCON、SBUF
寄存器 IE、IP
• MCS-51 单片机串Fra bibliotek接口工作方式 方式 0 方式 2 方式 1 方式 3
有两个数据缓冲寄存器 SBUF,一个输入移位寄存器,一个 串行控制寄存器SCON和一个特殊功能寄存器PCON等组成。 8 位SBUF是全双工串行接口寄存器, 它是特殊功能寄存器, 地址为 99H,不可位寻址;串行输出时为发送数据缓冲器,发送
时钟振荡频率为6MHz或12 MHz时,产生的比特率偏差较大, 故用到串口通信时通常选用11.0592MHZ晶体振荡器。
串行口的结构
• MCS-51 单片机串行接口的硬件
P3.0 位的第二功能 —— 收端 RXD P3.1 位的第二功能 —— 发端 TXD
• MCS-51 单片机串行接口的控制
比特率 比特率
= /12
P.110
=
/32 计1次 计3次 计3次 计6次 计12次 计24次
=
/12/计次/16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3.3 串口的工作方式
串行口分四种工作方式,由SCON中的SMO、SM1二位选择决定。

1.方式0
(1)特点
1.用作串行口扩展,具有固定的波特率,为Fosf/12。

2.同步发送/接收,由TXD提供移位脉冲,RXD用作数据输入/输出通道。

3.发送/接收8位数据,低位在先。

(2)发送操作
当执行一条“MOV SBUF,A”指令时:
启动发送操作; TI=0;
由TXD输出移位脉冲;
由RXD串行发送SBUF中的数据。

发送完8位数据后;
自动置TI=1,请求中断。

要继续发送时,T1必须有指令清零。

(3)接收操作RI=0;
在RI=0条件下,
置REN=1,启动一帧数据的接收,
由TXD输出移位脉冲,
由RXD接收串行数据到A中。

接收完一帧自动置位RI,
请求中断。

想继续接收时,
要用指令清零RI。

2.方式1
(1)特点
1.8位UART接口。

2.帧结构为10位,包括起始位(为0),8位数据位,1位停止位。

3.波特率由指令设定,由T1的溢出率决定。

(2)发送操作
当执行一条“MOV SBUF,A”指令时,启动发送操作,A中的数据从TXD端实现异步发送。

发送完一帧数据后自动置TI=1,请求中断。

要继续发送时,TI必须由指令清零。

(3)接收操作
当置REN=1时,串行口采样RXD,当采样到1至0的跳变时,确认串行数据帧的起始位,开始接收一帧数据,直到停止位到来时,把停止位送入RB8中。

置位RI请求中断。

CPU取走数据后用指令清零RI。

3.方式2和方式3
方式2和方式3具有多机通信功能,这两种方式除了波特率不同以外,其余完全相同。

(1)特点
1.9位UART接口。

2.帧结构为11位,包括起始位(为0)、8位数据位、1位可编程位TB8/RB8和停止位(为1)。

3.波特率在方式2时为固定FOSC/32或FOSC/64,由SMOD位决定,当SMOD=1时,波特率为FOSC/32;当SMOD=0时,波特率为FOSC/64。

方式3的溢出率由T1的溢出率决定。

(2)发送操作
发送数据之前,由指令设置TB8(如作为奇偶校对位或地址/数据位),将要发送的数据由A写入SBUF中启动发送操作。

在发送中,内部逻辑会把TB8装入发送移位寄存器的第9位位置,然后发送一帧完整的数据,发送完毕后置位TI。

TI须由指令清零。

(3)接收操作
当置位SEN位且RI=0时,启动接收操作,帧结构上的第9位送入RB8中,对所接收的数据视SM2和RB8的状态决定是否会使RI置位。

当SM2=0时,RB8不论什么状态RI都置1,串行口都接收数据。

当SM2=1时,为多机通信方式,接收到的RB8为地址/数据表识位。

当RB8=1时,接收的信息为地址帧,此时置位RI,串行口接收发送来的数据。

当RB8=0时,接收的信息为数据帧,若SM2=1时,RI不会置位,此数据丢弃;若SM2=0,则SBUF接收发送来的数据。

相关文档
最新文档