磁共振成像(1)基础入门ppt

合集下载

磁共振成像基本知识PPT课件

磁共振成像基本知识PPT课件

波谱成像(Spectroscopic Imaging):通过分析组 织中的化学成分来提供分子层面的信息,有助于肿瘤 和代谢性疾病的诊断。
靶向成像(Targeted Imaging):通过使用特异性 标记的分子探针,对特定分子或细胞进行成像,为个 性化医疗和精准诊断提供了可能。
04 磁共振成像应用
医学诊断
成本与普及
磁共振成像设备成本较高,限制了其 在基层医疗机构的普及。未来需要降 低设备成本,提高可及性。
磁敏感加权成像(Susceptibility Weighted Imaging, SWI):利用组织磁敏感性 的差异进行成像,能够显示脑部微出血、铁沉积等病理变化。
分子成像技术
化学交换饱和转移成像(Chemical Exchange Saturation Transfer, CEST):利用特定频率的射频 脉冲来检测组织中特定化学物质的变化,对肿瘤和炎 症等疾病的诊断具有潜在价值。

快速扫描技术
研究更快的扫描序列和算法,缩短 成像时间,提高检查效率,减轻患 者长时间处于扫描腔内的压力。
多模态成像融合
结合磁共振成像与其他影像技术( 如CT、PET等),实现多模态成像 融合,提供更全面的医学影像信息 。
新应用活动和功能连接,深入 了解神经系统和认知科学领域。
磁共振成像的优势与局限性
高软组织分辨率
MRI对软组织结构有高分辨率,能够清晰显示脑、关节、肌 肉等组织的细微结构。
无骨伪影干扰
MRI不受骨骼的影响,能够清晰显示周围软组织的结构。
磁共振成像的优势与局限性
01
02
03
检查时间长
由于MRI需要采集大量数 据,检查时间相对较长。
金属植入物限制

磁共振成像(1)基础入门

磁共振成像(1)基础入门
1 T = 10000G(高斯)
Raymond Damadian与第一台MRI装置(1977)
MRI基本原理
普通CT成像示意图
螺旋CT原理示意图
磁共振没有射线
实现人体磁共振成像的条件:
利用人体内氢原子核作为磁共振中的靶子,它是人体内最 多的物质。H核只含一个质子不含中子,最不稳定,最易 受外加磁场的影响而发生磁共振现象。
磁共振发展史
发生事件
作者或公司
发现磁共振现象
Bloch Purcell
发现肿瘤的T1、T2时间长 Damadian
做出两个充水试管MR图像 Lauterbur
活鼠的MR图像
Lauterbur等
人体胸部的MR图像
Damadian
初期的全身MR图像
Mallard
磁共振装置商品化
诺贝尔奖金
Lauterbur Mansfierd
x
对Mz施加90度的射频脉冲
z
B0

MZ


磁 场
y
的 方
x

z
90度
y
MXY
x
A
B
在 A-B 这一过程中,产生能量
C
B0
射频脉冲激发使磁场偏转90度,关闭脉冲 后,磁场又慢慢回到平衡状态(纵向)
脉冲停止后,发生了一种物理学现象:弛豫
•弛豫
•Relaxation
•放松、休息
• 射频脉冲停止后,在主磁场的作用下,横向 宏观磁化矢量逐渐缩小到零,纵向宏观磁化 矢量从零逐渐回到平衡状态,这个过程称为
人体内的H核子可看作是自旋状态下的小星球。
自然状态下, H核进动杂乱无章,磁性相互抵消。

磁共振成像基本原理PPT课件

磁共振成像基本原理PPT课件

射频脉冲与磁化矢量
射频脉冲
向样品发射特定频率的射频脉冲,使磁化矢量发生旋 转。
磁化矢量旋转
射频脉冲使磁化矢量从一个静息态旋转到另一态,产 生能量变化。
信号的产生
磁化矢量回到静息态时释放能量,被探测器接收并转 换为可测信号。
信号的接收与处理
接收线圈
环绕在样品周围的接收线圈用于接收磁共振信号。
信号处理
超高场强磁共振成像
超高场强磁共振成像技术使用大于或等于7 特斯拉(T)的磁场进行成像。超高场强设 备在图像质量和分辨率方面具有显著优势, 能够提供更深入的生理和病理信息,有助于 疾病的早期诊断和精准治疗。
功能与分子影像学在技术利用磁场变化 来研究大脑和其他器官的功能活动。通过测 量血液氧合状态的变化,fMRI可以揭示大脑 在执行特定任务时的活动模式。此外,fMRI 还可以用于研究其他器官的功能和疾病进程。
射频电磁场安全
射频电磁场是磁共振成像过程中产生的另一种能量形式, 需要确保其强度符合国际和国家安全标准,避免对患者的 健康造成潜在影响。
热安全
在磁共振成像过程中,设备会向人体发射射频脉冲,这些 脉冲会产生热量。因此,需要监测和限制患者的体温升高, 确保热安全。
磁共振成像质量控制
01
图像分辨率
图像分辨率是磁共振成像质量的重要指标之一。为了获得高质量的图像,
参数优化
根据不同的扫描目标和需求,优化扫描序列中的参数,如磁场强度、射频脉冲的频率和持续时间等,以提高图像 质量和分辨率。
04
磁共振成像设备
磁体系统
01
02
03
磁体类型
超导磁体、永磁磁体和常 导磁体等。
磁场强度
磁场强度决定了成像质量, 通常在0.5-3.0特斯拉之间。

核磁共振成像PPT课件

核磁共振成像PPT课件

人体危害
由于射频线圈的电流所致的电阻率丧失,组 织中可产生热量,高场强的MRI扫描机比低 场强者更有可能产生能被测到的体温升高。
尽管证明没有危害,但对那些散热功能障碍 的病人,高热的病人,必须谨慎处理,防止 产生过多的热量,特别是在热而又潮湿的环 境下更应注意
25
人体危害
磁共振检查时,要把人体置于强大的 外加静磁场和变化着的梯度磁场内
22
03 MRI检查注意事项
人体危害
目前,经过各国医药工业管理部门批准生产的MR 成像仪都是安全的,均证明对人体没有不良作用
六类人群不适宜进行核磁共振检查
安装心脏起搏器的人 有或疑有眼球内金属异物的人 动脉瘤银夹结扎术的人 体内金属异物存留或金属假体的人 有生命危险的危重病人 幽闭恐惧症患者等
24
13 24
属无创伤 无射线检查
成像参数多 信息量大
13
MRI检查的限制
01 体内有金属异物,尤其被 检部位有磁铁性金属异物
02 重危病人需要生命监护 系统和生命维持系统者 扫描时间较长,噪声大。严
03 重不合作者,精神病患者, 危重病人,幽闭恐惧症患者
04 妊娠病人,尤其妊娠3个月内 急诊(脊髓损伤除外)
11
发展前景
快速成像技术
MR扫描时间过长和人体的生理运动之 间的矛盾仍是目前MR成像诊断中的一 大问题。如果屏气一次或数次即可完 成图像采集的话,那么胸部和腹部的 成像质量就能改善。工程技术人员在 这方面进行了很多研究并且仍在不断 改进完善中
12
MRI优点
具有较高 的分辨率 具有任意方向直 接切层的能力
进入扫描室前勿穿戴任何金属 物品如手表、发夹、眼镜、活 动假牙等,女性带有金属节育 环时,检查前一周取出节育环

磁共振成像技术PPT课件

磁共振成像技术PPT课件
13
三、病理组织的信号特点
• 出血:影像表现很复杂,与出血的部位、 时间有关
① 《24h仅见周围水肿征象; ② 1~3天急性期,脱氧血红蛋白可使T2缩短
且水肿更明显; ③ 3~14天亚急性期,红血球溶解破坏,脱
氧血红蛋白氧化成高铁血红蛋白,T1弛豫 明显缩短T2弛豫延长,周围水肿存在; ④ 》14天慢性期,高铁血红蛋白氧化为半 色素,含铁血红蛋白沉积血肿周边部。
14
三、病理组织的信号特点
• 坏死:坏死组织的水分增多,肉芽组织形 成,慢性纤维结缔组织形成;
• 钙化:质子密度很少,不如CT敏感; • 囊变:囊内容物-纯水物质,蛋白质水分; • 肿瘤:病理组织成分复杂,影像特点与其
所含成分有关,一般来讲肿瘤组织的质子 密度较正常组织高,T1延长不明显,T2延 长明显。
5
一、磁共振成像基本原理
• 值得注意的是,MRI的影像虽然也以不同的 灰度显示,但其反映的是MRI信号强度的不 同或弛豫时间T1与T2的长短,而不象CT图 像,灰度反映的是组织密度。
• 一般而言,组织信号强,图像所相应的部分 就亮,组织信号弱,图像所相应的部分就暗, 由组织反映出的不同的信号强度变化,就构 成组织器官之间、正常组织和病理组织之间 图像明暗的对比。
15
目录
一、磁共振成像基本原理 二、磁共振常见物质的信号特点 三、病理组织的信号特点 四、中枢神经系统磁共振成像常用序列 五、磁共振图片展示
16
四、中枢神经系统MRI常用序列
• 自旋回波(SE)序列 采用“90°-180°” 脉冲组合形式构成。 其特点为可消除由于磁场不均匀性所致 的去相位效应,磁敏感伪影小。但其采集 时间较长,尤其是T2加权成像,重T2加权 时信噪比较低。该序列为MRI的基础序列。

MRI检查基础知识 PPT课件

MRI检查基础知识 PPT课件

磁共振成像的基本知识
STIR(压脂序列) • 短TI的IR序列,用于脂肪抑制
• TI值:140-175ms
磁共振成像的基本知识
FLAIR序列(压水序列): • 长TI的IR序列,用于自由水抑制 • TI值:1700-2200ms • 用于脑或脊髓T2WI上病变较小或
邻近脑脊液而不能清楚显示时 也可用于蛛网膜下腔出血的诊断
停、严重外伤、幽闭症患者及不配合者应慎重 孕妇和婴儿应征得医生同意再进行扫描
磁共振成像的基本知识
脉冲序列:MR成像中,为获得反映组织弛豫时 间等特性的磁共振信号,依不同时间间隔施加 一系列射频脉冲
加权像:通过改变TR和TE,得到突出组织某个 特征参数的图像 T2加权像(T2W清晰
动脉夹、人工血管、静脉滤器、 心脏起搏器、 人工瓣膜、人工耳蜗、置入性药物泵、人工关 节等
注:有关体内置入物安全方面的研究主要针对1.5T或更 低场强的磁共振系统,最近的研究显示一些金属置入 物在1.5T为弱磁性,而在3.0T磁场内则可能表现为强 磁性
磁共振成像的基本知识
相对禁忌症
高烧患者应禁止扫描 昏迷、神志不清、精神异常、易发癫痫或心脏骤
磁共振成像的基本知识
扩散加权成像(DWI)
显示水分子的扩散运动情况 观察水分子细胞膜内外跨膜移动引起的MR信号强
度改变 能够无创、快速的反映脑缺血区分子、细胞水平
的微观变化 用于急性脑缺血、出血和脑瘤等
磁共振成像的基本知识
▪ 脑梗死30min后,细胞毒性水肿,细胞内水分子扩
散受限
▪ DWI上发现扩散受限,ADC值降低 ▪ 急性期DWI呈高信号, ADC呈低信号 ▪ 敏感性、特异性均在90%以上 ▪ 常规MRI阴性
磁共振成像的基本知识

《磁共振成像》课件

《磁共振成像》课件
穿着要求
穿着舒适、无金属纽扣或拉链的衣 服进行检查。
检查中的安全问题
保持静止
在检查过程中,需要保持静止不动,以免影 响成像效果。
遵循医生指导
在检查过程中,需要遵循医生的指导,如保 持正常呼吸、不要憋气等。
观察身体反应
在检查过程中,需要观察身体是否有不适反 应,如有异常应及时告知医生。
避免携带电子设备
02
磁共振成像系统
磁体系统
01
磁体类型
磁体系统是磁共振成像的核心 部分,主要分为永磁型、超导
型和脉冲型三种类型。
02
磁场强度
磁场强度是衡量磁体性能的重 要指标,通常在0.5-3.0特斯拉
之间。
03
磁场均匀性
为了获得高质量的图像,磁场 的均匀性必须得到保证,通常
要求在±0.01ppm之内。
梯度系统
• 技术挑战:高场强磁共振成像技术需要更高的技术和资金投入,同时还需要解决磁场均匀性、信噪比和安全性等问题。
快速成像技术
总结词
快速成像技术能够缩短成像时间,提高成像效率 ,减轻患者的痛苦和不适感。
发展趋势
随着快速成像技术的不断改进和完善,其应用范 围也将不断扩大,未来可能会成为磁共振成像技 术的主流之一。
02
详细描述
多模态成像技术是当前研究的 热点之一,它能够综合利用多 种成像模式的信息,如磁共振 成像、超声成像、X射线成像 等,从而提供更加全面和准确
的诊断结果。
03
发展趋势
多模态成像技术的应用范围将 不断扩大,未来可能会成为医
学影像技术的主流之一。
04
技术挑战
多模态成像技术需要解决不同 模态之间的兼容性和同步性问 题,同时还需要进一步提高图

磁共振成像(MRI)的基本原理PPT演示课件

磁共振成像(MRI)的基本原理PPT演示课件
磁共振成像(MRI)的基本原理 Magnetic Resonance Imaging
同济医科大学附属协和医院MR室 刘定西
1
磁共振现象的发现及发展
1924年pauli在进行电在子波谱 试验中发现了许多原子核象带电的 自旋粒子一样具有角动量和磁动量。
1946年美国物理学家Block和 Purcell分别测出了在均匀物质中磁 共振的能量吸收,进一步证实了核 自旋的存在,并为此获得了1952年 诺贝尔物理学奖。
• 影响M的因素:静磁场强度、温度、自 旋密度(单位体积的自旋数)。
• 纵向磁化:平行于磁场方向的磁化矢量 • 横向磁化:垂直于磁场方向的磁化矢量
30
31
磁共振成像中的坐标系统
Z
Y X
32
第四节 核磁共振现象
• 单摆共振 • 核磁共振
33
单摆共振的条件
• 系统与激发源的固有频率相同 • 系统吸收能量内能增加
10
3
11
净自旋
• 原子核的运动:自旋 • 净自旋:具有自旋磁动量的自旋。 • 零自旋/非零自旋:净自旋为零/净自旋不
为零 • 净自旋产生的条件:奇数质子和/或奇数中
子 • 净自旋的意义:是磁共振信号来源的基
础。 • 自旋系统:磁场中所有自旋的集合。
12
1H的原子核结构及特性
1H原子核仅有一个质子,无中子。 其磁化敏感度高,在人体的自然 丰 富度很高,是很好的磁共振靶核。
21
M1
M2
22
Z
M0 B1 X
Y
23
24
自旋在磁场中的运动
• 进动(旋进):自旋轴绕磁场方 向的圆周运动。遵循 lamor 定理, w=rB0
• 影响进动频率的因素:磁场强度。 • 进动的方向:上旋态与下旋态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z
MZ
按照单一核子进动原理,质子群在静磁
y
场中形成的宏观磁化矢量M。
x
对Mz施加90度的射频脉冲
z
B0

MZ


磁 场
y
的 方
x

z
90度
y
MXY
x
A
B
在 A-B 这一过程中,产生能量
C
B0
射频脉冲激发使磁场偏转90度,关闭脉冲 后,磁场又慢慢回到平衡状态(纵向)
脉冲停止后,发生了一种物理学现象:弛豫
纵向弛豫
也称为T1弛豫,是指90度脉冲关闭后,在 主磁场的作用下,纵向磁化矢量开始恢复, 直至恢复到平衡状态的过程。
90度 脉冲
T1WI两种组织的信号差别——是这样获得的
平 衡 状 态
采 集 时
90
纵 向



90

T1WI
T1弛豫:到达63%的时间,以 脂肪与脑脊液为例
脂肪T1弛豫短,又称短T1——高信号; 脑脊液T1弛豫长,又称长T1——低信号;
射频(RF)脉冲停止后H核子状态:射频脉冲停止,接受到能量后的“ 高能态”质子以电磁波的形式将所吸收的能量散发出来。其横向磁化消 退,纵向磁化恢复。
人体内的H核子可看作是自旋状态下的小星球。
自然状态下, H核进动杂乱无章,磁性相互抵消。
进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互 抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础。
磁共振发展史
发生事件
作者或公司
发现磁共振现象
Bloch Purcell
发现肿瘤的T1、T2时间长 Damadian
做出两个充水试管MR图像 Lauterbur
活鼠的MR图像
Lauterbur等
人体胸部的MR图像
Damadian
初期的全身MR图像
Mallard
磁共振装置商品化
诺贝尔奖金
Lauterbu能检测到纵向磁化矢量,但能检测到旋转的横向磁化矢量
▲在任何序列图像上,信号采集时刻旋转横向的磁化矢 量越大,MR信号越强
● 人体——进入磁场——磁化——施加射频脉冲、H核磁矩发生90°偏转,
产生能量——射频脉冲停止、弛豫过程开始,释放所产生的能量(形成MR
1 T = 10000G(高斯)
Raymond Damadian与第一台MRI装置(1977)
MRI基本原理
普通CT成像示意图
螺旋CT原理示意图
磁共振没有射线
实现人体磁共振成像的条件:
利用人体内氢原子核作为磁共振中的靶子,它是人体内最 多的物质。H核只含一个质子不含中子,最不稳定,最易 受外加磁场的影响而发生磁共振现象。
•弛豫
•Relaxation
•放松、休息
• 射频脉冲停止后,在主磁场的作用下,横向 宏观磁化矢量逐渐缩小到零,纵向宏观磁化 矢量从零逐渐回到平衡状态,这个过程称为
核磁弛豫。
• 核磁弛豫又可分解为两个部分:
• 横向弛豫
• 纵向弛豫
T2弛豫
很容易发现:
不同组织的横、纵向 弛豫时间不同
(T2、 T1值不同)
磁共振设备
按照场强分为:低场强、 中场强、 高场强、 超高场强 0.4T以下 0.5-1.0T 1.5-3.0T 7.0T以上
磁体类型:永磁型、超导型 (也有将3.0T列为超高场强)
特斯拉(Tesla,T)
Nikola Tesla (18571943), 奥地利电器工程 师,物理学家,旋转磁 场原理及其应用的先驱 者之一。
杨景震
(注:内有动画设置,浏览时需采用幻灯放映模式)
(2014修改版)
主要内容
• 磁共振技术的发展及概况 • 简要介绍磁共振成像基本原理及概念 • 磁共振检查方法及临床应用 • 磁共振成像的主要优点及限度 • 如何阅读磁共振图像
时间
1946 1971 1973 1974 1976 1977 1980 2003
有一个稳定的静磁场(磁体):永磁型、超导型 0.15- 0.4T、0.5-1.0T、1.5T、3.0T-7.0T或以上。
梯度场和射频场:前者用于空间编码和选层,后者施加特 定频率的射频脉冲,使之形成磁共振现象。
信号接收装置:各种线圈。 计算机系统:完成信号采集、传输、图像重建、后处理等

磁共振成像的过程:
H核子自然状态:磁矩和角动量互相抵消,人体不显磁性。 外加磁场中H核子状态:人体处于轻度磁化状态,在顺/逆主磁场方向
的两种排列方式中,顺向者多,磁矢量经正负方向相互抵消后,保留7 /百万的H核子用于MR信号接收,这些顺向排列(低能态)形成的磁 矢量联合形成总磁矩 M,并与静磁场(B0) 方向相同 。 施加射频(RF)脉冲后H核子状态:外加一个与主磁场成一定角度( 90度)的短暂射频脉冲。该脉冲的频率与质子的进动频率相同, 则H 核子受到激励,由原来的低能态跃迁到高能态,形成了H核子 “共振” 现象。
T1弛豫
90度脉冲
横向弛豫
也称为T2弛豫, 简单地说,T2 弛豫就是横向 磁化矢量减少 的过程。
横向磁化矢量 的缩短即是相 位散失的过程
T2WI两种组织的信号差别——是这样获得的


衡 状
集 时

90

激 发




信 号



T2WI
T2弛豫:减少到37%的时间, 以脑灰质与脑脊液为例。
脑灰质T2弛豫相对较短,又称短T2——较低信号; 脑脊液T2弛豫长,又称长T2——高信号;
写在前面
磁共振成像目前已经成为临床常用且依赖性很强的影像学 检查技术之一。医学生或年轻医师通过学习和了解,应该 逐步熟悉或掌握其知识要点,这对于不同专业都非常重要。 本课件分1-7部分,用于临床医学专业本科生选修课教学。
磁共振成像
Magnetic Resonance Imaging
(基础部分) 河北医科大学石油临床学院 影像学教研室
信号)——信号接收系统——计算机系统
MR成像技术的发展:四个阶段 20世纪70年代中—80年代初:初步认识、逐步完善成熟阶段。 80年代初—90年代初:广泛应用,但仅限于T1\T2层面成像。
注重于解剖结构及形态的变化。 90年代初—90年代末:快速发展阶段。检查时间缩短、随着
快速或超快速成像技术的应用,扩散加权、灌注加权、MRA、 水成像、功能成像等技术用于研究功能与活动机制。 90年代末—21世纪至今天:上述技术不断成熟的同时,有多 种成像方法进入临床应用,并进入磁共振分子影像学阶段。
相关文档
最新文档