北师大版七年级下册数学思想与方法
专题数学思想方法北师大版数学课件

分类必须是同一个标准;③分类讨论要注意层次性,逐级进行.
3.依据所分情况,逐一讨论 4.归纳总结
BD2 2 5;③若∠CDA=90°,如图中的点D3,作D3E⊥BD1,
应用勾股定理解得 BD3 10. 答案: 或2 5或 10 4
应用分类讨论思想解决问题的一般步骤 1.确定被讨论的对象及全体 2.统一标准,合理分类,做到不重不漏 (1)分类的方法:分类讨论一般按照数量差异或位置差异进行 分类 (2)分类的原则:①分类中的每一部分是相互独立的;②一次
1.(2011·芜湖中考)如图,从边长为(a+4) cm的正方形纸片中 剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又 剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
(A)(2a2+5a) cm2 (C)(6a+9) cm2
(B)(3a+15) cm2 (D)(6a+15) cm2
2.与分式、根式有关的问题应用等式的性质转化成整式来求
解.
3.多边形的问题转化为三角形或四边形的问题求解.
分类讨论思想方法 【例2】(2011·浙江中考)解关于x的不等式组:
a x 2 >x 3 9 a x >9a 8 ① ② .
【思路点拨】解关于x的不等式,以a的取值分情况讨论.
(2)特例启发,解答题目 解:题目中,AE与DB的大小关系是:AE___DB(填“>”、“<”
或“=”).理由如下:
如图2,过点E作EF∥BC,交AC于点F.
(请你完成以下解答过程)
(3)拓展结论,设计新题. 在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且 ED=EC.若△ABC的边长为1,AE=2,求CD的长.(请你直接写出结 果).
北师大版初中数学七年级下册数学知识点思维导图(北师大版)

法则表达式推广文字形式(积的乘方等于乘方的积)表达式法则文字形式(同底数幂相除,底数不变,指数相减)表达式零次幂公式确定a(一位整数)确定n(从左数至第一个非零数前面零的个数)法则(单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式)符号相同项为a口诀(首平方,尾平方,二倍首尾放中央)双解性相交线与平行线两条直线的位置关系位置关系相交平行注意:同一平面内,不相交的两条直线平行定义(两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直)垂直交点叫做垂足,一条直线称作另一条直线的垂线公理平面内,过一点有且只有一条直线与已知直线垂直角对顶角直线外一点与直线上各点连接的所有线段中,垂线段最短定义(∠1与∠2有公共顶点O,它们的两边互为反向延长线)定理对顶角相等补角余角公理证明(同角的补角相等)定义(两角之和180°)证明(∵∠1+∠2=180°∴∠1与∠2互为补角)定义(两角之和90°)证明(∵∠1+∠2=90°∴∠1与∠2互为余角同角或等角的补角相等同角或等角的余角相等探索直线平行的条件同位角在第三条直线同旁特点两条直线的同侧形状(“F”型)平行条件两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称(同位角相等,两直线平行)证明∵∠1=∠2公理∴l1∥l2(同位角相等,两直线平行)过直线外一点有且只有一条直线与已知直线平行平行于同一条直线的两直线平行(平行的传递性)内错角在第三条直线两侧特点两条直线的两侧形状(“Z”型)平行条件两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行证明简称(内错角相等,两直线平行)∵∠1=∠2∴l1∥l2(内错角相等,两直线平行)同旁内角在第三条直线同旁特点两条直线内部形状(“C”型)平行条件两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行证明简称(同旁内角互补,两直线平行)∵∠1+∠2=180°∴l1∥l2(同旁内角互补相等,两直线平行)平行线的性质两条直线被第三条直线所截,如果这两条直线平行那么同位角相等两条直线被第三条直线所截,如果这两条直线平行那么内错角相等两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补用尺规作图概念(在变化过程中,数值发生改变的量)定义(由不在同一条直线上的三条线段首尾顺次相接所组成实质(八字对顶全等)轴对称图形(如果一个平面图行沿一条直线折叠后,直线两。
七年级数学下册 1.4 整式的乘法中的思想方法素材 (新

整式乘法中的思想方法学习整式的乘法应注意以下几种常见的数学思想方法的运用:一、化归思想例1 计算:(a -b )(a 2+ab +b 2).分析 先将其转化为多项式乘以单项式,再将其转化为单项式乘以单项式,此时利用单项式乘以单项式的法则和幂的运算法则化简.解 (a -b )(a 2+ab +b 2)=a (a 2+ab +b 2)-b (a 2+ab +b 2)=a ·a 2+ a ·ab + a ·b 2-b ·a 2-b ·ab -b ·b 2=a 3-b 3.说明 本题在计算过程,实施的一步一步地转化,最终化归到单项式乘以单项式,事实上,多项式与多项式相乘,先用一个多项式的每一项“遍乘”另一个多项式的每一项,再把所得的积相加,但要注意系数和符号的变化.二、方程思想例2 若多项式(x 2+mx +n )(x 2-3x +4)展开后不含x 3项和x 2项.试求m ,n 的值.分析 由于多项式(x 2+mx +n )(x 2-3x +4)展开后不含x 3项和x 2项,就是说x 3项和x 2项的系数为0,所以令多项式(x 2+mx +n )(x 2-3x +4)展开后中x 3项和x 2项的系数为0即求. 解 (x 2+mx +n )(x 2-3x +4)=x 4+(m -3)x 3+(n -3m +4)x 2+(4m -3n )x +4n ,因为展开后不含x 3项和x 2项,所以有m -3=0且n -3m +4=0,解得m =3,n =5. 说明 本题利用整式乘法运用中不含某些项,得到系数为0,从而构造出方程求解.三、整体思想例3 化简并求值:81[(a +b +1)(a +b -1)]·98[(a +b -2)(3-b -a )].其中a =-1,b =2.分析 本题若用常规的方法采取“遍乘”的办法化简,显然运算量较大,但考虑其结构特点,视(a +b )为一个整体,可降低运算的难度和运算量. 解81[(a +b +1)(a +b -1)]·98[(a +b -2)(3-b -a )] =-81·98[(a +b )(a +b -1)+1×(a +b -1)][(a +b )(a +b -3)-2(a +b -3)] =-91[(a +b )2-(a +b )+(a +b )-1][(a +b )2-3(a +b )-2(a +b )+6]=-91[(a +b )2-1][(a +b )2-5(a +b )+6] =-91{(a +b )2[(a +b )2-5(a +b )+6]-1×[(a +b )2-5(a +b )+6]} =-91[(a +b )4-5(a +b )3+6(a +b )2-(a +b )2+5(a +b )-6] =-91[(a +b )4-5(a +b )3+5(a +b )2+5(a +b )-6]. 因为a =-1,b =2,所以a +b =1,所以当a +b =1时,原式=-91[14-5×13+5×12+5×1-6]=0. 说明 本题既运用了整体思想进行化简,又运用了整体代入求值.四、数形结合思想例 4 袁老师要贝贝用一张纸片制作成一个如图②形状的图案.贝贝是这样做的:先画一条线段AC ,如图①,再以AC 为直径画圆,O 是它的圆心,并剪下这个圆,然后在AC 上找一点B ,再分别以AB 、BC 为直径画圆,然后用剪子或其它工具挖去这两个圆,即以O 1、O 2为圆心的圆,再通过适当的剪裁,就可以得到图②.如果被你挖去两个圆中,小圆的半径(即AO 2)比大圆的半径(即CO 1)小1cm ,请你比较余下部分的面积(即图①中阴影部分的面积)和被挖去部分的面积(即两个小圆的面积的和)的大小.分析 要求其解,现在的关键是要能分别求出余下的图形面积和挖去的两个圆的面积,然后再比较各自的大小.解 设小圆的半径AO 2=r ,则大圆的半径CO 1=r +1,外面的最大圆的半径则为r +r +1=2r +1,所以图中小圆的面积=πr 2,大圆的面积=π(r +1)2,小圆和大圆的面积之和=πr 2+π(r +1)2,而图中外面最大圆的面积=π(2r +1)2,①②所以图中阴影部分的面积=π(2r+1)2-[πr2+π(r+1)2]=4πr2+4πr+π-πr2-πr2-2πr-π=2πr2+2πr,而图中阴影部分的面积-小圆和大圆的面积之和=2πr2+2πr-πr2-π(r+1)2=2πr2+2πr-πr2-πr2-2πr-π=-π<0,所以图中阴影部分的面积<小圆和大圆的面积之和.说明本题在分别计算出图中阴影部分的面积与小圆和大圆的面积之和之后,采用了作差法进行比较.。
2024北师大版七年级下册的数学教学计划范文(4篇)

2024北师大版七年级下册的数学教学计划范文一、教学指导思想认真落实校长办公会关于新学期教学工作的要求,以《初中数学课程标准》为指导,以数学教研组为参考,围绕“教学”这一中心点,紧扣“质量”这一立足点,加强研究,大力实践,抓实教学常规工作并有所创新,积极稳妥地推动我校的课改工作,形成具有一中特色的办学风格,以人的发展为目标,全面提高教育教学质量。
二、工作目标1、以学生为本。
备课组以学生的实际为切入点,集体探讨一种学生易接受、易掌握的,努力使绝大部分同学都理解并掌握,力争使每个学生都学有所获。
2、发挥集体智慧,实现资源共享,并保持集体备课的持久性、二次备课的艺术性,以达到提高课堂教学效率的目的。
3、抓学生的。
在教学过程中,培养学生的学习方法,使他们形成自主学习的习惯,并为其终身学习打下基础。
4、知识与能力并举,在教学过程中,巩固所学知识,并强化能力的培养。
通过小组合作交流,给学生提供一个展示自我的平台,开发课程资源,以在到活跃课堂的目的。
三、工作1、发挥集体的智慧,加强备课组的建设,充分发挥好老教师和各级骨干老师的带头作用。
2、备课:以集体备课为主,形成统一的有本校特色的讲学稿,保管好所有教学案、课件,供下____届使用。
3、每周备课时,确定下周每节课的内容及每节课的重难点,以及每节课的教法和策略,严格把关和注重学生创新意识和能力的培养。
4、每章开课前,我们先阅读全章内容,确定全章的重难点,做完全章的课后习题。
5、认真组织课堂教学,精心设计教学过程,针对不同班级学生的情况,在二次备课时重新修改设计教学内容。
让学生在活动、实践中,掌握知识,力求教学中要鼓励与提倡解决问题策略的多样化,尊重学生在解决问题中所表现出的不同水平。
问题情景的设计、教学过程的展开、练习的安排等要尽可能地让所有学生都能参与,提出各自解决问题的方法,并引导学生在与他人的交流中选择合适的策略,丰富数学活动的,提高思维水平。
6、让现代信息教育技术与数学教学进行更好的整合,以信息化带动教育现代化,利用现代信息教育技术,为学生创造一个数学实验的环境。
北师大七年级数学下册 第二章 应用思想方法解相交线与平行线问题的九种技巧

阶段技巧专训 6.如图,直线 AB,CD 被 EF 所截,∠1=∠2,∠CNF+∠BMN
=180°.试说明:AB∥CD,MP∥NQ.
阶段技巧专训
解:由对顶角相等,得∠CNF=∠END. 因为∠CNF+∠BMN=180°, 所以∠END+∠BMN=180°.所以 AB∥CD. 所以∠EMB=∠END. 又因为∠1=∠2,所以∠END+∠2=∠EMB+∠1, 即∠ENQ=∠EMP.所以 MP∥NQ.
阶段技巧专训
当点 P 与点 D 重合时,∠3=0°,如图③所示. 因为 l1∥l2,所以∠2=∠1. 因为∠3=0°,所以∠2=∠1+∠3. 综上所述,当点 P 在线段 CD 上运动时, ∠1,∠2,∠3 之间的关系为∠2=∠1+∠3.
阶段技巧专训
因为∠EOF=x+∠COF+∠EOD=170°, 所以∠COF+∠EOD=170°-x. 又因为∠COD+2∠COF+2∠EOD+∠AOB=360°, 则 x+2∠COF+2∠EOD+90°=360°, 所以 x+2(170°-x)+90°=360°. 所以 x=70°,即∠COD=70°.
阶段技巧专训 4.如图,由点 O 引出六条射线 OA,OB,OC,OD,OE,OF,
且 AO⊥OB,OF 平分∠BOC,OE 平分∠AOD.若∠EOF= 170°,求∠COD 的度数. 解:设∠COD=x. 因为 AO⊥OB,所以∠AOB=90°. 因为 OF 平分∠BOC,OE 平分∠AOD, 所以∠COF=12∠BOC,∠EOD=12∠AOD.
阶段技巧专训 7.为了实地测量某塔外墙底部的底角(图中∠ABC)的大小,张扬
同学设计了两种测量方案. 方案一:作 AB 的延长线,量出∠CBD 的度数,便知∠ABC 的度数; 方案二:作 AB,CB 的延长线,量出∠DBE 的度数,便知∠ ABC 的度数. 同学们,你能解释他这样做的道理吗?
【全程复习方略】初中数学 专题一 数学思想方法配套课件 北师大版共46页文档

21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
【全程复习方略】初中数学 专题一 数学思想方法配套课
件 北师大版
41、实际上,我们想要的不是针对犯 罪的当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚
43、法律和制度必须跟上人类思想进 步。— —杰弗 逊
44、人类受制于法律,法律受制于情 理。— —托·富 勒
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
2024北师大版七年级下册的数学教学计划范文(四篇)

2024北师大版七年级下册的数学教学计划范文一、学生情况分析本期担任,该班共有学生____人。
七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。
学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。
七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。
学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。
学生是否掌握良好的与其学业成绩的好坏相关,七年级学生由于正处在初级的阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。
二、教材及课标分析第一章《有理数》1、本章的主要内容:对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。
重点:有理数加、减、乘、除、乘方运算难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。
2、本章的地位及作用:本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建"数学大厦"的地基。
3、本章涉及到的主要数学思想及方法:a、分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中。
b、数形结合的思想:主要体现在数轴一节课的学习上,用数字表示数轴(图形)的形态,反过来用数轴(图形)反映数字的具体意义,达到数字与图形微观与宏观的统一,具体与抽象的结合,即用数说明图形的形象,用图形说明数字的具体,尤其利用数轴比较有理数的大小,理解相反数与绝对值的几何意义,更是形象直观。
北师版七年级数学下册教案

北师版七年级数学下册教案北师版七年级数学下册教案在教学工作者开展教学活动前,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。
那要怎么写好教案呢?下面是小编为大家收集的北师版七年级数学下册教案,仅供参考,希望能够帮助到大家。
北师版七年级数学下册教案1一、学习与导学目标:知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:A、创设情境(幻灯片或挂图)1、两辆汽车,其一向东行驶10km,另一向西行驶8km。
为了区别,可规定向东行驶为正,则分别记作+10km和-8km。
但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。
此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题……2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
B、学习概念:1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作︱a︱(幻灯片)。
因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。
(互为相反数的两个数的绝对值相同)2、尝试回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;(3)︱0︱=。
(幻灯片)思考:你能从中发现什么规律引导学生得出:(幻灯片)性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
如果用字母a表示有理数,上述性质可表述为:当a是正数时,︱a︱=a;当a是负数时,︱a︱=-a;当a=0时,︱a︱=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册
第一章整式的运算
§1.1 整式
数学思想方法:
1、归纳与分类的思想
具体体现:(1)单项式的定义
(2)多项式的定义
§1.2 整式的加减
数学思想方法:由特殊到一般
具体体现:整式的加减由简单到复杂。
§1.3 同底数幂的乘法
数学思想方法:归纳总结、整体代换思想
具体体现:同底数幂的乘法法则的推导,在基本公式中字母a、b 不仅表示具体的数,还可以表示单项式、多项式、整式,甚至代数式§1.4 幂的乘方与积的乘方
数学思想方法:由特殊到一般,归纳总结、整体代换思想
具体体现:题型由易到难,法则的推导,在基本公式中字母a、b不仅表示具体的数,还可以表示单项式、多项式、整式,甚至代数式§1.5 同底数幂的除法
数学思想方法:观察归纳类比
具体体现:几种幂的运算对比,法则的推导
§1.6 整式的乘法
数学思想方法:观察归纳总结、化归思想
具体体现:法则的推导及应用,多项式的乘法转化为单项式的乘法
§1.7 平方差公式
数学思想方法:归纳总结,数形结合整体代换思想
具体体现:平方差公式的推导在基本公式中字母a、b不仅表示具体的数,还可以表示单项式、多项式、整式,甚至代数式§1.8 完全平方公式
数学思想方法:归纳总结,数形结合整体代换思想
具体体现:完全平方公式的推导在基本公式中字母a、b不仅表示具体的数,还可以表示单项式、多项式、整式,甚至代数式
§1.9同底数幂的除法
数学思想方法:归纳总结整体代换思想
具体体现:同底数幂的乘法法则的推导,在基本公式中字母a、b 不仅表示具体的数,还可以表示单项式、多项式、整式,
甚至代数式
第二章平行线与相交线
§2.1 余角与补角
数学思想方法:转化思想
具体体现:余角与补角的定义
§2.2 探索直线平行的条件
数学思想方法:数形结合
具体体现:余角与补角的定义的归纳及应用§2.3 平行线的特征
数学思想方法:观察归纳总结、转化的思想具体体现:平行线的特征的总结与归纳
§2.4 用尺规做线段和角
数学思想方法:抽象
具体体现:用尺规做线段和角
第三章生活中是数据
§3.1 认识百万分之一
数学思想方法:归纳总结
具体体现:负整数指数幂的科学计数法
§3.2 近似数和有效数字
数学思想方法:归纳总结
具体体现方法:近似数和有效数字定义的总结§3.3 世界新生儿图
数学思想:归纳总结、类比的思想
具体体现:三种统计图特点的总结、对比应用第四章概率
§4.1 游戏公平吗
数学思想方法:分类与整合的思想
具体体现:根据概率的大小判断游戏是否公平§4.2 摸到红球的概率
数学思想方法:归纳总结
具体体现:根据课堂中做的游戏摸到红球概率体会概率的意义,会计算概率§4.3 停留在黑砖上的概率
数学思想方法:建模思想
具体体现:利用游戏直观体验概率模型---几何模型
第五章三角形
§5.1认识三角形
思想方法:建模思想、转化思想。
体现:以观察房子顶部框架中所包含的三角形出发,使学生经历从现实世界中抽象出何模型的过程。
通过撕、拼的方法得到三角形的内角和的结论,在这一过程中让学生体会了转化思想。
§5.2图形的全等
思想方法:从特殊到一般思想、类比思想
体现:从生活中的一些全等图形的例子归纳出这类图形的特点,体会从特殊到一般的数学思想。
与不全等的图形进行类比,归纳总结出全等图形的性质。
§5.3全等三角形
思想方法:类比和联想的思想方法。
类比全等图形的性质猜想全等三角形的性质,并通过合作探究验证猜想。
§5.4探索三角形全等的条件
思想方法:建模思想、分类讨论思想、总结归纳思想
要画一个三角形与小明画的三角形全等,需要几个与边或角的大小有关的条件呢?这一问题的引入给学生建立了数学模型,学生在对所有可能情况进行分类讨论的过程中,总结归纳出全等三角形的条件。
§5.5作三角形
思想方法:类比思想
本节课有三个尺规作图,第一个作图给出作法和示范,让学生进行类比作出另外两个图形。
§5.6利用三角形全等测距离
思想方法:建模思想
本节课的所有实际应用题都是通过建立数学模型得以解决。
§5.7探索直角三角形全等的条件
思想方法:建模思想
教科书中通过舞台背景中的实际问题引入本节课的内容,在解决这一实际问题时,需要建构数学模型。
第六章变量之间的关系
§6.1小车下滑的时间
思想方法:观察归纳总结
在探讨小车下滑时间与支撑物高度关系的活动,学生通过观察归纳总结变量之间的关系。
§6.2变化中的三角形
思想方法:建模思想
建立数学模型,学生在探索的过程中学会用关系式表示变量之间的关
系。
§6.3温度的变化
思想方法:数形结合思想
从图象中分析变量之间关系的过程,进一步体会变量之间的关系。
§6.4速度的变化
思想方法:数形结合
通过对图象所表示的变量之间的关系进行讨论,让学生用语言描述图象所表示的变化过程,发展从图象中获取信息的能力。
第七章生活中的轴对称
§7.1轴对称现象
思想方法:观察归纳
在丰富的现实情境中,经历观察生活中的轴对称现象,探索轴对称现象共同特征等活动,进一步发展空间观念。
§7.2简单的轴对称图形
思想方法:观察归纳总结
设计一个折纸活动,学生通过观察归纳总结出角平分线,垂直平分线,等腰三角形有关性质。
§7.3探索轴对称的性质
思想方法:建模思想
通过运用轴对称的性质解决实际问题的过程培养学生的建模思想。
§7.4利用轴对称设计图案
思想方法:类比、猜想的思想
类比给出的一部分图形猜想另一部分图形的形状,并通过动手实践完成猜想。
§7.5镜子改变了什么
思想方法:观察、猜想的思想
通过观察书中给出的引例,猜想镜子改变了什么,在动手实验验证结论。