浙江高考数学模拟试题定稿

合集下载

浙江省嘉兴市2024届高三第一次模拟测试数学试题含答案

浙江省嘉兴市2024届高三第一次模拟测试数学试题含答案

嘉兴市2024届高三第一模拟测试数学试卷(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.已知复数220231i i i z =++++ ,则z =()A.0B.1C.D.【答案】A 【解析】【分析】化简复数z ,继而求模即可.【详解】220231i i i z =++++ ()()23420172018201920202021202220231i+i i +i i i +i i +i i +i =+++⋅⋅⋅++++15050i 1i 0=+⨯+--=则0z =,故选:A .2.已知集合πsin ,044k A k k ⎧⎫=∈≤≤⎨⎬⎩⎭N 且,则集合A 的元素个数为()A.3 B.2C.4D.5【答案】A 【解析】【分析】将k 的所有可能取值逐个代入计算即可得出集合A ,即可得集合A 的元素个数.【详解】当0k =时,πsin sin004k ==,当1k =时,ππsinsin 442k ==,当2k =时,π2ππsin sin sin 1442k ===,当3k =时,π3πsin sin 442k ==,当4k =时,π4πsinsin sinπ044k ===,故0,,12A ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭,共三个元素.故选:A.3.已知向量()2,0a =,()0,3b = ,若实数λ满足()()b a a b λ-⊥+ ,则λ=()A.49B.94C.1- D.1【答案】A 【解析】【分析】先表示出,b a a b λ-+的坐标,然后根据垂直关系得到λ的方程,由此求解出结果.【详解】因为()()2,3,2,3b a a b λλ-=-+=,且()()b a a b λ-⊥+ ,所以22330λ-⨯+⨯=,所以49λ=,故选:A.4.已知1a x x=+,e e x x b -=+,sin c x x =,则下列结论错误的为()A.[1,1]x ∃∈-,a c >B.[1,1]x ∃∈-,b c >C.[1,1]x ∃∈-,a c <D.[1,1]x ∃∈-,b c<【答案】D 【解析】【分析】举例即可判断ABC ;再根据基本不等式及三角函数的性质即可判断D.【详解】对于A ,当π6x =时,π63626π64a =+>+=,13222c =+=,此时a c >,所以[1,1]x ∃∈-,a c >,故A 正确;对于B ,当0x =时,2b =,c =b c >,所以[1,1]x ∃∈-,b c >,故B 正确;对于C ,当π6x =-时,π606πa =--<,13122c =-+=,此时a c <,所以[1,1]x ∃∈-,a c <,故C 正确;对于D ,当[]1,1x ∈-时,2e e x x b -=≥=+,当且仅当e e x x-=,即0x =时取等号,πsin 2sin 3c x x x ⎛⎫=+=+ ⎪⎝⎭,由[]1,1x ∈-,得πππ1,1333x ⎡⎤+∈-++⎢⎥⎣⎦,而ππππ1π,012332<+<<-+<,所以当π3x +,即π6x =时,πsin 2sin 23c x x x ⎛⎫=+=+= ⎪⎝⎭,所以2≤c ,当且仅当π6x =时取等号,而π06≠,所以[1,1]x ∀∈-,b c >,故D 错误.故选:D.5.已知某物种t 年后的种群数量y 近似满足函数模型: 1.4e 0.1250ety k -=⋅(00k >,当0=t 时表示2023年初的种群数量).自2023年初起,经过n 年后(N)n ∈,当该物种的种群数量不足2023年初的10%时,n 的最小值为(参考数据:ln10 2.3026≈)()A.16B.17C.18D.19【答案】D 【解析】【分析】确定2023年初的种群数量为0=t 时的函数值,根据题意可列不等式 1.4e 0.125 1.4e 00e 10%e tk k -⋅<⋅⋅,结合对数运算即可求得答案.【详解】由题意可知2023年初的种群数量为0=t 时的函数值 1.4e0e k ⋅,故令 1.4e 0.125 1.4e 00e10%e ty k k -=⋅<⋅⋅,即0.1251e 10t -<,则0.125ln10t >,ln108ln108 2.302618.42080.125t ∴>=≈⨯=,由于*n ∈N ,故n 的最小值为19,故选:D6.已知数列{}n a 满足10a =,231a a ==,令()*12N n n n n b a a a n ++=++∈.若数列{}nb 是公比为2的等比数列,则2024a =()A.2024247- B.2024237+ C.2024247+ D.2024267+【答案】B 【解析】【分析】数列{}n b 是公比为2的等比数列,可得2nn b =,则有32nn n a a +-=,累加法结合等比数列求和公式,计算2024a .【详解】11230112b a a a =++=++=,数列{}n b 是公比为2的等比数列,则2nn b =,即()13123121222n n n n n n n n n n n n n a a a a a a a a b b ++++++++-=++-++=-=-=,()()()()2024202420212021201820182015522a a a a a a a a a a =-+-+-++-+ ()67423202420242021201820152212242322221111877⎡⎤--+⎢⎥⎣⎦=+++++=+=+=- .故选:B【点睛】关键点睛:本题关键点是利用数列{}n b 的通项得到32nn n a a +-=,用累加法即可计算2024a .7.正四面体的棱长为3,点M ,N 是它内切球球面上的两点,P 为正四面体表面上的动点,当线段MN 最长时,PM PN ⋅的最大值为()A.2B.94 C.3D.52【答案】C 【解析】【分析】设四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,根据题意求出内切球的半径,当MN 为内切球的直径时,MN 最长,再化简()()PM PN PO OM PO ON ⋅=+⋅+可求得其最大值.【详解】设正四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,则AO BO =.因为正四面体的棱长为3,所以223332BG BE ==⨯⨯=,所以AG ==r ,则()222AG r r BG -=+,)22rr =+,解得4r =,当MN 为内切球的直径时MN 最长,此时0+= OM ON,2348OM ON ⎛⋅=-=- ⎪⎝⎭ ,()()PM PN PO OM PO ON⋅=+⋅+ ()2238PO PO OM ON OM ON PO =+⋅++⋅=- ,因为P 为正四面体表面上的动点,所以当P 为正四体的顶点时,PO 最长,PO的最大值为44=,所以PM PN ⋅的最大值为23348⎛-= ⎝⎭.故选:C8.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆上不与左右顶点重合的任意一点,I ,G 分别为12PF F ∆的内心和重心,当IG x ⊥轴时,椭圆的离心率为A.13B.12C.2D.63【答案】A 【解析】【分析】结合图像,利用P 点坐标以及重心性质,得到G 点坐标,再由题目条件GI x ⊥轴,得到I 点横坐标,然后两次运用角平分线的相关性质得到MN ME的比值,再结合MIN ∆与MPE ∆相似,即可求得I 点纵坐标,也就是内切圆半径,再利用等面积法建立关于,,a b c 的关系式,从而求得椭圆离心率.【详解】如图,令P 点在第一象限(由椭圆对称性,其他位置同理),连接PO ,显然G 点在PO 上,连接PI 并延长交x 轴于点M ,连接G I 并延长交x 轴于点N ,GI x ⊥轴,过点P 作PE 垂直于x 轴于点E,设点00(,)P x y ,12(,0),(,0)F c F c -,则00,OE x PE y ==,因为G 为12PF F ∆的重心,所以00(,)33x y G ,因为IG x ⊥轴,所以I 点横坐标也为03x ,03xON =,因为PM 为12F PF ∠的角平分线,则有01212122()()23x PF PF F N NF F O ON OF ON ON -=-=+--==,又因为12+2PF PF a =,所以可得0012,33x xPF a PF a =+=-,又由角平分线的性质可得,011223=3x a F M PF x F M PF a +=-,而12=F M c OM F M c OM +-所以得03cxOM a=,所以0()3a c x MN ON OM a -=-=,0(3)3a c x ME OE OM a-=-=,所以3IN MN a c PEMEa c -==-,即0()3a c y IN a c-=-,因为1212121211()22PF F S PF PF F F IN F F PE ∆=++=即00()11(22)(2)232a c y a c c y a c -+=-,解得13c a =,所以答案为A.【点睛】本题主要考查离心率求解,关键是利用等面积法建立关于,,a b c 的关系式,同时也考查了重心坐标公式,以及内心的性质应用,属于难题.椭圆离心率求解方法主要有:(1)根据题目条件求出,a c ,利用离心率公式直接求解.(2)建立,,a b c 的齐次等式,转化为关于e 的方程求解,同时注意数形结合.二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.正切函数是周期函数,最小正周期为πB.正切函数的图象是不连续的C.直线()ππZ 2x k k =+∈是正切曲线的渐近线D.把ππtan ,,)2(2y x x =∈-的图象向左、右平行移动πk 个单位,就得到tan y x =π(R,π)2x x k ∈≠+的图象【答案】ABC 【解析】【分析】根据正切函数的性质,以及它的的图象的特点,即可判断A ,B 。

浙江省杭州市(新版)2024高考数学统编版模拟(培优卷)完整试卷

浙江省杭州市(新版)2024高考数学统编版模拟(培优卷)完整试卷

浙江省杭州市(新版)2024高考数学统编版模拟(培优卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知某圆锥的侧面展开图为半圆,该圆锥的体积为,则该圆锥的表面积为()A.27πB.C.D.16π第(2)题贵州六马盛产“蜂糖李”,其以果大味甜闻名当地.网红“李子哥”以“绿水青山就是金山银山”理念为引导,大力推进绿色发展,现需订购一批苗木,苗木长度与售价如下表.由表可知苗木长度与售价元之间存在线性相关关系,回归方程为.当苗木长度为时,估计价格为()元.102030405060元2610141618A.36.5B.35C.37D.35.5第(3)题已知函数(其中)在区间上恰有4个零点,则的取值范围为()A.B.C.D.第(4)题已知抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,线段的上一点满足,在上的投影为,则的最大值是()A.B.C.1D.2第(5)题若全集,集合或,集合,则()A.B.C.D.第(6)题已知正方体的外接球的球心为,则()A.B.C.D.第(7)题设、、满足,,,则()A.,B.,C.,D.,第(8)题已知中,角A,B,C所对的边分别为a,b,c,,且,,则的面积为()A.3B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,则下列关系中正确的是()A.B.C.D.第(2)题在中,角A,B,C的对边分别为a,b,c,且,,则以下四个命题中正确的是()A.B.面积的取值范围为C.已知M是边BC的中点,则的取值范围为D.当时,的周长为第(3)题已知函数及其导函数的定义域均为,且是奇函数,.若在区间上单调递增,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知平面向量,若,则______________.第(2)题已知集合,集合,则_____.第(3)题某地建立了农业科技图书馆,供农民免费借阅,收集了近5年的借阅数据如下表:年份20192020202120222023年份代码12345年借阅量万册 4.9 5.1 5.5 5.7 5.8根据上表,可得关于的线性回归方程为.则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知向量,,,设函数.(1)求函数的解析式及单调递增区间;(2)设,,别为内角,,的对边,若,,的面积为,求的值.第(2)题平面直角坐标系中,曲线C的参数方程为,(为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,射线l的极坐标方程为,将射线l绕点逆时针旋转后,得到射线,若射线l,分别与曲线C相交于点A,点B.(1)求曲线C的极坐标方程;(2)求的最小值.第(3)题今年年初,中共中央、国务院发布《关于开展扫黑除恶专项斗争的通知》,在全国范围部署开展扫黑除恶专项斗争.那么这次的“扫黑除恶”专项斗争与2000年、2006年两次在全国范围内持续开展了十多年的“打黑除恶”专项斗争是否相同呢?某高校一个社团在年后开学后随机调查了位该校在读大学生,就“扫黑除恶”与“打黑除恶”是否相同进行了一次调查,得到具体数据如表:不相同相同合计男女合计(1)根据如上的列联表,能否在犯错误的概率不超过的前提下,认为“扫黑除恶”与“打黑除恶”是否相同与性别有关"?(2)计算这位大学生认为“扫黑除恶”与“打黑除恶”不相同的频率,并据此估算该校名在读大学生中认为“扫黑除恶”与“打黑除恶”不相同的人数;(3)为了解该校大学生对“扫黑除恶”与“打黑除恶”不同之处的知道情况,该校学生会组织部选取位男生和位女生逐个进行采访,最后再随机选取次采访记录放到该大学的官方网站上,求最后被选取的次采访对象中至少有一位男生的概率.参考公式:.附表:第(4)题如图所示,四棱锥中,底面,,为的中点,底面四边形满足,,.(1)证明:平面;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.第(5)题杭州2022年亚运会将于2023年9月23日至10月8日在我国杭州举办.为迎接这一体育盛会,浙江某大学组织大学生举办了一次主题为“喜迎杭州亚运,当好东道主”的亚运知识竞赛,并从所有参赛大学生中随机抽取了200人,统计他们的竞赛成绩m(满分100分,已知每名参赛大学生至少得60分),制成了如下所示的频数分布表:成绩/分[60,70)[70,80)[80,90)[90,100]人数60705020(1)规定成绩不低于85分为“优秀”,成绩低于85分为“非优秀”,这200名参赛大学生的成绩的情况统计如下表:分类优秀非优秀总计男生3070100女生2080100判断是否有95%的把握认为竞赛成绩优秀与性别有关;(2)经统计,用于学习亚运知识的时间(单位:时)与成绩(单位:分)之间的关系近似为线性相关关系,对部分参赛大学生用于学习亚运知识时间x与知识竞赛成绩y进行数据收集,如下表:x/时89111215y/分6763808085求变量y关于x的线性回归方程;(3)A市某企业赞助了这次知识竞赛,给予每位参赛大学生一定的奖励,奖励方案有以下两种:方案一:按竞赛成绩m进行分类奖励,当时,奖励100元;当时,奖励200元;当时,奖励300元.方案二:利用抽奖的方式获得奖金,其中竞赛成绩低于样本中位数的只有1次抽奖机会,竞赛成绩不低于样本中位数的则有2次抽奖机会,其中每次抽奖抽中100元现金红包的概率均为,抽中200元现金红包的概率均为,且两次抽奖结果相互独立.若每名参赛大学生只能选择一种奖励方案,试用样本的频率估计总体的概率,从数学期望的角度分析,每名参赛大学生选择哪种奖励方案更有利.附:(其中;0.100.050.0250.0100.0050.0012.7063.841 5.024 6.6357.87910.828线性回归方程中,,;第(2)问中,,,,.。

【高三上数学】浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)

【高三上数学】浙江省宁波市2024届高三上学期高考模拟考试数学试题(解析版)

浙江省宁波市2024届高三上学期高考模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知12i,1i z a z b =−=+(,R a b ∈,i 为虚数单位),若12z z ⋅是实数,则( ) A .10ab −= B .10ab += C .0a b −= D .0a b +=【答案】A 【分析】根据复数乘法及复数的虚部为0计算即可.【详解】因为12(i)(1i)=()(1)i z z a b a b ab =−++−⋅+是实数, 所以10ab −=, 故选:A2.设集合R U =,集合()22{|20},{|log 1}M x x x N x y x =−≥==−,则{|2}x x <=( )A .M N ⋃B .()UN MC .U ()M ND .()UMN【答案】B【分析】化简集合,M N ,根据集合的交集、并集、补集求解.【详解】因为()22{|20}(,0][2,),{|log 1}(,1)M x x x N x y x =−≥=−∞+∞==−=−∞,所以(,1)[2,)M N ⋃=−∞+∞,()U(,1)(0,2)(,2){|2}Nx x M −∞==−∞=<,U 1(,0)][2,)(()[,)[]10,,MN −∞+∞=+∞=+∞∞−,因为(,0]M N =−∞,所以()U(0,)M N =+∞,故选:B3.若,a b 是夹角为60︒的两个单位向量,a b λ+与32a b −+垂直,则λ=( ) A .18B .14C .78D .74【答案】B【分析】由题意先分别算出22,,a b a b ⋅的值,然后将a b λ+与32a b −+垂直”等价转换为)()032a b a b λ−⋅=++,从而即可求解.【详解】由题意有22221,1,cos 60a a b b a b a b ︒====⋅=⋅=又因为a b λ+与32a b −+垂直,所以()()()22132323322a ab a a b b b λλλλ+⋅=−+−⋅+=−+⨯−+1202λ−+=,解得14λ=.B.4.已知数列{}n a 为等比数列,且55a =,则( ) A .19a a +的最小值为50 B .19a a +的最大值为50 C .19a a +的最小值为10 D .19a a +的最大值为105.已知函数32221()2log ,()log ,()log 2xxf x xg x xh x x x ⎛⎫=+=−=+ ⎪⎝⎭的零点分别为,,a b c ,则( ) A .a b c >> B .b a c >> C .c a b >>D .b c a >>由图象可知,a c <,所以a 故选:D6.设O 为坐标原点,12,F F 为椭圆22:142x y C +=的焦点,点P 在C 上,OP =,则12cos F PF ∠=( )A .13−B .0C .13D .3122PF PF PO +=,即可得【详解】如下图所示:不妨设12,PF m PF n ==,根据椭圆定义可得由余弦定理可知1cos 2F PF mn ∠又因为122PF PF PO +=,所以()()22122PF PF PO +=,又22122cos 1m n mn F PF ∠+=+,解得2210m n +=;()22216210n m n mn mn =+−=−=,即3mn =; 所以可得21281081cos 263m n F PF mn ∠+−===;7.已知二面角P AB C −−的大小为3π4,球O 与直线AB 相切,且平面PAB 、平面ABC 截球O 的两个截面圆的半径分别为1O 半径的最大可能值为( )AB .C .3 D的最大值即为MNE 外接圆的OMOE O =,同理可知,AB ⊥平面为MNE外接圆的一条弦,半径OE的最大值即为MNE外接圆的直径,即为π=时,4为MNE外接圆的一条弦,的最大值即为MNE 外接圆的直径,即为的半径的最大可能值为108.已知函数()2f x x ax b =++,若不等式()2f x ≤在[]1,5x ∈上恒成立,则满足要求的有序数对(,)a b 有( ) A .0个 B .1个 C .2个 D .无数个【点睛】关键点点睛:解题的关键是首先得到()()()212232252f f f ⎧−≤≤⎪−≤≤⎨⎪−≤≤⎩,进一步由不等式的性质通过分析即可求解.二、多选题9.已知5250125(12)x a a x a x a x −=++++,则下列说法正确的是( )A .01a =B .380a =−C .123451a a a a a ++++=−D .024121a a a ++=【答案】ABD【分析】根据二项展开式通式以及赋值法即可得到答案. 【详解】对于 A , 取 0x =, 则 01a = ,则A 正确;对B ,根据二项式展开通式得5(12)x −的展开式通项为()55C 12r r rx −−,即()5C 2rr r x ⋅−⋅,其中05,N r r ≤≤∈所以3335C (2)80a =−=−,故B 正确;对C ,取1x =,则0123451a a a a a a +++++=−, 则12345012a a a a a a ++++=−−=−,故C 错误;对D ,取=1x −,则50123453243a a a a a a −+−+−==,将其与0123451a a a a a a +++++=−作和得()0242242a a a ++=, 所以024121a a a ++=,故D 正确; 故选:ABD.10.设O 为坐标原点,直线20x my m +−−=过圆22:860M x y x y +−+=的圆心且交圆于,P Q 两点,则( )A .5PQ =B .12m =C .OPQ △的面积为D .OM PQ ⊥【答案】BCOPQS=)0,0与由直线方程11.函数()sin (0)f x x ωω=>在区间22⎡⎤−⎢⎥⎣⎦,上为单调函数,且图象关于直线2π3x =对称,则( )A .将函数()f x 的图象向右平移2π3个单位长度,所得图象关于y 轴对称 B .函数()f x 在[]π2π,上单调递减 C .若函数()f x 在区间14π(,)9a 上没有最小值,则实数a 的取值范围是2π14π(,)99− D .若函数()f x 在区间14π(,)9a 上有且仅有2个零点,则实数a 的取值范围是4π(,0)3−【答案】AB 【分析】12.已知函数:R R →,对任意满足0x y z ++=的实数,,x y z ,均有()()()3333f x f y f z xyz ++=,则( )A .(0)0f =B .(2023)2024f =C .()f x 是奇函数D .()f x 是周期函数三、填空题13.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边过点()1,3P ,则()sin πα+= .14.已知圆台的上、下底面半径分别为1和2,体积为14π3,则该圆台的侧面积为 .15.第33届奥运会将于2024年7月26日至8月11日在法国巴黎举行.某田径运动员准备参加100米、200米两项比赛,根据以往赛事分析,该运动员100米比赛未能站上领奖台的概率为12,200米比赛未能站上领奖台的概率为310,两项比赛都未能站上领奖台的概率为110,若该运动员在100米比赛中站上领奖台,则他在200米比赛中也站上领奖台的概率是 . )()()()710A B P A P B P A B =+−=,进而求)()3110A B P A B =−=,再利用条件概率公式求出答案【详解】设在200米比赛中站上领奖台为事件)310=,()12P B =,()110P A B =,)()()()31171021010A B P A P B P A B =+−=+−=)()3110A B P A B =−=, )()()3310152P AB B P B ===. 故答案为:3516.已知抛物线Γ:22y x =与直线:4l y x =−+围成的封闭区域中有矩形ABCD ,点A ,B 在抛物线上,点C ,D 在直线l 上,则矩形对角线BD 长度的最大值是 .【点睛】关键点点睛:本题的关键是合理设参,并通过数形结合求出参数的范围也是很重要的,至于求出目标函数表达式只需仔细计算即可.四、解答题17.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知12cos cA b =+.(1)证明:2A B =; (2)若3sin 5B =,13c =,求ABC 的面积. 的值,再利用三角形的面积公式可求得ABC 的面积sin A B =,, ABCS=18.已知数列{}n a 满足11a =,且对任意正整数m ,n 都有2.m n n m a a a mn +=++(1)求数列{}n a 的通项公式; (2)求数列{(1)}n n a −的前n 项和n S .()(112135212n n n n a a n −+−++−=++++−=,符合上式,所以2n a n =.)()2222221234(1)n n ⎡⎤−++−+++−−+⎣⎦(()()321121n n n n +−+++−=, 为奇数时,若n =,则21n n n n S S n −−=+−=时,满足1S 19.如图,已知正方体1111ABCD A B C D −的棱长为4,点E 满足3DE EA =,点F 是1CC 的中点,点G 满足135DG GD =(1)求证:,,,B E G F 四点共面;(2)求平面EFG 与平面1A EF 夹角的余弦值.,即可得出结论;,证明//EG BF 即可;,AH FH ,因为F 由3DE EA =知DE EA ,由135DG GD =知DG GH =所以DE DGEA GH=,所以/AH , 所以EG //BF ,所以,G F 四点共面;法2:如图,以D 为原点,建立空间直角坐标系⎭因为()4,0,2,3,0,BF EG ⎛=−=− ⎝,所以34EG BF =,所以//EG BF ,,,,B E G F 四点共面;)由(1)知,()()()11,4,0,1,0,4,3,4,2BE A E EF =−−=−−=−, 设平面EFG 的法向量为(),,m x y z =,m BE m BF ⎧⋅=⎪⎨⋅=⎪⎩,即40420x y x z −−=⎧⎨−+=⎩,可取()4,1,8m =−,平面1A EF 的法向量(),,n a b c =,则有1403420n A E a c n EF a b c ⎧⋅=−−=⎪⎨⋅=−+=⎪⎩,可取()8,7,2n =−设平面EFG 与平面1A EF 夹角为993m n m nθ⋅==⨯EFG 与平面 20.已知函数()()2e 4e 2x xf x a a x =+−−(e 为自然对数的底数,e 2.71828=).(1)讨论()f x 的单调性;(2)证明:当1a >时,()7ln 4.f x a a >−− 【答案】(1)答案见解析 (2)证明见解析21.某中学在运动会期间,随机抽取了200名学生参加绳子打结计时的趣味性比赛,并对学生性别与绳子打结速度快慢的相关性进行分析,得到数据如下表:(1)根据以上数据,能否有99%的把握认为学生性别与绳子打结速度快慢有关?(2)现有n ()*N n ∈根绳子,共有2n 个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.(i )当3n =,记随机变量X 为绳子围成的圈的个数,求X 的分布列与数学期望; (ii )求证:这n 根绳子恰好能围成一个圈的概率为()()212!1!.2!n n n n −⋅−附:()()()()22(),.n ad bc K n a b c d a b c d a c b d −==+++++++)(2422212C 2n n ⋅==))21!2!!n n −=本题第二小问第二步的解决关键是利用分步计数原理得到数列的递推式,从而利用数列的累乘法求得结果点(),0()t t a >的直线l 与双曲线C 的右支交于P ,Q 两点,M 为线段PQ 上与端点不重合的任意一点,过点M 且与1l 平行的直线分别交另一条渐近线2l 和C 于点,T N (1)求C 的方程; (2)求MP MQ OT MN的取值范围.试卷第21页,共21页。

浙江省杭州市(新版)2024高考数学统编版摸底(预测卷)完整试卷

浙江省杭州市(新版)2024高考数学统编版摸底(预测卷)完整试卷

浙江省杭州市(新版)2024高考数学统编版摸底(预测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知直线l:与x轴和y轴分别交于两点,点P在以点A为圆心,2为半径的圆上,当最大时,的面积为()A.2B.C.4D.第(2)题一个不透明的袋中装有2个红球,2个黑球,1个白球,这些球除颜色外,其他完全相同,现从袋中一次性随机抽取3个球,则“这3个球的颜色各不相同”的概率为()A.B.C.D.第(3)题有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是()A.4B.5C.6D.7第(4)题为棱长为2的正方体,点分别为,的中点,给出以下命题:①直线与是异面直线;②点到面距离为;③若点三点确定的平面与交于点,则,正确命题有()A.0个B.1个C.2个D.3个第(5)题满足条件的复数在复平面上对应点的轨迹是()A.一条直线B.两条直线C.圆D.椭圆第(6)题一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.第(7)题已知圆,点,若圆M上存在两点B,C,使得是等边三角形,则实数的取值范围是()A.B.C.D.第(8)题已知集合,集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则下列结论正确的是()A.的最小正周期为B.的值域为C.的图象是轴对称图形D.的图象是中心对称图形第(2)题若是函数(为自然对数的底数)图象上的任意两点,且函数在点和点处的切线互相垂直,则下列结论中正确的是()A.B.最小值为1C.的最小值为D.的最大值为第(3)题已知函数,则()A.的最小正周期为B .为图象的一条对称轴C.的最小值为1D .在上单调递增三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知幂函数满足,则______.第(2)题已知,,,则的最小值为________.第(3)题已知定义在上的偶函数满足,则的一个解析式为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知抛物线:()上一点的纵坐标为3,点到焦点距离为5.(1)求抛物线的方程;(2)过点作直线交于,两点,过点,分别作的切线与,与相交于点,过点作直线垂直于,过点作直线垂直于,与相交于点,、、、分别与轴交于点、、、.记、、、的面积分别为、、、.若,求直线的方程.第(2)题设抛物线,直线是抛物线C的准线,且与x轴交于点B,过点B的直线l与抛物线C交于不同的两点M,N,是不在直线l上的一点,直线,分别与准线交于P,Q两点.(1)求抛物线C的方程;(2)证明::(3)记,的面积分别为,,若,求直线l的方程.第(3)题记锐角内角的对边分别为.已知.(1)求;(2)若,求的取值范围.第(4)题已知椭圆E:的左、右焦点分别为,,左顶点为A,,P是椭圆E上一点(异于顶点),O是坐标原点,Q在线段上,且∥,.(1)求椭圆E的标准方程;(2)若直线l与x轴交于点C、与椭圆E交于点M,N,B与N关于x轴对称,直线MB与x轴交于点D,证明:为定值.第(5)题如图,已知抛物线焦点为,过上一点作切线,交轴于点,过点作直线交于点.(1)证明:;(2)设直线,的斜率为,的面积为,若,求的最小值.。

浙江省高考模拟试卷数学(有答案)

浙江省高考模拟试卷数学(有答案)

绝密★考试结束前高考模拟试卷数学卷考生须知:1. 本卷满分150分,考试时间120分钟;2. 答题前务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的地方。

3. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范答题,在本试卷纸上答题一律无效。

4. 考试结束后,只需上交答题卷。

参考公式:如果事件,A B 互斥,那么柱体的体积公式 ()()()P A B P A P B +=+V Sh =如果事件,A B 相互独立,那么其中S 表示柱体的底面积,h 表示柱体的高 ()()()P AB P A P B =锥体的体积公式 如果事件A 在一次试验中发生的概率为p ,那么n 13V Sh =次独立重复试验中事件A 恰好发生k 次的概率为其中S 表示锥体的底面积,h 表示锥体的高()()10,1,2),,(k k n k n n P k C p p k n -==⋯-球的表面积公式台体的体积公式24S R =π11221()3V S S S S h =++球的体积公式其中12,S S 分别表示台体的上、下底面积,343VR =πh 表示为台体的高其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)已知U=R ,集合⎭⎬⎫⎩⎨⎧<=23|x x A ,集合{}1|>=y y B ,则A.⎪⎭⎫⎢⎣⎡+∞,23B.(]⎪⎭⎫⎢⎣⎡+∞⋃∞-,231,C.⎪⎭⎫ ⎝⎛23,1D.⎪⎭⎫ ⎝⎛∞-23, (命题意图:考查集合的含义及运算,属容易题) 2.(原创)已知i 是虚数单位,若iiz 213-+=,则z 的共轭复数z 等于 A.371i - B.371i + C.571i - D.571i +(命题意图:共轭复数的概念,属容易题)3.(原创)若双曲线122=-y mx 的焦距为4,则其渐近线方程为 A. x y 33±= B. x y 3±= C. x y 55±= D.x y 5±= (命题意图:考查双曲线性质,属容易题)4.(原创)已知α,β是两个相交平面,其中α⊂l ,则 A.β内一定能找到与l 平行的直线 B.β内一定能找到与l 垂直的直线C.若β内有一条直线与l 平行,则该直线与α平行D.若β内有无数条直线与l 垂直,则β与α垂直(命题意图:直线与平面间垂直、平行的概念,属容易题)5.(原创)等差数列}{n a 的公差为d ,01≠a ,n S 为数列}{n a 的前n 项和,则“0=d ”是“∈nnS S 2Z ”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 (命题意图:充分必要条件的判定,属容易题) 6.(原创)随机变量的分布列如下:其中a ,b ,c 成等差数列,若()9=ζE ,则()ζD = A.811 B.92 C. 98 D.8180 (命题意图:考查离散型随机变量的分布、数学期望和方差,属中档题) 7.(原创)若存在正实数y ,使得yx x y xy 451+=-,则实数x 的最大值为 A.51 B. 45C. 1D. 4 (命题意图:考查不等式和函数性质,属中档题)8.(原创)从集合{}F E D C B A ,,,,,和{}9,8,7,6,5,4,3,2,1中各任取2个元素排成一排(字母和数字均不能重复)。

浙江数学高考模拟试卷附答案

浙江数学高考模拟试卷附答案

浙江数学⾼考模拟试卷附答案浙江数学⾼考模拟考试数学试题卷姓名________________ 准考证号________________本试题卷共3⼤题,共X页。

满分0分,考试时间X分钟。

注意事项:1.答题前,考⽣务必将⾃⼰的姓名、准考证号⽤⿊⾊字迹的签字笔填写在答题卡和试卷上。

2.选择题每⼩题选出答案后,⽤2B铅笔把答题卡上对应题⽬的答案标号涂⿊。

如需改动,⽤橡⽪擦⼲净后,再选涂其他答案标号。

⾮选择题⽤0.5毫⽶⿊⾊字迹的签字笔将答案写在答题卡规定位置上。

3.所有试题均需在答题卡上作答,在试卷和草稿纸上作答⽆效。

4.考试结束后,将试卷和答题卡⼀并交回。

⼀、单项选择题(本⼤题共18⼩题,每⼩题0分,共0分)在每⼩题列出的四个备选答案中,只有⼀个是符合题⽬要求的。

错选、多选或未选均⽆分。

1.不等式x+6-x2≥0的解集是()A.[-6,1]B.[-2,3]C.[2,3]D.[-6,3]2.数列0.25,0.25,0.5,2,16,…的第6项为()A.32B.64C.128D.2563.已知3sin5α=,且π,π2α??∈ ?,则tanα等于()A.34± B.43±C.34- D.43-4.4名同学报名参加2项不同的竞赛,每项均选⼀⼈,不同的选择种数为()A.24种B.42种C.24A种 D.种5.{5的正因数}的真⼦集个数有()A.1个B.2个C.3个D.4个6.已知a,b是两条不同的直线,α,β是两个不同的平⾯,且a⊥α,b⊥β,则下列命题中不正确的是()A.若a∥b,则α∥βB .若α⊥β,则a ⊥bC .若a 与b 相交,则α与β相交D .若α与β相交,则a 与b 相交7.函数y =x 2-2x -34-x 2的定义域为()A .{x |-1≤x ≤3且x ≠2}B .{x |-3≤x ≤1且x ≠2}C .{x |x ≥3或x ≤-1且x ≠-2}D .{x |x ≥1或x ≤-3且x ≠-2}8.“将⼀枚硬币先后抛两次,⾄少出现⼀次正⾯”的概率是()A .1B .12C .34D .149.⼀元⼆次函数f (x )=ax 2+bx +c 满⾜a >0,b 2-4ac <0,则ax 2+bx +c <0解集为()A .RB .R +C .R -D .?10.过平⾯β外⼀点P ,且平⾏于平⾯β的直线()A .只有⼀条,且⼀定在平⾯β内B .只有⼀条,但不⼀定在平⾯β内C .有⽆数条,但都不在平⾯β内D .有⽆数条,都在平⾯β内11.如图所⽰,阴影部分可表⽰为()A .?UB ∩A B .?U A ∩BC .?U A ∩?U BD .?U A ∪?U B12.+1x)10的展开式中含x 的正整数指数幂的项数为()A .0B .2C .4D .613.已知sin (π2+α)=14,则cos2α=()A .±78B .-78C .78D .15814.满⾜条件{0,1}∩P =的集合P 共有________. ()A .0个B .1个C .2个D .⽆数个15.________. () A.B .3C .1 D.416.两列⽕车从同⼀站台沿相反⽅向出发,⾛了相同的路程,已知两列⽕车的位移向量分别为a 、b ,则下列说法错误的是________. () A .两向量为平⾏向量 B .两向量的模相等 C .两向量为共线向量D .两向量为相等向量17.苹果的进价是每千克2元,销售中估计有5%的损耗,商家⾄少要把每千克苹果的价格定为x 元才能不亏本,则可列不等式为________. ()A .5%x ≥2B .(1-5%)x ≥2C .5%x ≤2D .(1-5%)x ≤218.函数y =log 2x 和y =12log x 在同⼀坐标系中图象之间的关系是________.()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x 对称⼆、填空题(本⼤题共8⼩题,每⼩题0分,共0分)19.将log 0.27,log 27,2-0.2按从⼩到⼤的顺序排列:____________. 20.已知f (2x )=log 2(3x -4),则f (8)= .21.以椭圆4x 2+y 2=1的短轴顶点和焦点为顶点的四边形的⾯积为 . 22.已知等轴双曲线过点(4,3),则其标准⽅程为 . 23.若tan (π-α)=2,则sin α-2cos α3sin α+2cos α= .24.= . 25.若a >1,当41a a +-取得最⼩值时,a 的值为________,最⼩值为________. 26.化简:2sin (-1110°)-cos240°(-120°)=________.三、解答题(本⼤题共7⼩题,共0分。

浙江省杭州市(新版)2024高考数学人教版模拟(提分卷)完整试卷

浙江省杭州市(新版)2024高考数学人教版模拟(提分卷)完整试卷

浙江省杭州市(新版)2024高考数学人教版模拟(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知向量,,若,则().A.B.C.2D.4第(2)题已知四棱锥的侧面都是边长为4的等边三角形,且各表面均与球相切,则球的半径为()A.B.C.D.第(3)题直角中,是斜边上的一动点,沿将翻折到,使二面角为直二面角,当线段的长度最小时,四面体的外接球的表面积为()A.B.C.D.第(4)题已知函数,,若时,成立,则实数a的最大值是()A.1B.C.D.第(5)题已知函数在区间上有且仅有4条对称轴,给出下列四个结论:①在区间上有且仅有3个不同的零点;②的最小正周期可能是;③的取值范围是;④在区间上单调递增.其中所有正确结论的序号是()A.①④B.②③C.②④D.②③④第(6)题设为等比数列的前项和,已知,则公比()A.2B.-2C.D.第(7)题函数的定义域为,若满足:(1)在内是单调函数;(2)存在,使得在上的值域为,那么就称函数为“梦想函数”.若函数是“梦想函数”,则的取值范围是A.B.C.D.第(8)题已知,若,则实数的取值范围为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题我国古代著名的数学专著《九章算术》里有一段叙述:“今有良马和驽马发长安至齐,良马初日行一百九十三里,日增十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,九日后二马相逢.”其大意为今有良马和驽马从长安出发到齐国,良马第一天走193里,以后每天比前一天多走13里;驽马第一天走97里,以后每天比前一天少走里.良马先到齐国,再返回迎接驽马,9天后两马相遇.下列结论正确的是()A.长安与齐国两地相距1530里B.3天后,两马之间的距离为里C.良马从第6天开始返回迎接驽马D.8天后,两马之间的距离为里第(2)题给定函数.下列说法正确的有()A.函数在区间上单调递减,在区间上单调递增B.函数的图象与x轴有两个交点C .当时,方程有两个不同的的解D.若方程只有一个解,则第(3)题如图,正方体ABCD−A1B1C1D1的棱长为2,E,F,G分别为BC,CC1,BB1的中点.则下列结论正确的是()A.直线DB1与平面AEF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体所得的截面面积为D.三棱锥A1−AEF的体积等于三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题某篮球运动员罚篮命中率为0.75,在一次罚篮训练中连续投篮50次,X表示投进的次数,则______.第(2)题设展开式中各项系数和为的系数为,则___________;___________.第(3)题正方体的全面积为,它的顶点都在球面上,则这个球的表面积是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题某区在高中阶段举行的物理实验技能操作竞赛分基本操作与技能操作两步进行,第一步基本操作:每位参赛选手从类7道题中任选4题进行操作,操作完后正确操作超过两题的(否则终止比赛),才能进行第二步技能操作:从类5道题中任选3题进行操作,直至操作完为止.类题操作正确得10分,类题操作正确得20分.以两步总分和决定优胜者.总分80分或90分为二等奖,100分为一等奖.某校选手李明类7题中有5题会操作,类5题中每题正确操作的概率均为,且各题操作互不影响.(1)求李明被终止比赛的概率;(2)现已知李明类题全部操作正确,求李明类题操作完后得分的分布列及期望;(3)求李明获二等奖的概率.第(2)题已知函数(1)当时,讨论的单调性;(2)若恒成立,求a的取值范围.第(3)题某工厂有甲、乙两个生产小组,每个小组各有四名工人,某天该厂每位工人的生产情况如下表.员工号1234甲组件数9111l9员工号1234乙组件数98109(1)用茎叶图表示两组的生产情况;(2)求乙组员工生产件数的平均数和方差;(3)分别从甲、乙两组中随机选取一名员工的生产件数,求这两名员工的生产总件数为19的概率.(注:方差,其中为x1,x2,,x n的平均数)第(4)题为了解中草药甲对某疾病的预防效果,研究人员随机调查了100名人员,调查数据如表.(单位:个)未患病者患病者合计未服用中草药甲服用中草药甲合计(1)若规定显著性水平,试分析中草药甲对预防此疾病是否有效;(2)已知中草药乙对该疾病的治疗有效率数据如下:对未服用过中草药甲的患者治疗有效率为,对服用过中草药甲的患者治疗有效率为.若用频率估计概率,现从患此疾病的人员中随机选取2人(分两次选取,每次1人,两次选取的结果独立)使用中草药乙进行治疗,记治疗有效的人数为,求的分布和数学期望.附:,.0.1000.0500.0100.0012.7063.8416.63510.828第(5)题如图,是抛物线:上横坐标大于零的一点,直线过点并与抛物线在点处的切线垂直,直线与抛物线相交于另一点.(1)当点的横坐标为2时,求直线的方程;(2)若,求过点的圆的方程.。

浙江省各地2025届高考冲刺数学模拟试题含解析

浙江省各地2025届高考冲刺数学模拟试题含解析

浙江省各地2025届高考冲刺数学模拟试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知数列{}n a 满足:12125 1,6n n n a a a a n -≤⎧=⎨-⎩()*n N ∈)若正整数()5k k ≥使得2221212k k a a a a a a ++⋯+=⋯成立,则k =( ) A .16B .17C .18D .192.圆心为()2,1且和x 轴相切的圆的方程是( ) A .()()22211x y -+-= B .()()22211x y +++= C .()()22215x y -+-=D .()()22215x y +++=3.某程序框图如图所示,若输出的120S =,则判断框内为( )A .7?k >B .6?k >C .5?k >D .4?k >4.费马素数是法国大数学家费马命名的,形如()221nn N +∈的素数(如:02213+=)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是( ) A .215B .15C .415D .135.在平面直角坐标系xOy 中,将点()1,2A 绕原点O 逆时针旋转90︒到点B ,设直线OB 与x 轴正半轴所成的最小正角为α,则cos α等于( ) A .25B .5-C 5D .25-6.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式1()3V S S S S h =+下下上上•). A .2寸B .3寸C .4寸D .5寸7.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( ) A .12种B .18种C .24种D .64种8.设{|210}S x x =+>,{|350}T x x =-<,则S T ( )A .∅B .1{|}2x x <-C .5{|}3x x >D .15{|}23x x -<< 9.设函数()(1)x g x e e x a =+--(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( )A .,2e⎛⎫+∞⎪ ⎪⎝⎭B .(,)e +∞C .[,)e +∞D .,2e⎡⎫+∞⎪⎢⎪⎣⎭10.已知正四面体ABCD 的棱长为1,O 是该正四面体外接球球心,且AO x AB y AC z AD =++,,,x y z ∈R ,则x y z ++=( )A .34B .13 C .12D .1411.已知实数,x y 满足,10,1,x y x y y ≥⎧⎪+-≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .2B .32C .1D .012.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. 4

5. 已知实数a、b、c、d满足2020a log2020 c 2019, 2019b log2019 d 2020,.则下列说法正确的是
A. a 1 b
B. c 1 d
C.a2 b2 2
D.ca d
x 3
6.实数
x,
y
满足
x
2
6
,
5 6
.在钝角
ABC 中, A, B,C 对应的边分别为 a,b, c ,满足 a 1, c<b .
(Ⅰ)求 f x 的周期和初相;
(Ⅱ)求 c 的取值范围,使得 a,b, c 能按一定顺序构成等差数列,并求出此时 f A 的值域.
19. (本题满分15分)称一个四面体为好四面体,当它每个面都是等腰三角形.对于好四面体ABCD: (Ⅰ)对 AB=AC≠AD,证明:AD⊥BC; (Ⅱ)若 BD=AC=BC=2AD=2,M 为 BC 中点,P 为△ABD(含边界) 内一点,求 AM 与平面 PCD 所成线面角的正弦值的最大值.
(i) 是否存在a99
,使得对任意正整数k 99,均有 Sk 1 1 .请说明理由. k 2 2e
(ii)证明:1 S1 S2 992
S99 1 + 1 . 8 4e
个不同实根; f x 3x2 ax b 0 至多有
个不同实根(其中 x 表示不超过 x 的最大整数).
三、解答题:本大题共 5 小题,共 74 分。解答应写出文字说明、证明过程或演算步骤。
18. ( 本 题 满 分 14 分 ) f x sinx cosx 的 振 幅 为 1 , 且 在 , 上 的 单 调 递 增 区 间 是
P 1 1 p , p 0,1 .下列说法正确的是
A. D2020 随 p 的增大先增大后减小
B. D2019 随 p 的增大先减小后增大
C. D2020 随 p 的增大先减小后增大
D. D2019 随 p 的增大先增大后减小
8.已知四个空间向量 a,b, c, e 满足: a (x, y, z), e (0, 0,3), b c 2, 其中 x2 y2 4 1 z 2 ,
若事件 A,B 互斥,则 P(A B) P(A) P(B)
柱体的体积公式V Sh
若事件 A,B 相互独立,则 P(AB) P(A)P(B) 若事件 A 在一次试验中发生的概率是 p,则 n 次独立重 复试验中事件 A 恰好发生 k 次的概率
Pn (k) Cnk pk (1 p)nk (k 0,1, 2, , n)
的较小值.已知 E1, E2 的焦点分别在 x, y 轴上且渐近线相同,则满足条件的 a1,b1, a2,b2 有
组.
16.等比数列an 满足 a1 a ,集合a2, a3 4,b.若 a<4 ,则 a b 的取值范围是
17. 函 数 f 满 足 : f x (1)log2 x x x 0,1 . 对 于 a,b R , f x 3x2 ax b 0 至 多 有 ___
A.3
B. 2 3
C. 6
D.4
10.已知定义在
0,
2
上的函数
f
满足
f
x tan
x 2sin x 1
f
x
恒成立.记
6
,若
f
1 ,记
f 2 的最小值为 m .则
A. m 2,0 B. m 0,1
C. m 1, 2
D. m2,
非选择题部分(共 110 分)
二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。
20.
(本题满分 15 分)随机变量 X1, X2,…,X100 满足 P Xn
1 1 P Xn
1 1 .
n
(Ⅰ)记 Sn X1 X2 … Xn .画出 S3 的分布列(不要求写出过程);
(Ⅱ)求Y S1S2 S2S3 … S99S100 的最小值,满足 S100 0 且 S1, S2 ,…S100 中恰有 51 个数大于 0.
11. (x 2)4的展开式中二项式系数的最小值为______;系数最大的项为______.
12. ABC中,sinA= 1 .则sinC的最大值为______;若AC BC,那么C的取值范围为 ______. 2
13. z1, z2 C 满 足 z1 z2 6 , 记 z1 的 实 部 为 Re z1 , 若 Re z1 2 z1 z2 , 则 z1 1 的 最 小 值
台体的体积公式 V
1 3 (S1
S1S2 S2 )h
其中 S 表示柱体的底面积, h 表示柱体的高 锥体的体积公式V 1 Sh
3 其中 S 表示锥体的底面积, h 表示锥体的高 球的表面积公式 S 4R2 球的体积公式V 4 R3 , R 表示球的半径
3
其中 S1, S2 分别表示台体的上、下底面积,h 表示台体高

.
14.一个高为 1 的直三棱柱俯视图对应的平面直观图是边长为 2 的正三角形,则其体积为

.
;表面积
15.记双曲线 Ei
:
x2 ai2
y2 bi2
1 minai ,bi i
1, 2 ,其中 a1, b1, a2, b2 1, 2, 3, 4, 5, 6 , mina,b 表示 a,b 中
绝密★启用前
2020 年普通高等学校招生全国统一考试(浙江卷)
数学模拟卷
命题、校对:JH&
本试题卷分选择题和非选择题两部分。全卷共 4 页,选择题部分 1 至 2 页;非选择题部分 3 至 4 页。 满分 150 分。考试用时 120 分钟(更建议当练习做)。本卷难度大于普通模拟卷(仅针对有兴趣的同学或老
师),旨在让大家了解更多的题型与思路、方法。且本卷完全原创,如有雷同纯属巧合.
考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:
则 tan (a b e, a c e) (其中 指两向量夹角)的最大值为
A. 1
B. 4 15
15
C. 3
D. 2 5 5
9.已知四棱锥 P-ABCD 有内切球(与五个面都相切的球),且四棱锥的体积和表面积分别为 3 和 18.
若底面 ABCD 是一个面积为 6 的矩形,则 AB 的最大值为
(Ⅱ)若点 Q满足QB QC QO QP 0. 求 Q 纵坐标的最小可能值.
22.(本题满分 15 分)已知99项实数列an满足:an ln an1 (1 n 98).
(Ⅰ) 若a4 1,求a5取值范围.
(Ⅱ) 记Sk =a1 a2 ak (e 2.718...为自然对数底数).
并记此时的概率为
p
.求正整数
k
的值使得
k
1
1!<p<
1 k!
.
(Ⅲ)(本小题为附加题,不计分)求Y S1S2 S2S3 … S99S100 的最大值,满足 S100 0 且 S1, S2 ,…S100 中恰有 50 个数大于 0.
21.(本题满分15分)如图,已知抛物线 : x2 y.过定点A(2,3) 的直线 与交于不同的两点B、C.在B、C处的切线交于P. (Ⅰ) 求 AP 的取值范围.
2
A.2 3
B. 2
C.0
3
D.不存在
3.对非零向量 a,b,c, a b c 0 是 a ,b ,c 能构成三角形三边长的
A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
4. x R, f (x) sin x 1 则f (x)最大值和最小值的和为 2 cos x
选择题部分(共 40 分)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题
目要求的。
1. 集合A x x2 ax 1 0 a N , B 1.若A B B,则满足条件的a的个数是
A.0
B.1
C.2
D.3
2. 实数x, y满足xy 1,那么 x2 y 的最小值 3
y
2
0
,下列说法正确的是
x2
4y2
4
A.x y 的最大值为 5
B.x y 的最大值为 3 1 C.x2 y2 的最小值为1 D.x2 y2 的最小值为 4
2
5
7. 定 义 随 机 变 量 的 “ k 阶 方 差 ” Dk E k Ek k 2, k . 已 知 P 1 p ,
相关文档
最新文档