基因克隆技术攻略:让更多的新手迅速走出基因克隆的阴霾
基因克隆(包括DNA提取技术步骤)

基因克隆DNA克隆是指在体外将目的基因或DNA片段同能够自我复制的载体DNA 连接,然后将其转入宿主细胞或受体生物进行表达或进一步研究的分子操作的过程,又称为重组DNA技术。
DNA克隆涉及一系列的分子生物学技术,如目的DNA片段的获得、载体的选择、各种工具酶的选用、体外重组、导入宿主细胞技术和重组子筛选技术等。
一 DNA的提取二目的DNA片段的获得(酶切)三体外重组1 LB培养基的配制2大肠杆菌感受态细胞的制备3载体的选择四导入受体细胞五重组子的筛选1插入失活法实验一DNA提取取0.5克以下的鱼类组织或20ul血液:1 准备1.5ml离心管,加入500ul裂解液,取组织放入离心管,破碎。
(常温操作)2 恒温箱裂解,55℃。
30min。
3 加等体积Tris饱和酚(酚:氯仿:异戊醇25:24:1),先颠倒混匀后静置抽提10分钟,离心4度12000g 10分钟。
(注意酚在油层下面)4 取上清(把枪头去掉部分,注意液面。
蛋白质凝胶停留在水相及氯仿相中间,而DNA位于上层水相中),加入等体积CI(氯仿:异戊醇24:1),先颠倒混匀后静置抽提10分钟,离心4度12000g 10分钟。
5 汇集上清,加2倍无水乙醇(-30度保存),颠倒混匀可观察到絮状DNA。
在-30度冰箱沉淀30min。
离心4度12000g 10分钟。
6 弃去上清,75%乙醇洗涤,7500g离心5分钟。
7 重复一次上述操作。
7 在无菌台干燥半小时,乙醇挥发。
8 溶解于200ulddwater。
9 定量DNA。
裂解液的配制1ml体系200ul 0.5M EDTA(PH=8.0高压灭菌。
作用抑制酶的活性。
)螯合DNA酶发挥作用需要的金属离子。
50ul 10%SDS(蛋白质变性剂)10ul 1MTris-cl(PH=8.0高压灭菌)缓冲溶液5ul PK(消化)735ul 灭菌超纯水EDTA(0.5 M,pH8.0)将186.1 g 二水乙二胺四乙酸二钠(EDTA-Na.2H2O)加入800ml水中,在磁力搅拌器上剧烈搅拌。
基因克隆的技巧

基因克隆的技巧
基因克隆是生物学研究中常用的技术之一,它可以将感兴趣的基因从一个生物体中复制到另一个生物体中。
以下是基因克隆的一些常见技巧:
1. DNA提取:从源生物体中提取目标基因的DNA。
常见的方法包括溶解细胞膜、蛋白质降解和碱解。
2. 剪切和黏贴:利用限制酶(也称为内切酶)剪切目标DNA,并在相应的酶切位点上黏合连接,形成重组DNA。
3. DNA扩增:通过聚合酶链式反应(PCR)或其他扩增方法,复制目标DNA 片段,以获得足够数量的DNA进行后续实验。
4. 重组载体构建:将目标DNA插入载体DNA,形成重组载体。
载体可以是质粒、噬菌体或其他类型的DNA。
常见的方法包括限制酶消化和连接、启动子和终止子的选择,以及DNA酶切和黏接。
5. 转化:将重组载体导入宿主细胞。
常见的方法包括化学法、电穿孔法和基因枪法。
6. 筛选:使用适当的筛选标记(例如抗生素抗性基因)鉴定并筛选成功转化的细胞。
7. 分离和培养:分离并培养选出的转化细胞,以获得包含目标基因的克隆。
这些技巧在基因克隆中被广泛使用,但具体的操作和条件可能会因实验需求和研究对象而有所不同。
植物遗传工程中的基因克隆与转化技术

植物遗传工程中的基因克隆与转化技术植物遗传工程是指通过改变植物的遗传物质,以达到改良、改变或创新植物性状的目的。
其中基因克隆与转化技术是植物遗传工程中的关键技术之一。
基因克隆指的是通过将特定基因从一个生物体中分离并扩增形成DNA片段,使其能够在其他生物体中稳定表达。
转化技术则是将克隆的基因导入到目标植物体内,使其能够在植物表达并产生相应的功能。
一、基因克隆技术基因克隆技术是植物遗传工程中的关键环节。
首先需要从源生物体中分离出目标基因。
常用的方法有PCR扩增、限制酶切片段分离等。
通过PCR扩增技术,可以快速、高效地扩增目标基因,提供足够的DNA片段用于后续的克隆工作。
限制酶切片段分离则是利用特定的酶将目标基因从源DNA片段中切割出来。
接下来,克隆基因需要被插入到适当的载体中,常用的载体包括质粒和病毒等。
将基因插入载体后,需要通过转化技术将其导入目标植物体内。
二、转化技术转化技术是将克隆的基因导入到目标植物体内的关键步骤。
常见的转化技术主要有基因枪法、农杆菌介导法和化学法等。
基因枪法是通过将DNA微粒射入植物细胞,使基因得以导入的方法。
此方法简单、高效,对不同植物都适用,因此被广泛应用于植物遗传工程中。
农杆菌介导法则是利用农杆菌将目标基因导入植物细胞。
这种方法克服了基因枪法的一些限制,可以导入更长的DNA片段,但受适用植物种类的限制。
此外,化学法也是一种常用的转化技术,通过利用化学物质使植物细胞的细胞壁通透性增强,从而实现目标基因的导入。
三、应用前景与挑战基因克隆与转化技术在植物遗传工程中具有广阔的应用前景。
通过基因克隆和转化技术,可以实现对植物农艺性状的改良,提高植物的抗病虫害能力、耐逆性和产量,从而促进农业的可持续发展。
此外,利用基因克隆和转化技术还可以为植物生物制药、环境修复等领域提供解决方案。
然而,基因克隆与转化技术在应用过程中也面临一些挑战。
首先,对于目标基因的选择和定位仍然是一个复杂的问题。
基因工程克隆方案怎么做

基因工程克隆方案怎么做一、DNA片段的扩增1.1 DNA片段的选择首先需要根据实验需要,选择具有特定序列的DNA片段进行克隆。
可以通过PCR技术从已有的DNA模板中扩增出目标DNA片段,也可以利用限制性内切酶切割目标DNA片段。
1.2 PCR扩增如果选择利用PCR技术进行DNA片段的扩增,需要设计一对特异性引物,引物的序列应该与目标DNA片段的两端相互配对。
此外,还需要确定PCR反应的条件,如温度、引物浓度、酶浓度等。
1.3 酶切如果选择利用限制性内切酶切割目标DNA片段,需要选用能够识别目标DNA片段特定序列的内切酶,并在合适的条件下进行酶切反应。
1.4 凝胶电泳无论是PCR扩增还是酶切,都需要进行凝胶电泳来确认扩增或酶切反应的效果。
通过观察凝胶电泳图,确定目标DNA片段是否得到了扩增或酶切,并测定扩增或酶切产物的浓度。
二、DNA片段的连接2.1 连接酶反应在获得目标DNA片段的前提下,需要选择合适的连接酶来将DNA片段与载体连接。
连接酶反应条件需满足连接酶的最适工作温度和最适pH值。
2.2 载体的选择DNA片段连接的目标通常是质粒或噬菌体DNA。
质粒和噬菌体DNA都有其独特的特性,需要根据实验需求选择适合的载体。
2.3 连接产物的转化连接产物需要通过转化方法导入细菌或酵母等宿主细胞内,形成转化子。
可选择热激、电穿孔、钙离子法等转化方法。
2.4 融合细菌融合细菌转化后需要分别接种到含有适当抗生素的寒露培养基上,使得只有含有目标DNA 片段的转化子能够生长。
三、筛选和鉴定3.1 抗生素筛选在融合细菌待发酵培养基上接种后,通过抗生素的筛选,只有含有目标DNA片段的细菌才能在含有抗生素的培养基上生长。
3.2 PCR验证针对含有目标DNA片段的细菌进行PCR验证,确保连接的DNA片段没有错位缺失等问题。
3.3 测序验证对PCR验证合格的细菌进行测序验证,确保目标DNA片段的序列正确无误。
四、扩大培养4.1 微量预培养对经过筛选和鉴定的细菌进行微量预培养,获得含有目标DNA片段的细菌培养液。
基因克隆的顺序

基因克隆的顺序
基因克隆的顺序通常包括以下步骤:
1. 选择目标基因:确定需要克隆的基因,可以是某个特定的基因,也可以是一段DNA序列。
2. 提取DNA:从源生物体中提取目标基因的DNA,通常使用DNA提取试剂盒来提取。
3. 制备质粒:选择一个适当的质粒,将其准备好作为目标基因的载体。
质粒通常是一段环状的DNA分子,可以自复制并在细胞中稳定存在。
4. 执行DNA切割:使用限制性内切酶将目标基因和质粒切割成相应的DNA片段。
内切酶是能够识别特定DNA序列并在其特定的位置进行切割的酶。
5. 连接DNA片段:将目标基因的DNA片段与质粒的DNA片段连接起来。
这可以通过DNA连接酶来实现,DNA连接酶能够催化两个DNA片段的连接。
6. 转化宿主细胞:将连接好的质粒转化到宿主细胞中,通常使用细菌作为宿主细胞。
转化可以通过电穿孔、化学方法或热激转化等方式进行。
7. 筛选重组细胞:利用筛选性培养基或标记基因等方法筛选出含有重组质粒的
细胞。
8. 纯化重组质粒:从筛选出的重组细胞中提取重组质粒。
9. 分析重组质粒:对提取出的重组质粒进行测序、限制性酶切等分析,确认克隆基因的准确性。
10. 表达目标基因:如果希望表达克隆的基因,可以将重组质粒转化到表达宿主细胞中,例如真核细胞或类似细胞。
需要注意的是,基因克隆的具体步骤可能会因实验目的、实验方法和克隆体的复杂性而有所不同。
克隆基因的操作流程

克隆基因的操作流程
克隆基因是一种基因工程技术,它可以将感兴趣的基因从一个生物体中复制到另一个生物体中。
克隆基因的操作流程包括以下几个步骤:
1. 选择目标基因:首先需要确定感兴趣的基因,这个基因可以是任何生物体中的基因,如人类、动物、植物等,也可以是一种人工设计的基因。
2. 剪切DNA:通过限制性内切酶,将目标基因从DNA分子中切割出来。
这些切割出来的DNA片段被称为限制性内切片段。
3. 连接载体:将目标基因插入到载体DNA中。
载体是一种DNA 分子,可以承载基因并将其引入到目标生物体中。
在这个步骤中,需要使用一种酶来将目标基因和载体DNA连接起来。
这个过程被称为“重组”。
4. 转化宿主细胞:将重组后的载体DNA转化到宿主细胞中,使宿主细胞能够表达目标基因。
5. 筛选:筛选出表达目标基因的宿主细胞。
这个步骤可以通过一些特定的实验方法来实现,如PCR、Southern blotting等。
6. 验证:验证目标基因是否被正确地插入到宿主细胞中,并且是否表达出来。
通过这些步骤,就可以成功地克隆基因了。
克隆基因技术在医学、农业、工业等领域中有着广泛的应用,可以用来生产新药、改良农作物品种、生产高效酶等。
基因克隆的方法

基因克隆的方法基因克隆是一种将特定的DNA片段从一个组织或生物体中复制并插入到另一个生物体中的技术。
这种技术已经帮助我们研究和理解生命过程的许多方面,包括遗传学、发育生物学和分子生物学等领域。
基因克隆的方法通常包括以下几个步骤:1. DNA片段的提取首先,需要从源组织或生物体中提取出含有目标基因的DNA片段。
这可以通过使用化学物质或机械方法来破坏细胞壁和细胞膜来完成。
然后,可以使用酶切(酶切),即将DNA 分子切割为多个部分,以获取需要的DNA片段。
接下来,需要将目标基因片段插入到载体DNA中,这种DNA通常来自细菌或病毒。
这些载体通常被称为质粒,由于它们可以独立地复制和转移到不同的生物体中,因此它们是进行基因克隆的理想选择。
这个过程的关键是要使用酶切和酶连反应将基因片段和质粒DNA连成一体。
3. 转化完成DNA插入之后,需要将质粒DNA插入到目标生物体中。
这个过程通常被称为转化。
质粒DNA可以通过添加化学物质,电击或热冲击等方法,使其进入目标细胞中。
如果转化成功,则目标细胞将含有与原细胞相同的基因,并且可以将该基因传递给其细胞后代。
4. 克隆筛选最后,需要进行克隆筛选,以确定哪些细胞包含所需的质粒和基因。
可以通过对转化沿用枝接派系进行筛选,这些派系通常包含一些荧光标记或抗生素耐受基因。
这样,只要细胞包含标记,就可以通过添加抗生素来杀死不含标记的细胞,从而将所需的基因克隆出来。
在生物技术的发展中,基因克隆的方法已经得到了广泛应用。
它可以用来生产抗生素、激素和其他药物,也可以用来改变植物和动物的遗传特征,以增加其产量或提高其抗病能力。
基因克隆还可以用来研究基因功能,发现新的基因或揭示遗传疾病的机制。
但是,由于基因克隆涉及到对生命体系进行干预和修改,因此我们必须注意其潜在的风险和不良后果,并确保其在道德和法律方面的合规性和可行性。
植物基因克隆的策略及方法

植物基因克隆的策略及方法首先,PCR是植物基因克隆的重要策略之一、PCR(聚合酶链反应)是一种体外复制DNA片段的方法,可以在短时间内扩增大量的特定DNA序列。
通过PCR可以快速准确地克隆植物基因。
PCR的基本原理是利用DNA 聚合酶酶学合成原理,在DNA片段两侧设计引物,将其与DNA片段的两侧结合,在适当的条件下进行DNA的聚合酶链反应,从而扩增目标基因。
PCR方法主要包括加热解性、引物连接、扩增和酶切等步骤。
其次,限制性酶切也是植物基因克隆的重要方法。
限制性酶切是指利用特定的限制性酶将DNA分子切割成特定序列的片段。
通过限制性酶切,可以将目标基因从植物DNA中剪切出来,然后进行进一步处理。
限制性酶切的基本原理是将特定的限制性酶加入反应体系中,该酶能识别和切割DNA的特定序列,从而将目标基因从DNA中剪切出来。
限制性酶切方法主要包括选择合适的限制性酶、反应条件的优化、酶切产物的回收和检测等步骤。
连接是植物基因克隆的另一种重要方法。
连接是指将目标基因连接到特定的载体DNA上,以便在目标植物中稳定地表达。
连接方法主要包括两个步骤:首先,需要处理载体DNA和目标基因的末端,以便它们能够相互连接;其次,利用DNA连接酶将载体和目标基因连接起来。
连接步骤中的处理涉及到DNA末端的修饰和处理,可以通过多种方法如限制性内切酶切割、引物扩增、酶切等进行。
最后,转化是植物基因克隆的最后一步。
转化是指将连接好的目标基因插入到目标植物的基因组中,使其能够在植物体内稳定表达。
转化的方法有多种,包括农杆菌介导的转化、基因枪转化、电穿孔转化等。
其中,农杆菌介导的转化是最常用的方法之一、农杆菌介导的转化是利用农杆菌作为载体将外源DNA导入到目标植物细胞中,通过农杆菌的自然寄生习性以及在植物细胞中特定的植物基因的活性表达,实现目标基因的稳定表达。
总的来说,植物基因克隆的策略和方法包括PCR、限制性酶切、连接和转化。
通过这些方法,可以快速准确地克隆植物基因,实现对植物遗传特性的改变和优化,为农业生产和植物遗传研究提供有力的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因克隆技术攻略:让更多的新手迅速走出基因克隆的阴霾
一直以来都想把自己在基因克隆方面的心得写出来,让更多的刚刚进入生命科学领域的人受益,因为自己刚开始做克隆时也遇到过各种问题,经过较长时间的总结和实践,我的题组现在的基因克隆都是一次到位的,基本不需要重复做。
其实我只是一个只有几十万科研经费的小青椒,不过我对科研非常热爱,我喜欢买实验用的各种酶啊,好用的耗材之类的东东超过我对自己的衣服鞋子的热爱,所以我看起来穿的及其普通,可是我的实验花费有点奢华,呵呵,可能像我这样的人不多吧,哈哈,反正无所谓开心就好。
下面言归正传
(1)是酶切位点的选择。
我的实验室有Takara、Promega以及NEB三种公司的常用的酶,这极大的丰富了我们的选择,所以在设计PCR产物的酶切位点之前首先要看看哪两个酶之间是可以进行同时酶切的。
因为这三家公司的双酶切表的组合完全不同,最佳的方案是我们能够按照需要去选择合适的酶。
有人说这得花很多钱吧,其实不然,Takara几乎每年9月都有一次促销活动,在他们七折的时候我一下买了三千块钱的酶,这一年来有用之不尽的感觉。
Promega的酶也非常好用,而且长期五折,我也是常用的酶买了一批放在实验室里。
至于NEB的实在是有一点贵的,我一般不批量买了,在NEB买的一般都是不常用的酶,比如FseI、AscI等等。
酶的选择是实验成功的关键吆。
(2)PCR引物的设计这一点我不想多说,虽然有很多的攻略里面讲到了PCR引物设计的原则等等,大家设计的时候要参考各种原则,我认为不然,因为做过实验的战友都清楚,有的时候很多PCR引物的选择是没有选择的,比如我要扩增一个完整的基因的ORF框,那么它的起始密码子,终止密码子部分都要克隆出来的,不能多也不能少一个碱基,即使起始部位或者终止部位的AT含量很高,高到你难以忍受,那怎么办呢,基本我们没有选择,如果实在是没办法的条件下,只能在PCR引物的5端加入人为设计的碱基而把引物的扩增部分后移或前移来避开难以扩增的部位,我不知道说清楚没有,如果引物序列OK,可以忽略上句话。
所以大多数情况下引物我们是没得选择的,那么我们只能从PCR扩增条件上下功夫。
(3)PCR扩增对于PCR扩增其实不同的基因可能策略不同,我来说几点相同的。
首先很多新手会忽略引物的浓度问题,我在最开始做PCR的时候因为当时的基因非常容易扩增,所以其实我的条件并不是最佳的,但当时把基因扩出来了我也没有在意,直到有一天我需要在基因的5端加入3个HA标签,这样的PCR引物长度差异很大,一支引物100多bp,一支引物只有30bp,于是当我还有以前的条件时我扩不出任何的基因。
当时扩了几次都不成功,各种温度都试过了也不成。
于是我静下心来,把PCR的实验条件进行了全方位优化,在PCR 反应体系中,把引物调整到各种浓度的,把模板调整到各种浓度的,有的加Mg2+,有的加BSA,还使用梯度PCR的条件,试了各种扩增温度的,结果让我很开心,最后我的基因被扩增出来了,而且好亮好亮的那种。
记得当时自己高兴地跳了起来。
也许这就是科研的魅力吧!在这次试验中我找到了最佳的PCR条件,这是三年前的事了,这个条件让我在三年中屡试不爽,几十个基因的扩增从未失手过。
其实体系很简单,50ul体系中buffer 5ul、Mg2+ 1mM、dNTP 0.2mM、引物每支1ul(配成10umol/L浓度)、PCR酶一般是0.5ul、其余部分用水补平,混匀,离心一下,进行PCR扩增。
其中引物从公司拿到干粉后我一般用水溶解至100umol/L浓度保存,吸取少量稀释十倍后用于PCR反应,这个浓度是最佳的。
所以PCR 体系中引物并不是越多越好,同样的模板的量也很关键,一般我都在10ng-100ng之间,太少或太多都会抑制PCR反应。
当然,不同的基因其退火温度差异较大,建议第一次做直接做梯度PCR,设置的温度范围宽些,总会有扩出来的。
反正把反应体系加好,把温度控制好应该就万事大吉了,如果这样仍然扩不出来,那就直接调整DNA模版的量吧,其他的因素应该不是原因(当然得保证引物,以及酶的质量得前提下)。
(4)PCR产物的酶切,这是最简单的一步,一般我都是酶切过夜的。
因为我认为PCR产物切得尽可能的充分对克隆很重要,毕竟保护性碱基只有几个。
(5)质粒的酶切。
虽然质粒的酶切很简单但是却很讲究,决定着克隆的成败。
质粒提取我一般都用试剂盒,天根的很便宜了,现在好像一盒已经六折,一盒有200个,可以用很久。
质粒提取完毕后我会用紫外分光光度法对质粒进行定量测定,根据A260的值计算出质粒的量,然后再进行酶切,一般酶切体系60ul,60ul体系中我只切总量1ug的质粒,一次切两管,酶切过夜后切胶回收或者不切胶直接回收,这取决于两个限制性内切酶之间的距离,十几bp以内我就直接回收了,如果偏大就要切胶回收。
(6)连接连接我采用的是Promega公司的T4 DNA连接酶,它的特点是22度连接三小时以上几款,这样我就可以在上午把质粒片段以及PCR片段回收后马上做连接,连接一个白天,到下午可以做转化了,涂板,过夜培养第二天早上看结果。
然后挑克隆(一般我一个基因就挑四个克隆足已)培养一白天,下午稍晚些提质粒,然后马上酶切鉴定,一般酶切鉴定体系中我都做20ul体系,酶用0.5微升就够了(呵呵,该省的就省点吧),酶切一个小时跑胶就可以知道克隆是否成功了。
这样从PCR到克隆鉴定完毕,一共三天。
不过从我带学生的经验来看,从一个懵懵懂懂的新手到成功掌握该技术快则半个月,多则一个月,引人而异。
各位也试试看吧!(。