电阻加热炉温度控制

合集下载

箱式电阻炉的操作规程(9篇范文)

箱式电阻炉的操作规程(9篇范文)

箱式电阻炉的操作规程(9篇范文)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、合同协议、心得体会、演讲致辞、规章制度、岗位职责、操作规程、计划书、祝福语、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as work reports, contract agreements, insights, speeches, rules and regulations, job responsibilities, operating procedures, plans, blessings, and other sample texts. If you want to learn about different sample formats and writing methods, please pay attention!箱式电阻炉的操作规程(9篇范文)【第1篇】箱式电阻炉的操作规程⑴打开电阻炉门,把要灼烧的坩锅放入炉堂内,关闭炉门。

基于OPC和MATLAB的电阻炉温度控制系统设计

基于OPC和MATLAB的电阻炉温度控制系统设计

基于OPC和MATLAB的电阻炉温度控制系统设计作者:叶强来源:《智能计算机与应用》2014年第03期收稿日期:2014-05-22作者简介:叶强(1988-),男,辽宁抚顺人,硕士研究生,主要研究方向: 工业过程的先进控制。

摘要:针对电阻炉温度系统具有非线性、大惯性、大滞后等特点,结合常规PID控制器和模糊控制器各自的长处,以MATLAB为计算平台,通过OPC技术实现MATLAB和ECS-700之间的数据交换。

提出了基于OPC技术的自适应模糊PID控制方案。

自适应模糊PID控制器由MATLAB中的模糊工具箱设计,ECS-700主要负责数据采集和设备驱动。

实验结果表明,电阻炉温度控制系统的性能令人满意,该方法调节时间短、超调量小、波动小,OPC通信的性能非常有效可靠,可以有效应用于电阻炉温度控制系统中。

关键词:电阻炉; PID控制;自适应模糊PID控制; OPC;中控ECS-700中图分类号:TP302文献标识码:A文章编号:2095-2163(2014)03-0049-04The Design of Resistance FurnaceTemperature Control System based on OPC and MATLABYE Qiang(School of Information and Control Engineering, Liaoning Shihua University, Fushun Liaoning 113001, China)Abstract:For resistance furnace temperature system has the characteristics of nonlinear, big inertia, great lag, combined with respective strengths of the conventional PID controller and fuzzy controller, and taking MATLAB as computing platform,the data exchange between MATLAB and ECS-700 is realized by OPC technology. The paper puts forward the adaptive fuzzy PID control scheme based on OPC technology. The adaptive PID controller is developed by the fuzzy toolbox in MATLAB. The data acquisition and devices driving are also realized by ECS-700.The experimental results show that the performance of resistance furnace temperature control system is satisfactory and the method has short setting time,small overshoot and fluctuation,simultaneously the performance of OPC communication is very efficient and reliable ,which determines the system can be effectively applied in a resistance furnace temperature system.Key words:Resistance Furnace; PID Controller; Adaptive Fuzzy PID Controller; OPC; SUPCON ECS-7000引言电阻炉是热处理工业中常用的设备,实验室中的电阻炉是一种开放式的加热系统,并且具有非线性、大惯性、大滞后、易受环境干扰等特点[1]。

电加热炉控制系统的设计

电加热炉控制系统的设计
......................................................................................................................................... I Abstract ............................................................................................................................................II 目录 ................................................................................................................................................ III 第一章 绪论 .................................................................................................................................... 4 1.1 选题的背景及意义 ...................................................................................................... 4 1.2 加热炉控制研究现状 ............................................................................................

计算机控制技术课程设计-电阻炉温度控制系统设计

计算机控制技术课程设计-电阻炉温度控制系统设计

合肥工业大学《计算机控制技术》课程设计——电阻炉温度控制系统设计学院专业姓名学号_______ ________ _完成时间摘要:电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。

间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件,电流通过加热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。

直接加热式电阻炉,是将电源直接接在所需加热的材料上,让强大的电流直接流过所需加热的材料,使材料本身发热从而达到加热的效果。

工业电阻炉,大部分采用间接加热式,只有一小部分采用直接加热式。

由于电阻炉具有热效率高、热量损失小、加热方式简单、温度场分布均匀、环保等优点,应用十分广泛.关键词:炉温控制;高效率;加热一、总体方案设计本次课程设计主要就是使用计算机以及相应的部件组成电阻炉炉温的自动控制系统,从而使系统达到工艺要求的性能指标。

1、设计内容及要求电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。

在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

2、工艺要求及要求实现的基本功能本系统中所选用的加热炉为间接加热式电阻炉,控制要求为采用一台主机控制8个同样规格的电阻炉温度;电炉额定功率为20 kW;)恒温正常工作温度为1000℃,控温精度为±1%;电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性;具有温度、曲线自动显示和打印功能,显示精度为±1℃;具有报警、参数设定、温度曲线修改设置等功能。

3、控制系统整体设计电阻炉温度计算机控制系统主要由主机、温度检测装置、A/D转换器、执行机构及辅助电路组成.系统中主机可以选用工业控制计算机、单片微型计算机或可编程序控制器中的一种作为控制器,再根据系统控制要求,选择一种合理的控制算法对电阻炉温度进行控制。

炉内温度监测与控制的加热炉管理制度

炉内温度监测与控制的加热炉管理制度

炉内温度监测与控制的加热炉管理制度1. 引言2. 加热炉温度监测2.1 温度监测设备选择温度计热电阻红外线测温仪2.2 温度监测点选择加热炉内的温度监测点应覆盖加热区域、冷却区域和均热区域。

根据不同加热炉的结构和工艺要求,确定合理的温度监测点。

2.3 温度监测频率根据炉内温度的变化情况,设置合理的温度监测频率。

一般来说,加热炉炉内温度的监测频率应不低于30分钟。

3. 加热炉温度控制3.1 温度控制设备选择PID控制器温度控制模块3.2 温度控制参数设置根据加热炉的工艺要求和产品特性,设置合理的温度控制参数。

包括温度上下限设定、控制精度设定等。

3.3 温度控制策略根据加热炉的类型和工艺要求,确定合理的温度控制策略。

例如,采用开关控制、PID控制等方式实现温度控制。

4. 炉内温度监测与控制的规范要求4.1 设备保养与维护定期检查温度计、热电阻等温度监测设备的准确性和可靠性。

定期校准温度监测设备,确保测量结果的准确性。

及时修复和更换不正常工作的温度监测设备。

4.2 温度数据记录与分析定期记录炉内温度的监测数据。

对温度数据进行分析,及时发现和处理温度异常情况。

建立温度数据的历史记录,用于追溯和分析。

4.3 温度监测与控制的纪录与报告对炉内温度监测和控制的情况进行记录和报告。

建立温度监测与控制的档案,包括温度曲线、温度控制参数设置等信息。

5. 总结炉内温度监测与控制是加热炉管理中的重要环节。

通过合理的温度监测设备选择、温度监测频率设置以及温度控制参数设置和策略确定,可以确保加热炉的稳定运行和产品质量的稳定性。

同时,加热炉管理人员应严格遵守规范要求,对温度监测与控制的数据进行记录、分析和报告,以提高加热炉的管理水平和生产效率。

电阻炉炉温自动控制系统

电阻炉炉温自动控制系统
电阻炉是利用电流通过电阻体产生的热量来加热或溶化物料的一类电炉,具有结构简单、操作简便、价格低廉等特点,广泛用于淬火、正火、回火、退火等常规热处理生产,是机械制造企业最常用的热处理加热设备之一。工业电阻炉分为二类,周期式作业炉和连续式作业炉。周期式作业炉分为:箱式炉、密封箱式炉、井式炉倾倒式滚筒炉。连续作业炉分为:窑车式炉,推杆式炉,振底炉,步进式炉,牵引式炉,连续式滚筒炉,传送带式炉等。其中传送带式可分为:有网带式炉、冲压链板式炉、铸链板式炉等。与其他电炉相比,电阻炉具有发热部件简单,对炉料种类的限制少,炉温控制精度高,轻易实现在真空或控制’,氟中加热等特点。电热炉可使用金属发热体或非金属发热体来产生热源,其构造简单,用途十分广泛是它的主要特色,可广泛应用於退火、正常化、淬火、回火、渗碳及渗碳氮化等电炉在自动化工业中占据了举足轻重的位置。电炉在冶金炉设备中的额度逐年上升。在工业中占的比重愈来愈大,比如:丹阳市嘉恒炉业有限公司就是国内大型工业炉生产基地,集产品研发、制造、销售和服务为一体,是全国热处理行业协会、中国机械工程学会会员单位,产品广泛应用于机械、冶金、模具、铸造、汽车、军工等各种工业领域。目前最受工业炉生产厂家青睐的有大型台车炉,深井炉,箱式电阻炉,退火炉,回火炉,井式氮化炉,井式渗碳炉,罩式退火炉,环件炉等。
电阻炉以电为热源,通过电热元件将能转化为热能,在炉内对金属进行加热。电阻炉和火焰比,热效率高,可达50%-80%,热工制度容易控制,劳动条件好,炉体寿命长,炉温均匀,适用于要求较严的工件加热。电阻炉的功率是根据电阻炉的热平衡原则确定的,通过热平衡计算,可以比较精确的计算出电炉的功率。电炉所需的功率应包括炉子蓄热,工件加热需要热量、工件保温需要的热量、气氛裂解所需的热量,热损失等。其中炉子蓄热由电炉的规格、构造和主要尺寸、炉衬厚度,材料导热系数决定。电阻炉是热处理生产中应用最广的加热设备,通过不知在炉内的加热元件将电能转化为热能并记住辐射与对流的传热方式加热工件。

加热炉温度控制系统

加热炉温度控制系统

加热炉温度控制系统标题:加热炉温度控制系统摘要:加热炉温度控制系统是一种用于控制加热炉温度的设备。

它通过监测加热炉内的温度并相应地调节加热器的工作状态,以保持加热炉内的温度在设定范围内稳定。

本文将介绍加热炉温度控制系统的原理、组成部分以及工作流程,并探讨其在工业生产中的应用。

关键词:加热炉、温度控制、加热器、工业生产1. 引言加热炉是一种常见的热处理设备,广泛应用于冶金、机械加工和材料研究等领域。

在加热炉的使用过程中,保持加热炉内的温度稳定是非常重要的。

过低的温度会导致加热不充分,影响产品的质量;过高的温度则会造成能源的浪费,甚至导致设备损坏。

因此,开发一种稳定且可靠的加热炉温度控制系统对于提高生产效率和节约能源具有重要意义。

2. 温度控制系统的原理温度控制系统通常由温度传感器、控制器和执行器组成。

温度传感器用于实时监测加热炉内的温度变化,将温度信号传输给控制器。

控制器根据设定的温度范围和温度传感器反馈的实时温度,计算出相应的控制信号。

执行器根据控制信号调节加热器的工作状态,从而实现加热炉温度的稳定控制。

3. 温度控制系统的组成部分3.1 温度传感器温度传感器是温度控制系统中的重要组成部分。

常用的温度传感器有热电阻和热电偶两种。

热电阻传感器的工作原理是利用金属电阻随温度变化而发生的电阻变化,通过测量电阻的变化来确定温度。

热电偶传感器则是利用两种不同材料的接触产生的热电势随温差变化而变化,通过测量热电势的变化来确定温度。

3.2 控制器控制器是温度控制系统的核心部件,负责计算控制信号并将其传输给执行器。

控制器根据设定的温度范围和温度传感器反馈的实时温度,做出相应的控制决策。

常见的控制器包括PID控制器和模糊控制器。

PID控制器根据比例、积分和微分三个方面来调节控制信号;模糊控制器则利用模糊逻辑推断得出控制信号。

3.3 执行器执行器根据控制器传输的控制信号调节加热器的工作状态。

常见的执行器包括电动阀和可调电阻。

电阻加热炉温度控制系统设计

电阻加热炉温度控制系统设计

电阻加热炉温度控制系统设计一、温度控制系统的要求:1.稳定性:系统应能快速响应温度变化,并能在设定温度范围内保持稳定的温度。

2.精度:控制系统应具备高精度,确保炉内温度与设定温度的偏差控制在允许范围内。

3.可靠性:系统应具备高可靠性,能长时间稳定运行,并能在发生异常情况时及时报警或自动停止加热。

4.人机界面:温度控制系统应提供方便直观的人机界面,操作简单易懂。

二、温度控制系统的设计:1.传感器选择:选择合适的温度传感器进行温度检测。

常用的温度传感器有热电偶和热电阻。

根据实际需求选择合适的传感器类型和量程。

2.温度控制器选择:根据控制需求,选择适用于电阻加热炉的温度控制器。

具备温度显示功能的控制器可以直观地显示炉内温度。

还可以选择具备PID控制功能的控制器,以提高温度控制精度。

3.控制循环设计:将温度控制系统设计成闭环控制系统,以实现炉内温度的精确控制。

控制循环包括采样、比较、控制和执行四个环节。

采样环节将实际温度值与设定温度值进行比较,然后控制环节根据比较结果输出控制信号,最后执行环节根据控制信号调节电阻加热炉的加热功率。

4.温度传感器布置:将温度传感器布置在炉内合适位置,确保能够准确测量到炉内温度。

传感器的安装位置应避免热点和冷点,以避免温度不均匀。

5.控制参数调整:根据实际情况进行PID参数的调整。

通过实验或仿真等方法,逐步调整PID参数,使得系统能够快速响应温度变化、准确跟踪设定温度,并保持稳定的温度输出。

6.报警和保护设计:设计温度控制系统时,应考虑到电阻加热炉的过热或温度异常等情况,并设置相应的报警和保护功能。

当温度超过安全范围时,系统应及时报警,并自动停止加热。

7.人机界面设计:为了方便操作和监控,可以在温度控制系统上设置触摸屏或显示屏。

通过人机界面,操作人员可以方便地设定温度、监测炉内温度,并能够实时查看温度曲线和报警信息。

总之,电阻加热炉温度控制系统的设计需要考虑到温度控制精度、稳定性、可靠性和人机界面等方面的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、摘要温度是工业对象中主要的被控参数之一。

特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。

由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。

但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID控制或其他纯滞后补偿算法。

为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。

因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。

二、总体方案设计设计任务用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。

1、设计内容及要求电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。

在本控制对象电阻加热炉功率为8KW,有220V 交流电源供电,采用双向可控硅进行控制。

系统模型:2、工艺要求按照规定的曲线进行升温和降温,温度控制范围为50—350℃,升温和降温阶段的温度控制精度为+5℃,保温阶段温度控制精度为+2℃。

3、要求实现的系统基本功能微机自动调节:正常工况下,系统投入自动。

模拟手动操作:当系统发生异常,投入手动控制。

微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。

4、对象分析在本设计中,要求电阻炉炉内的温度,按照上图所示的规律变化,从室温开始到50℃为自由升温阶段,当温度一旦到达50℃,就进入系统调节,当温度到达350℃时进入保温段,要始终在系统控制下,一保证所需的炉内温度的精度。

加工结束,要进行降温控制。

保温段的时间为600—1800s。

过渡过程时间:即从开始控制到进入保温阶段的时间要小于600s。

在保温段当温度高于352℃或低于348℃时要报警,在升温和降温阶段也要进行控制,使炉内温度按照曲线的斜率升或降。

采用MCS—51单片机作为控制器,ADC0809模数转换芯片为模拟量输入,DAC0832数模转换芯片为模拟量输出,铂电阻为温度检测元件,运算放大器和可控硅作为功率放大,电阻炉为被控对象,组成电阻炉炉温控制系统,另外,系统还配有数字显示,以便显示和记录生产过程中的温度和输出值。

5、系统功能设计计算机定时对炉温进行测量和控制一次,炉内温度是由一铂电阻温度计来进行测量,其信号经放大送到模数转换芯片,换算成相应的数字量后,再送入计算机中进行判别和运算,得到应有的电功率数,经过数模转换芯片转换成模拟量信号,供给可控硅功率调节器进行调节,使其达到炉温变化曲线的要求。

三、硬件的设计和实现1、计算机机型:MCS—51 8031(不包含ROM、EPROM)系统总线:PC总线2、设计输入输出通道输入通道:因为所控的实际温度在50 ~ 350℃左右,即(350-50)=300所以选用8位A/D转换器,其分辨率约为1.5℃/字,再加放大器偏置措施实现。

(通过调整放大器的零点来实现偏置)这里采用一般中速芯片ADC0809。

ADC0809是带有8位A/D转换器,8路多路开关以及微型计算机兼容的控制逻辑的CMOS 组件,其转换方法为逐次逼近型。

8路的模拟开关由地址锁存器和译码器控制,可以在8个通道中任意访问一个通道的模拟信号。

输出通道:据其实际情况,D/A转换器的位数可低于A/D转换器的位数,因为一般控制系统对输出通道分辨率的要求比输入通道的低,所以这里采用常用的DAC0832芯片DAC0832是8位D/A转换器,与微处理器完全兼容。

期间采用先进的CMOS工艺,因此功耗低,输出漏电流误差较小。

因DAC0832电流输出型D/A转换芯片,为了取得电压输出,需在电流输出端接运算放大器,Rf为为运算放大器的反馈电阻端。

3、设计支持计算机工作的外围电路矩阵键盘技术:温度输出显示技术:LED静态显示接口技术,所谓静态显示,即CPU输出显示值后,由硬件保存输出值,保持显示结果.特点:占用机时少,显示可靠.但元件多,线路复杂、成本高,功耗大。

报警电路设计:正常运行时绿灯亮,在保温阶段炉内温度超出系统允差范围,就要进行报警。

报警时报警灯亮,电笛响,同时发送中断信号至CPU进行处理。

4、元器件的选择传感器的选择:铂铑10—铂热电偶,S型,正极性,量程0—1300C,使用温度小于等于600C,允差+1.5C。

执行元件的选择:电阻加热炉采用晶闸管(SCR)来做规律控制,结合电阻炉的具体要求,为了减少炉温的纹波,对输出通道采用较高的分辨率的方案,因此采用移相触发方式,并且由模拟触发器实现移相触发。

变送器的选择:因为系统要求有偏置,又需要对热电偶进行冷端补偿,所以采用常规的DDZ系列温度变送器。

控制元件:采用双向可控硅进行控制,其功能相当于两个单向可控硅反向连接,具有双向导通功能,其通断状态有控制极G决定。

在控制极加上脉冲可使其正向或反向导通。

第4章数字控制系统设计4.1 系统控制参数确定4.1.1 被控参数选择单回路控制系统选择被控参数时要遵循以下原则:在条件许可的情况下,首先应尽量选择能直接反应控制目的的参数为被控参数;其次要选择与控制目的有某种单值对应关系的间接单数作为被控参数;所选的被控参数必须有足够的变化灵敏度。

综合以上原则,在本系统中选择物料的出口温度θ作为被控参数。

该参数可直接反应控制目的。

4.1.2 控制参数选择工业过程的输入变量有两类:控制变量和扰动变量。

其中,干扰时客观存在的,它是影响系统平稳操作的因素,而操纵变量是克服干扰的影响,使控制系统重新稳定运行的因素。

而控制参数选择的基本原则为:①选择对所选定的被控变量影响较大的输入变量作为控制参数;②在以上前提下,选择变化范围较大的输入变量作为控制参数,以便易于控制;③在①的基础上选择对被控变量作用效应较快的输入变量作为控制参数,使控制系统响应较快;综合以上原则,选择燃料的流量Qg量作为控制参数。

4.2 PID调节器设计对温度的控制算法, 采用技术成熟的PID 算法, 对于时间常数比较大的系统来说, 其近似于连续变化, 因此用数字PID 完全可以得到比较好的控制效果。

简单的比例调节器能够反应很快, 但不能完全消除静差, 控制不精确, 为了消除比例调节器中残存的静差, 在比例调节器的基础上加入积分调节器, 积分器的输出值大小取决于对误差的累积结果, 在差不变的情况下, 积分器还在输出直到误差为零, 因此加入积分调节器相当于能自动调节控制常量, 消除静差, 使系统趋于稳定。

积分器虽然能消除静差, 但使系统响应速度变慢。

进一步改进调节器的方法是通过检测信号的变化率来预报误差, 并对误差的变化作出响应, 于是在PI 调节器的基础上再加上微分调节器, 组成比例、积分、微分( PID)调节器, 微分调节器的加入将有助于减小超调, 克服振荡, 使系统趋于稳定, 同时加快了系统的稳定速度,缩短调整时间, 从而改善了系统的动态性能, 其控制规律的微分方程为:)1(Y P dtdXT Xdt T X K D I ++=⎰ 传递函数为:)11()(G s T sT K s D I P ++= 用PID 控制算法实现加热炉温度控制是这样一个反馈过程: 比较实际物料出口温度和设定温度得到偏差, 通过对偏差的处理获得控制信号, 再去调节加热炉的燃料流量, 从而实现对炉温的控制, 由于加热炉一般都是下一阶段对象和带纯滞后的一阶对象, 所以式中Kp 、K d 和K i 的选择取决于加热炉的响应特性和实际经验。

4.3 控制算法电阻加热炉温度控制系统框图:整个闭环系统可用一个带纯滞后的一阶惯性环节来近似,所以其控制算法采用大林算法。

电阻加热炉温度控制系统模型为其广义的传递函数为:大林算法的设计目标是设计一个合适的数字控制器,使整个闭环系统的传递函数相当于一个带有纯滞后的一阶惯性环节,即:通常认为对象与一个零阶保持器相串联, 相对应的整个闭环系统的脉冲传递函数是:11788.2)(40+=-s e s G s4.4 计算过程:连同零阶保持器在内的系统广义被控对象的传递函数]11788.21[)(40+-=--s e s e Z z G sTs])1178(1[)1(8.2401+-=--s s Z zz T]11781781[)1(8.2401+--=--s s Z zz T]1111[)1(8.211781141---------=z ez z z15945.01154.0---=z z系统闭环传递函数]11[)()()(+-==Φ--s e s e Z z R z C z NTsTs τ111)1(-------=z ee z TTN ττ数字控制器:)](1)[()()(z z G z z D Φ-Φ=)(])1(1[)1(111z G z ez eezN TTTN ------------=τττ51510110105154.0945.01])1(1[)1(-------------=z z z ez eez τττ511933.0007.01)945.01(448.6------=z z z]933.0933.0933.0933.01)[1()945.01(448.6)(432111------++++--=z z z z z z z D消除振铃现象后的数字控制器:111)945.01(448.6)(----=z z z D111945.0297.1297.1)()()(---⨯-==z z z E z U z D将上式离散化:U (Z )—U (Z )Z —1=1.279E (Z )—1.226E (Z )Z —1U (K )—U (K —1)=1.279E (K )—1.226E (K —1) 最终得:U (K )=U (K —1)+1.279E (K )—1.226E (K —1)第5章控制仪表的选型和配置5.1 检测元件温度的测量方式有接触式测温和非接触式测温两大类。

本系统选择接触式测温元件。

其中较为常用的有热电偶、热电阻和集成温度传感器三种,本系统选择热电偶作为测温元件,其电路原理图如下图所示:图5-1 热电偶电路原理图5.2 变送器5.2.1 变送器选型本系统中的变送器用于温度信号变送,故选择温度变送器。

其中较为常用的有模拟式温度变送器、一体化温度变送器和智能式温度变送器三种,本系统采用典型模拟式温度变送器中的DDZ-III型热电偶温度变送器,属安全火花型防暴仪表,还可以与作为检测元件的热电偶相配合,将温度信号线性的转换成统一标准信号。

相关文档
最新文档