盾构隧道近距离下穿既有地铁线路安全控制对策

合集下载

盾构隧道 盾构近距离下穿既有运营隧道施工分析

盾构隧道 盾构近距离下穿既有运营隧道施工分析

盾构隧道盾构近距离下穿既有运营隧道施工分析引言随着城市地铁建设的蓬勃发展,盾构法作为地铁建设的主要工法得到了广泛运用【1】,而随着一个城市线路的越来越密集,新施工隧道交叉穿过既有运营地铁线路就不可避免。

而盾构隧道施工往往会危及地铁结构本身以及邻近结构物的安全与正常使用,使邻近结构物倾斜、扭曲等,从而引起一系列环境效应问题【2,3】,新建线路盾构掘进中控制不当就会影响既有线路的正常运营。

根据某市地铁3号线(即龙岗线)西延段购物公园站~福田站区间(以下简称购福区间)左线盾构安全平稳下穿既有运营的地铁1号线购物公园站~香蜜湖站区间(以下简称购香区间)隧道工程实例,对该工程的施工参数进行了总结分析,以便为今后同类工程提供成功的经验和参考。

1工程概况某市地铁3号线3151标购福区间隧道左线盾构机在福华路与民田路交汇处(里程ZDK5+477.17~ZDK5+497.25)连续下穿地铁1号线购香区间既有隧道上、下行线。

3号线购福区间隧道在下穿段的覆土厚度为17.6~18m,线路坡度为-5‰。

地下水位埋深4~7.4m。

负责本次穿越的盾构机为海瑞克s-469,刀盘开挖直径6.28m,最大扭矩5300KN•m,掘进最大推力34210KN;盾构机总功率1720KW。

3号线隧道采用C50钢筋混凝土管片衬砌,管片防水等级S10,宽度为1.5m,厚度为0.3m,内径为5.4m,外径为6m。

区间管片采用通用型管片、错缝拼装方式。

两条线路的平面位置如图1所示。

图2新建3号线与1号线隧道交汇区地质剖面图中、粗砂(Q4al+pl)褐黄、灰白色,饱和,中密状,主要物质成分为石英质粗颗粒,另微含少量粘性土。

级配良好。

区间内层状分布(段尾附近缺失),厚1~3.5m,埋深4.7~9.5m。

ρ=1.84~2.07g/cm3,e=0.43~0.89,Es0.1~0.2=4.49~19.93MPa,,α0.1~0.2=0.25MPa-1,中压缩性土。

新建盾构隧道超近距离下穿既有运营地铁线路沉降及安全控制

新建盾构隧道超近距离下穿既有运营地铁线路沉降及安全控制

新建盾构隧道超近距离下穿既有运营地铁线路沉降及安全控制摘要:随着城市轨道交通建设的推进与发展,城市地下空间的不断开发,地铁线路网状发展,新建地铁线路穿越既有运营线路的情况越来越多。

在新建地铁盾构隧道施工期间,为了确保既有运营线路的运营安全,对新建地铁盾构隧道沉降控制提出更高的要求。

本文以郑州地铁10号线医学院站~郑州火车站区间盾构近距离下穿既有运营1号线地铁隧道为例,重点分析研究盾构近距离穿越运营地铁线路的沉降及安全控制。

关键词:盾构隧道、运营地铁线路、沉降及安全控制引言随着国内盾构施工技术的蓬勃发展,广泛应用于地铁隧道施工,下穿河流、高大建筑、危楼、既有铁路及地铁线路等,这给地铁盾构施工沉降控制提出更高的要求,不断优化技术措施,将盾构施工引起的沉降控制在最小,减小对周边环境的影响,盾构掘进施工期间需超前筹划、精心组织与管理。

本文以郑州地铁10号线医学院站~郑州火车站区间盾构近距离下穿既有运营1号线地铁隧道为例,重点阐述盾构近距离下穿既有运营地铁线路的沉降及安全控制措施及方法。

1.项目概况:1.1工程概况新建郑州地铁10号线医学院站~郑州火车站区间盾构于ZK42+121.140~140.066(隧道中心线相交点)向下斜穿运营地铁1号线中原东路站~郑州火车站区间隧道,与既有运营1号线区间隧道斜交角度为41°~44°,竖向距离为2.18~2.31m。

1号线既有盾构区间直径6.0m,管片厚度0.3m,于2013年12月28日正式开通试运营。

隧道顶部既有西工房小区5层楼房1座,无地下室,条形基础,砖混结构,建于80年代。

图1-1盾构下穿段模型图1.2水文地质条件医学院站~郑州火车站区间地貌单元为黄河冲洪积一级阶地。

根据区间野外钻探、现场鉴定和原位测试结果,70m勘探深度内所揭露土层均由第四系堆积物组成。

区间下穿段段从上至下土层依次为:①杂填土、①1素填土、⑤1粘质粉土、⑤2粉砂、⑥2黏质粉土、⑦2粘质粉土、⑧11粉质粘土、⑧12粉质粘土,新建10号线区间主要穿越地层为:⑧11粉质粘土;既有1号线区间位于:⑥2黏质粉土、⑦2粘质粉土、⑧11粉质黏土。

盾构隧道近距离下穿既有地铁线路安全控制对策

盾构隧道近距离下穿既有地铁线路安全控制对策

盾构隧道近距离下穿既有地铁线路安全控制对策本文主要以盾构隧道近距离下穿既有地铁线路工程为背景,简单介绍了近距离穿越既有地铁线路工程的施工控制要求,并提出了几点施工安全控制措施,以仅供日后相关领域人员的参考借鉴。

标签:盾构隧道;近距离下穿;地铁;安全控制;既有线在地铁的实际施工过程中,工程体量大,且属于高风险建设工程,随着城市化进程的逐渐推进,地下环境中的结构设施越来越多,如何保证在盾构隧道下穿施工顺利开展的同时,又不会对既有地铁线路的正常运行带来影响,成为了相关领域人员不得不面对的问题之一。

1、施工控制要求在进行地铁施工建设的过程之中,主要需要加强控制的是区间隧道施工期间的变形问题,而就实际施工来说,其变形问题大致可划分成以下三个方面:(1)隧道周边土体结构的变形,会直接威胁到附近建筑体的安全性与稳定性;(2)既有结构附近土体的变形,情况严重时便会直接引起既有结构出现坍塌,严重威胁到人们的生命财产安全;(3)支护结构发生变形,会导致隧道施工存在较大安全风险。

此外,若是出现沉降问题也会对隧道施工带来影响:(1)地层沉降对隧道的影响。

盾构施工可能会使得附近土体受到扰动,从而在开挖断面上出现不均匀的沉降槽,对既有地铁线路的正常运营带来不良影响,成型隧道管片会随着沉降槽的形成而使得管片间的应力重新分布,导致管片见的重复挤压破损;(2)地层沉降对轨道的影响。

盾构施工会使得附近土体受到扰动,使得土体出现不均匀沉降,而一旦土体出现沉降,轨枕的支撑面会随之也发生一定的下沉,使得轨道多支座超静定系统也受到破坏。

并在列车动荷载作用之下,这些支撑面下沉的轨枕会连带轨道发生显著变形,使得轨道中应力大幅增高,当土体沉降较大时,甚至会使轨道断裂;(3)轨道差异沉降对列车运营的影响。

盾构施工近距离下穿既有地铁线路时,周边土体会受到扰动,使得地层发生差异沉降,轨道也会随之出现差异沉降。

而差异沉降会和列车自振结合起来,导致列车振幅变大,使列车出现摇摆运动。

盾构近距离下穿既有地铁隧道施工技术控制

盾构近距离下穿既有地铁隧道施工技术控制

盾构近距离下穿既有地铁隧道施工技术控制身份证号:******************,广西南宁摘要:文章以具体的工程为例,基于对地表和盾构隧道管片沉降影响因素的分析,探讨盾构下穿某市地铁2号线区间隧道施工控制的措施,有效的控制了地表整体沉降和隧道管片差异沉降,保证了既有地铁隧道结构的稳定性和地铁运营安全。

关键词:地铁盾构;近距离穿越;沉降控制Construction technology control of shield tunneling through existing subway tunnel at short distanceYU Xianyun(ID number:******************,Guangxi Nanning)Abstract:Based on specific engineering as an example, based on the surface and the analysis of the affecting factors of shield tunnel segment of settlement, under shield in city metro line no. 2 tunnel construction control measures, effectively control the surface settlement and differential settlement of tunnel segment lining whole, can guarantee the stability of the existing subway tunnel structure and the subway operation safety.Keywords:Subway shield; Close crossing; Settlement control当前,各个城市的地铁建设已进入线网加密完善的时期,在对新的线路进行规划时,包括城市道路、繁华商业区、老旧城区住宅区、既有地铁隧道等,线路规划受周边建筑物的约束较为明显。

盾构近距离下穿既有地铁施工风险综合控制技术

盾构近距离下穿既有地铁施工风险综合控制技术

盾构近距离下穿既有地铁施工风险综合控制技术0 引言随着我国城市轨道交通建设事业快速发展,城市交通枢纽错综复杂,盾构法的应用越来越广泛,尤其在城市地铁建设中线路设计不可避免地下穿高层建筑物、桥梁、既有运营地铁线及河流等,盾构隧道施工过程中技术措施不足易造成沉降超标、建(构)筑物开裂或倾斜、既有运营线停运、甚至塌方等安全事故,造成重大社会影响。

其中隧道近距离下穿既有运营线就是一类典型案例,因此为保证在建隧道施工与建(构)筑物、既有运营线等安全,有必要对施工阶段技术进行深入研究,采取科学合理的应对技术措施。

目前国内外行业内专家针对在建盾构地铁下穿既有地铁隧道安全风险进行评估,其中关继发[1]对安全风险及控制技术进行了深入研究;胡云龙等人[2]针对在建地铁施工对既有线的影响进行详细分析,其次参考了一些地铁盾构施工近距离下穿既有线施工[3]的类似案例以及上软下硬或全断面富水砂层盾构施工技术[4-6],采取的技术措施主要为冷冻法[7]、地面双液浆[8-9]注浆加固,洞内双液浆注浆加固[10-11]等,均在实际工程中得到了广泛的应用。

目前国内在建地铁在上软下硬地层条件下近距离下穿既有运营地铁线施工案例较少,技术措施方案还需提升,本文将依托广州市轨道交通22号线某盾构井区间下穿既有运营地铁3号线盾构区间,采用地面定向注浆、洞内从左线向右线定向钻注浆、洞内径向超前注浆结合对运营线路自动监测技术,成功完成下穿施工。

为今后此类工况工程面临的难题提供了新的解决技术方案。

1 工程概况1.1 工程简介广州市轨道交通22号线某盾构井区间长2.51 km。

在区间里程ZDK38+542.909~ZDK38+523.709、YDK38+564.327~YDK38+545.127段于光明北路与东环路十字路口下穿既有运营地铁3号线盾构区间,下穿长度19.2~20.8 m。

22号线隧顶埋深26.5 m,隧顶距既有3号线隧底净距约5.5 m,先下穿3号线右线,再下穿3号线左线,如图1所示。

盾构近距离下穿运营地铁安全控制技术

盾构近距离下穿运营地铁安全控制技术

盾构近距离下穿运营地铁安全控制技术摘要:本文针对深圳市14号线共建管廊1标23#-22#综合井区间盾构管廊下穿运营地铁14号线的施工问题, 通过穿越前、穿越中、穿越后的各种管控措施, 实现了科学、合理、安全施工,有效拓展下穿既有地铁施工技术,在实际施工中提供了一定的借鉴作用。

关键词:盾构掘进;下穿运营地铁;安全控制引言随着我国城市地下交通建设规模的高速发展,越来越多的地下建设面临需要穿越已有线路的问题。

由于既有线路在前期规划设计中未考虑新线的修建,所以,新建地铁线路施工不可避免地会引起既有线路的变形,而地铁运营对既有线路的轨道沉降有非常严格的控制标准。

如何保证下穿施工的安全和既有线路的正常运营,在工程实践中,这一问题已引起高度重视,因此需要对这类问题开展必要的深入的研究分析,以减少施工过程中安全事故的发生。

因此,本文以深圳市地铁14号线共建管廊1标23#-22#综合井区间盾构管廊下穿既有地铁14号线为例,对盾构管廊下穿运营地铁线路的施工进行详细的分析和研究,以确保城市建设能够顺利进行。

1.工程概况本论文以深圳市地铁14号线共建管廊1标23#~22#综合井盾构区间为依托,在里程段LK19+289~LK19+270.66、LK19+271~LK19+251.7(404环-430环)下穿地铁14号线大运站-嶂背站区间左线、右线,地铁14号线隧道外径为6.7m,内径6.0m,管廊区间与14号线地铁隧道最小竖向距离3.48米。

管廊隧道洞身位于<30-3-3>块状强风化砂岩层,14号线隧道洞身位于<30-2-3>土状强风化砂岩层中,地铁14号线隧道上覆土从上到下依次为素填土、粉质黏土、砂砾、土状强风化砂岩;14号线隧道洞身下部为土状强风化砂岩:23#~22#综合井区间盾构下穿地铁14号线平面图23#~22#综合井区间盾构下穿地铁14号线平面图2. 穿越运营地铁14号线施工安全技术总体安排原则:“技术领先、设备先进、施工科学、组织合理、措施得力、突出重点、预案在先、规避风险、安全施工”。

分析地铁盾构隧道近距离下穿既有铁路隧道安全性

分析地铁盾构隧道近距离下穿既有铁路隧道安全性

分析地铁盾构隧道近距离下穿既有铁路隧道安全性◎程磊(作者单位:长沙市建设工程质量安全监督站)引言:处于新构建盾构隧道范围内的右线隧道长度为2457m,并且在里程SDK45+250.146~SDK45+295.146这一范围内下穿既有铁路路基。

普铁设有有砟轨道,运行时速可以达到160km/h,属于国家一级电气化铁路,其中铁路路基包括表层和底层,厚度分别为4m 和2m。

铁路轨道面到区间隧道结构的净距离大概是26m,比隧道直径大了1倍。

左右线隧道的埋深有22m,两者的中心线距离为28m。

进行隧道施工时,优先选择左线隧道,待左线隧道施工完成并停机后,再进行掘进右线隧道。

一、有限元模型构建本论文运用底层-架构-实体三维模型(详情见图1所示),岩土体使用的是摩尔-库伦本构。

因为路基架构与隧道两者间的地点关系是相对而言的,将模型(图1)的尺寸设置为:x×y×z=100m×100m×65m,x 代表的是平行盾构施工方向,y 代表的是垂直盾构施工方向,z 代表的是地层竖向。

桩界面参数中,法向刚度模量、剪切刚度模量、最终剪力的取值分别是250000kN/m 3、25000kN/m 3、150kN/m 2。

左右隧道中心线之间相距28m,隧道埋深22m。

优先对左线隧道施工,施工完毕关停机器之后对有线隧道加以施工。

盾构隧道的内外径分别是5.5、6.2m,注浆层的厚度为0.33m,利用二维板壳单元来对盾壳与管片进行模拟。

另外,盾构管片每环是1.5m,千斤顶力为100kN/m 2,掘进压力与注浆压力分别是120、150kN/m 2。

图1数值计算整体模型图二、计算结果分析下表是路基总体在左线隧道(掘进第1到第5步)和右线隧道(掘进第6到第10步)在不同掘进步骤下的沉降数值。

表1路基整体在不同施工步下的最大沉降值根据表1可以看出,盾构隧道的施工会给路基整体的沉降值造成影响,伴随施工的持续开展,沉降数值会逐步变大。

区间盾构下穿既有地铁安全控制措施

区间盾构下穿既有地铁安全控制措施

区间盾构下穿既有地铁安全控制措施1下穿概况区间盾构隧道在K31+840~K31+880下穿既有地铁1号线,侧穿***桥桩,2 变形控制指标既有地铁一号线变形控制指标为允许上浮1mm,下沉3mm,差异沉降1mm。

3 施工技术措施本段区间隧道垂直下穿1号线区间隧道,竖向净距仅2.0m,为充分考虑对城市轨道交通既有线的保护,对穿越段管片进行了特殊设计,具体措施如下:⑴管片增设预埋注浆孔;⑵管片浇注时掺加聚丙烯纤维,提高管片的受力性能;⑶管片内侧增设一道防水。

4外部加固措施根据现场条件,***下交通繁忙,不具备地面加固条件。

***站1号风道距离既有一号线边墙仅8米,盾构通过前,在***站1号风道对隧道顶部进行管棚和深孔注浆联合加固,保证加固后土体为一整体,强度不小于1MPa。

5 盾构施工控制措施为将区间隧道施工对1号线的影响减到最小,需采取如下施工控制措施:左线右线图3 盾构侧穿***桥桩现状照片1)选择合适时机穿越1号线,尽量安排在夜间停运期间快速穿越;2)通过试验段掘进和信息化施工,不断调整和优化施工参数,并请专家进行论证、数值模拟,推算盾构过既有线时的沉降量,控制在允许范围内,以保证穿越安全;3)穿越1号线区间隧道前,调整好盾构姿态,确保盾构以最好的姿态通过;4)严格保证盾构匀速、连续地穿越,以减小变速推进对周围土体造成的扰动;5)严格控制切口土压力和出土量,保持盾构土仓内外压力平衡,严格控制穿越1号线区间隧道时地层损失率≤2‰;6)严格控制同步注浆量,在盾构推进过程中及时充填隧道壁后建筑空隙,加强二次注浆,并按“多点、均匀、少量、多次”的原则有序进行,确保盾构穿越后上方1号线区间隧道的沉降迅速稳定于其控制值范围内;7)加强监控量测,在施工中进行实时、连续监测,及时掌握1号线区间隧道的变形情况,并据此确定是否需采取其他的保护措施。

8)盾构在到达段穿越1号线。

为顺利进行穿越,在穿越前检查整机状态,确保所有设备状态良好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盾构隧道近距离下穿既有地铁线路安全控制对策
作者:赵猛
来源:《中国房地产业·上旬》2020年第10期
【摘要】本文主要以盾构隧道近距离下穿既有地铁线路工程为背景,简单介绍了近距离穿越既有地铁线路工程的施工控制要求,并提出了几点施工安全控制措施,以仅供日后相关领域人员的参考借鉴。

【关键词】盾构隧道;近距离下穿;地铁;安全控制;既有线
在地铁的实际施工过程中,工程体量大,且属于高风险建设工程,随着城市化进程的逐渐推进,地下环境中的结构设施越来越多,如何保证在盾构隧道下穿施工顺利开展的同时,又不会对既有地铁线路的正常运行带来影响,成为了相关领域人员不得不面对的问题之一。

1、施工控制要求
在进行地铁施工建设的过程之中,主要需要加强控制的是区间隧道施工期间的变形问题,而就实际施工来说,其变形问题大致可划分成以下三个方面:(1)隧道周边土体结构的变形,会直接威胁到附近建筑体的安全性与稳定性;(2)既有结构附近土体的变形,情况严重时便会直接引起既有结构出现坍塌,严重威胁到人们的生命财产安全;(3)支护结构发生变形,会导致隧道施工存在较大安全风险。

此外,若是出现沉降问题也会对隧道施工带来影响:(1)地层沉降对隧道的影响。

盾构施工可能会使得附近土体受到扰动,从而在开挖断面上出现不均匀的沉降槽,对既有地铁线路的正常运营带来不良影响,成型隧道管片会随着沉降槽的形成而使得管片间的应力重新分布,导致管片见的重复挤压破损;(2)地层沉降对轨道的影响。

盾构施工会使得附近土体受到扰动,使得土体出现不均匀沉降,而一旦土体出现沉降,轨枕的支撑面会随之也发生一定的下沉,使得轨道多支座超静定系统也受到破坏。

并在列车动荷载作用之下,这些支撑面下沉的轨枕会连带轨道发生显著变形,使得轨道中应力大幅增高,当土体沉降较大时,甚至会使轨道断裂;(3)轨道差异沉降对列车运营的影响。

盾构施工近距离下穿既有地铁线路时,周边土体会受到扰动,使得地层发生差异沉降,轨道也会随之出现差异沉降。

而差异沉降会和列车自振结合起来,导致列车振幅变大,使列车出现摇摆运动。

所以,在施工作业期间,必须要有效确保结构物不发生变形、裂缝和沉降等问题,即使存在以上情况也需要将其控制在一定范围内,不能超出允许范围,如此才能有效确保施工作业安全、顺利的进行[1]。

2、盾构隧道近距离下穿地铁施工安全控制措施
2.1施工控制措施
在进行盾构隧道近距离下穿地铁施工时,必須要采取合理的措施,确保既有建筑结构与周边环境不受破坏,保障施工的顺利进行,主要措施有:
(1)同步注浆。

为了防范既有结构沉降问题的出现,在进行盾构掘进时,需要迅速在刀盘开挖轮廓与盾体外缘之间的间隙脱出盾构后的衬砌背面环形建筑间歇中填充足够的浆液材料,达到控制盾构通过是下沉的目的。

结合地质环境特点,浆液配比、注浆压力、注浆量以及注浆的起止时间会对同步注浆的具体效果起到重要作用。

由于浆液能够在短时间内凝固,这会对后期沉降起到一定的限制作用。

在进行同步注浆时,以选择使用缓凝无机材料最佳,当注浆材料充分凝固之后会具有低收缩性。

在开展注浆工作时,需要对注浆的压力与流量变化进行细致观察,对注浆参数进行严格把控。

(2)二次注浆。

采取二次(或是多次)注浆是为了弥补同步注浆所存在的不足之处,同时也是防范地表沉降的有效措施,能够让盾构在穿越建筑物、铁路轨道、道路与地下管线时,极大程度的减小地表沉降。

衬砌背后进行二次注浆,重点对拱部120°的范围实行施工作业[2]。

(3)监控测量指导盾构施工。

依照理论研究结果,同时联系工程施工现场,对盾构掘进提供实测控制指导,并针对盾构掘进时的不同阶段、不同参数下位移规律、土层扰动以及参数敏感性等做出详细的分析探讨,以此实现对盾构各项施工参数准确性的有效把控。

在下穿既有地铁线路时,地铁下方一定范围会引起土体的附加水平应力,所以对穿越前所确定的土压力应当进行适当的提升,且因为存在土层构成复杂、地面超载作用力以及建筑体基础结构等不确定因素,所以,应当按照穿越时的具体情况模拟拖进试验,在按照反馈数据对计算的静止土压力实行调整与改进,其后再正式开展盾构掘进施工。

在盾构掘进期间,需要确保足够且有效的注浆量与注浆压力,掘进的速度要遵守慢速、均匀的原则。

2.2下穿施工时的安全保护措施
在开始盾构施工之前,应当联系施工场地的地质状况以及下穿施工的作业特征,对盾构机的适应情况实行技术剖析。

在盾构施工前期准备阶段,还应当对盾构机采取全方位的维修与养护,对刀具进行检查与替换,从而为迅速、高效的下穿既有地铁线路打牢基础,保证穿越过程中的沉降控制效果。

在施工作业前,应当制定出一套周密严谨的应急预案,在正式施工时,应当安排专人对施工情况进行巡视检查,若是发现异常状况,需要立即采取应急预案的相关措施。

在盾构下穿段作业时,因为会对既有线结构造成一定影响,从而具有较大风险,此时,不仅需要对盾构隧道的掘进施工做日常监测,还要在既有线隧道周围安设自动化监测设备,基于自动全站仪来实现对出入线段的结构与道床的全方位、全天候监测。

并且,要按照监测计划,事先布置好每一处监测点,从而能够在开始监测工作之时,监测元件能够迅速进入至稳定的运行状态。

监测所得数据可经由远程操控系统直接传输至计算机,以此作为施工指导依据。

监测的周期需按照施工具体情况随时使用计算机做出调整,所设置的最小监测频率为1次/h。

结合风险评估分析结果,并联系设计需求,可实施以下措施予以保护:为保证既有线区间隧道能够继续安全的运行,需要对既有轨道进行专项保护,详细实施措施为,先对钢轨、扣件以及道床等实行全面细致的检查,保证既有轨道结构处于稳定、牢固的状态。

在对区间下穿出入段线区段以及两侧各ID(出入段线区段隧道跨度)范围段落装设轨距拉杆防护设施,同时在下穿作业正式开展之后将其限速运行,尤其是下穿出入段线要尽可能的在列车停止运行时进行施工[3]。

结语:
综上所述,地铁作为一项便民设施,受到了老百姓们的喜爱,随着城市的逐渐发展,地铁路线增加,变得错综复杂,在实际的隧道施工中,要采取合理的安全控制措施避免对既有地铁线路造成影响。

参考文献:
[1]王道钢,杨钟凯.分析隧道近距离下穿既有线地铁线路安全控制对策[J].城市建设理论研究(电子版),2019(13):140.
[2]张军荣.隧道近距离下穿既有线地铁线路安全控制[J].建筑,2018(16):71-73.
[3]张福忠.地铁隧道超近距离下穿既有线安全施工技术[J].山西交通科技,2015(03):87-90.。

相关文档
最新文档