非线性有限元 第2章非线性代数方程组的解法

非线性有限元 第2章非线性代数方程组的解法
非线性有限元 第2章非线性代数方程组的解法

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

线性代数齐次方程组解法

D =) () ()(0)()() (001 11112 132 3122211331221 1 312a a a a a a a a a a a a a a a a a a a a a a a a k k k k k k k k ------------ 按第一列展开,再将各列的公因子提出来 D = ) ()()() () () (121323122211331221131 2a a a a a a a a a a a a a a a a a a a a a a a a k k k k k k k k ------------ =(a 2-a 1)(a 3-a 1)…(a k -a 1) 22322 32 111 ---k k k k k a a a a a a 得到的k -1阶范德蒙德行列式,由归纳假设知其值为 ∏≤<≤-k i j j i a a 2)( 于是 D =(a 2-a 1)(a 3-a 1)…(a k -a 1) ∏≤<≤-k i j j i a a 2)(= ∏≤<≤-k i j j i a a 1)( 因此,对于任意正整数n ≥2,范德蒙德行列式的展开式都成立。 证毕 例1.14 计算n 阶三对角行列式: D n = 2 1 120000 021000 12 1000 12------ 解 由行列式的性质1.4,将D n 的第一列的每个元看成两个元之和,得

D n = 2100 12000002100 120 00011----- +2 1 1200000 21000 12 1 00011------ 第一个行列式按第一列展开;第二个行列式从第一行开始依次加到下一行,得 D n =D n -1+ 1 110000 01000 110 00011 ---=D n -1+1 反复利用上面的递推公式,得到 D n =D n -1+1=D n -2+2=…=D 1+n -1=2+n -1=n +1 例1.15 计算n 阶行列式 D n = n a b b b a b b b a 21 (a i ≠b , i =1,2,…,n ) 解 对于这个行列式,采用一种“加边”的技巧。 D n =n a b b b a b b b a b b b 000121 第一行乘以(-1)加到其他各行上去,得

求解温度场的非线性有限元方法

Ξ 求解温度场的非线性有限元方法 刘福来1, 杜瑞燕2 (1.东北大学信息科学与工程学院,辽宁沈阳 110004;2.河北青年干部管理学院教务处,河北石家庄 050031) 摘要:从G alerkin 有限元方法出发,对自由表面上的辐射换热的数学表达式不作线性化处理,而是把温 度场的求解问题转化为非线性代数方程组的求解问题,并且用Newton 迭代法计算了温度场. 关键词:温度场;有限元方法;Newton 迭代法 中图分类号:O 242.21 文献标识码:A 文章编号:100025854(2005)0120021204 由文献[1]知,求解二维待轧过程的温度场,就是要求下面微分方程和初值问题的解: 52T 5 x 2+52T 5y 2=1α5T 5t ;(1) -k 5T 5n =0,(x ,y )∈S 2; (2) -k 5T 5n =σεA (T 4-T 4 ∞),(x ,y )∈S 3; (3) T (x ,y ,0)=T 0(x ,y ). (4)其中:α=λ ρc 称为导温系数,λ,ρ和c 分别为热导系数、密度和比热;S 2为给出热流强度Q 的边界面; T ∞为环境温度;S 3为给出热损失的边界面.对轧制问题的温度场,常常考虑的几种边界面[1] 是:对称 面、自由表面和轧件与轧辊的接触面.在辐射面上,边界条件的数学表达式为σεA (T 4-T 4 ∞)(其中:σ为 Stefan 2Boltzmann 常数,ε为物体表面黑度,A 为辐射面积,T ∞为环境温度)是温度T 的4次幂,具有强 烈的非线性.以往在实际计算中有2种处理方法[2],一种是简化问题的物理模型,有时将表达式看成常 数,有时将边界条件转化成h r A (T -T ∞)(其中h r =σ ε(T 2+T 2∞)(T +T ∞)),在轧制问题中求解温度场时文献[1,3]都采用了这一方法;另一种是处理问题的数学方法,即用近似方法求解非线性的偏微分方程问题.例如,用数值分析的方法,文献[4]中利用了差分方法. 本文中,笔者从G alerkin 有限元法出发,对自由表面上辐射换热的数学表达式不作线性处理,而是直接对非线性代数方程组用Newton 迭代法计算温度场,以二维待轧过程温度场的有限元解析进行讨论.1 G alerkin 有限元方法简介 将待求解区域Ω剖分为E 个单元,每个单元4个节点.设N i 是形函数(i =1,2,3,4),用4节点线性等参单元,则单元内的温度为 T e =N 1T 1+N 2T 2+N 3T 3+N 4T 4={N }T {T}e , (5) 其中:{N }=(N 1,N 2,N 3,N 4)T ;{T}e =(T 1,T 2,T 3,T 4)T .设ω1,ω2,…,ωn 是一组基函数,用 G alerkin 方法求方程(1)~(4)的解,实际上是求c 1,c 2,…,c n ,使T n =c 1ω1+c 2ω2+…+c n ωn 满足 κ Ω ρc 5T n 5t -k 52T n 5x 2+ 52T n 5y 2 ωi d x d y =0,i =1,2,…,n. (6) 对式(6)应用Green 公式,有 Ξ收稿日期:2004 0105;修回日期:20040420 作者简介:刘福来(1975),男,河北省唐山市人,东北大学博士研究生. 第29卷第1期2005年 1月河北师范大学学报(自然科学版) Journal of Hebei Normal University (Natural Science Edition )Vol.29No.1Jan.2005

Maab求解线性方程组非线性方程组

M a a b求解线性方程组非 线性方程组 The latest revision on November 22, 2020

求解线性方程组solve,linsolve例:A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1];%矩阵的行之间用分号隔开,元素之间用逗号或空格B=[3;1;1;0]X=zeros(4,1);%建立一个4元列向量 X=linsolve(A,B)diff(fun,var,n):对表达式fun中的变量var求n阶导数。 例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式diff(F); %matlab区分大小写pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式 非线性方程求解 fsolve(fun,x0,options) 其中fun为待解方程或方程组的文件名; x0位求解方程的初始向量或矩阵; option为设置命令参数 建立文件: function y=fun(x) y=[x(1)*sin(x(1))*cos(x(2)), ... x(2) - *cos(x(1))+*sin(x(2))]; >>clear;x0=[,];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function 为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。 Matlab求解线性方程组AX=B或XA=B在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如:X=A\B表示求矩阵方程AX=B的解;X=B/A表示矩阵方程XA=B 的解。对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A 的列数,方程X=B/A同理。 如果矩阵A不是方阵,其维数是m×n,则有:m=n 恰定方程,求解精确解;m>n 超定方程,寻求最小二乘解;m

第10章(非线性有限元) (1)分解

第10章 非线性动力有限元法 (1) 10.1 几何非线性问题的有限元法 (2) 10.1.1 几何非线性问题的牛顿迭代法 ........................................................................... 2 10.1.2 典型单元的切线刚度矩阵 ................................................................................. 4 10.2 材料非线性问题的有限元法 (8) 10.2.1 弹/粘塑性问题的基本表达式 .............................................................................. 8 10.2.2 粘塑性应变增量和应力增量 ............................................................................... 9 10.2.3 弹/粘塑性平衡方程 ............................................................................................ 10 10.3 材料非线性问题的动力有限元法 ................................................................................ 11 10.4 应用举例 (14) 10.4.1 粘弹粘塑性动力有限元分析举例 ................................................................... 14 习题.. (15) 第10章 非线性动力有限元法 当机械结构受到较大的外载荷,或受到持续时间较短的冲击载荷作用时,结构会产生过大的变形, 以至于必须考虑结构几何大变形对结构整体刚度及固有频率的影响,即所谓的几何非线性影响。另外, 对于多数非线性动力学问题,还需要考虑材料非线性、接触非线性等方面的影响。 非线性动力学分析求解的基本方程有如下形式 0=-+P I u M (4.141) 式中,Ku u C I += 为粘性效应项,考虑阻尼、粘塑、粘弹等效应。P 为外部激励。 对于考虑各种非线性效应的动力学问题求解,需要对动力学方程进行直接时间积分。即非线性动力有限元分析具有如下特点:(1)问题分析过程需要考虑时间积分效应,不必做模态分析,不必提取固有频率;(2)采用直接积分方法求解非线性动力学方程,需要对时间作积分计算,因此计算量远远大于线性模态动力学方法;(3)非线性动力学分析中可以施加不同类型的载荷,包括结点力、非零位移、单元载荷;(4)在每个时间步上,进行质量、阻尼、及刚度的集成,采用完整矩阵,不涉及质量矩阵的近似;(5)可以同时考虑几何、材料和接触等多种非线性效应。 非线性动力有限元分析程序常采用隐式Hilber-Hughes-Taylor 法进行时间积分运算。这种方法适于模拟非线性结构的动态问题,对于冲击、地震等激发的结构动态响应以及一些由于塑性或粘性阻尼造成的能量耗散,隐式算法特别有效。隐式积分方法需要对刚度矩阵求逆计算,并通过多次迭代求解增量步平衡方程。隐式Hilber-Hughes-Taylor 时间积分算法为无条件稳定,对时间步长没有特别的限制。 采用子空间法也可以对动力学平衡方程作时间积分运算。子空间法是提取模态分析得到的各阶特征模态,并采用与线性模态动力学分析方法相近的分析方式进行求解。对于带有微小非线性效应的问题,如材料小范围进行入屈服、结点转角不大的情况,子空间法效率比进接积分法要高。

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

非线性方程组数值解法

非线性方程组数值解法 n个变量n个方程(n >1)的方程组表示为 (1) 式中?i(x1,x2,…,x n)是定义在n维欧氏空间R n的开域D上的实函数。若?i中至少有一个非 线性函数,则称(1)为非线性方程组。在R n中记?= 则(1)简写为?(尣)=0。若存在尣*∈D,使?(尣*)=0,则称尣*为非线性方程组的解。方程组(1)可能有一个解或多个解,也可能有无穷多解或无解。对非线性方程组解的存在性的研究远不如线性方程组那样成熟,现有的解法也不象线性方程组那样有效。除极特殊的方程外,一般不能用直接方法求得精确解,目前主要采用迭代法求近似解。根据不同思想构造收敛于解尣*的迭代序列{尣k}(k=0,1,…),即可得到求解非线性方程组的各种迭代法,其中最著名的是牛顿法。 牛顿法及其变形牛顿法基本思想是将非线性问题逐步线性化而形成如下迭代程序: (2) 式中

是?(尣k)的雅可比矩阵,尣0是方程(1)的解尣*的初始近似。 这个程序至少具有2阶收敛速度。由尣k算到尣k+的步骤为:①由尣k算出?(尣k)及 ;②用直接法求线性方程组的解Δ尣k;③求 。 由此看到迭代一次需计算n个分量函数值和n2个分量偏导数值,并求解一次n阶线性方程组。 为了评价非线性方程组不同迭代法的优劣,通常用效率作为衡量标准,其中P 为迭代法的收敛阶,W为每迭代步计算函数值?i及偏导数值的总个数(每迭代步中求一次逆的工作量相同,均不算在W内)。效率e越大表示此迭代法花费代价越小,根据效率定 义,牛顿法(2)的效率为。 牛顿法有很多变形,如当奇异或严重病态时,可引进阻尼因子λk,得到阻尼牛顿法,即

非线性方程组的求解

非线性方程组的求解 摘要:非线性方程组求解是数学教学中,数值分析课程的一个重要组成部分,作为一门学科,其研究对象是非线性方程组。求解非线性方程组主要有两种方法:一种是传统的数学方法,如牛顿法、梯度法、共轭方向法、混沌法、BFGS 法、单纯形法等。传统数值方法的优点是计算精度高,缺点是对初始迭代值具有敏感性,同时传统数值方法还会遇到计算函数的导数和矩阵求逆的问题,对于某些导数不存在或是导数难求的方程,传统数值方法具有一定局限性。另一种方法是进化算法,如遗传算法、粒子群算法、人工鱼群算法、差分进化算法等。进化算法的优点是对函数本身没有要求,不需求导,计算速度快,但是精度不高。 关键字:非线性方程组、牛顿法、BFGS 法、记忆梯度法、Memetic 算法 1: 三种牛顿法:Newton 法、简化Newton 法、修改的Newton 法【1-3】 求解非线性方程组的Newton 法是一个最基本而且十分重要的方法, 目前使用的很多有效的迭代法都是以Newton 法为基础, 或由它派生而来。 n 个变量n 个方程的非线性方程组, 其一般形式如下: ???????===0),...,(... 0),...,(0),...,(21212211n n n n x x x f x x x f x x x f (1) 式(1)中,),...,(21n i x x x f ( i=1, ?, n) 是定义在n 维Euclid 空间Rn 中开域 D 上 的实值函数。若用向量记号,令: ????????????=n x x x ...X 21,????????????=??????????????====)(...)()(0),...,(...0),..,(0)...,()(2121212,211X f X f X f x x x f x x x f x x x f X F n n n n n

用高斯消元法求解线性代数方程组.(优选)

用高斯消元法求解线性代数方程组 1234111 5 -413-2823113-2104151 3-21719x x x x ??????????????????=?????? ?????? ?????? 1111X *??????=?????? (X*是方程组的精确解) 1 高斯消去法 1.1 基本思想及计算过程 高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。 为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。 ??? ??=++II =++I =++III) (323034)(5 253)(6432321 321321x x x x x x x x x 把方程(I )乘(2 3 - )后加到方程(II )上去,把方程(I )乘(2 4- )后加到方程(III )上 去,即可消去方程(II )、(III )中的x 1,得同解方程组 ?? ? ??=+-II -=-I =++III) (20 223)(445.0)(6 4323232321x x x x x x x 将方程(II )乘( 5 .03 )后加于方程(III ),得同解方程组: ?? ? ??-=-II -=-I =++III) (42)(445.0)(6432332321x x x x x x 由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。 下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。

浅析线性方程组的解法

目录 摘要................................................................................... I Abstract. ............................................................................. II 第一章绪论............................................................................ I 1.1引言 (1) 1.2线性方程组解的求解方法的研究现状 (1) 1.3本文对线性方程组解法的研究结构 (1) 第二章线性方程组理论基础 (2) 2.1 线性方程组概念 (2) 2.2 线性方程组的解的情况分析 (2) 2.3 齐次线性方程组解的结构 (4) 2.4非齐次线性方程组解的结构 (4) 第三章线性方程组的数值解 (5) 3.1 迭代法 (5) 3.1.1 Jacobi方法 (6) 3.2.2 高斯-赛德尔方法 (8) 第四章全文总结和展望 (10) 4.1 全文总结 (10) 4.2 未来展望 (10) 参考文献 (11) 致谢................................................................. 错误!未定义书签。

线性方程组的求解方法 学生:指导教师: 摘要:本文在对线性方程组解的结构的研究背景与意义分析的基础上,对线性方程组的求解方法的研究现状进行了介绍,之后针对线性方程组展开了研究,包括线性方程组的概念、线性方程组的求解方法以及线性方程组的作用等,在对线性方程组有了全面的认识后,基于线性方程组解的结构展开了研究,包括线性方程组解的基本定理,齐次和非齐次线性方程组解的结构形式,以及齐次和非齐次线性方程组解的结构,我们用迭代法中最常用的Jacobi方法中的相似上三角矩阵定理和迭代法中的收敛性讨论线性方程组的数值解法,并用高斯-赛德尔方法进行验证。得到线性方程组的数值解的一般方法。最后,对全文进行了总结和展望。 关键词:线性方程组;数值解;迭代法;Jacobi方法;高斯-赛德尔方法

线性方程组的直接解法

第2章线性方程组的直接解法 2.1实验目的 理解线性方程组计算机解法中的直接解法的求解过程和特点,学习科学计算的方法和简单的编程技术。 2.2概念与结论 1. n阶线性方程组 如果未知量的个数为 n ,而且关于这些未知量x1,x2, …,x n的幂次都是一次的(线性的)那末, n 个方程 a11x1+a12x2+ … +a1n x n=b1 ┆┆┆ (1) a n1x1+a n2x2+ … +a nn x n= b n 构成一个含n个未知量的线性方程组,称为n阶线性方程组。其中,系数a11,…,a1n,a21, …,a2n, …,a n1, …,a nn 和b1, …,b n都是给定的常数。 方程组(1)也常用矩阵的形式表示,写为 Ax=b 其中,A是由系数按次序排列构成的一个n阶矩阵,称为方程组的系数矩阵,x和b都是n维向量,b称为方程组的右端向量。 2. n阶线性方程组的解 使方程组(1)中每一个方程都成立的一组数x1*,x2*, …,x n*称为式(1)的解,把它记为向量的形式,称为解向量. 3.一些特殊的线性方程组 1) 上三角方程组 2) 三对角方程组 ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - n n nn n n n n n n n n b b b x x x a a a a a a a a a a a a 2 1 2 1 1 1 1 2 1 2 23 22 1 1 1 13 12 11

4.矩阵的Doolittle 分解 5.Doolittle 分解的紧凑格式 6.矩阵的Crout 分解 ????????? ? ??=?????????? ???????????? ? ?--n n n n n n d d d x x x b a c b c b a c b a c b 21 2111333 22211???? ?? ? ? ???????? ??=??????? ??nn n n n n nn n n n n u u u u u u l l l a a a a a a a a a 222 11211 2 1 21 2 1 2222111211111 ???? ?? ? ? ???????? ??=??????? ??11 1 21122 1 2221 11 2 1 2222111211 n n nn n n nn n n n n u u u l l l l l l a a a a a a a a a ????? ?? ? ??nn n n n n n n u l l l u u l l u u u l u u u u 3 2 1 333323122322211131211

非线性有限元作业_老骆整理

1. 轴对称问题的弹塑性分析 流程图 : 节点号,单刚等各项参数 EN1 存储单元节点号, 局部坐标系转 换为全局坐标 N 打印错误 调用子函数 DEMATR 求[D] 调用子函数 BMATR 求 [B] 切线刚度阵 [EK]=[S][Q1]= · JD ·RN ·H(I1)H(J1) 返回各值 Y 读入单元号, B 矩阵位数,单刚位数,单元 开始 JD<0 [C]=[De ] [B] R=1 N [C]=[Dep][B]

解析解。厚壁筒受内压,采用Mises 屈服准则 经计算知,当t=()时,材料处于弹塑性交界面。 弹性区为: 塑性区: 交界处有:, 最后解得残余应力为: (7a) 有限元网格信息图:(7b) (8a) (8b) (1) (2) (3) (4) (5) (6)

图1 有限元网格 输入数据文件内容(详细信息见附件): DATA(1) NNODE MELEM IFU IFW IPF IPR NPP NRM HAC MSF NULOAD EXP NM(1-MELEM) NN NN(1-NNODE) R Z NFU(1-IFU) FU NFW(1-IFW) FW MPQ(1-IPF) NPQ*PQ NPRNRZ(1-IPR) PRNRZ E EMU SSS HH UNLOAD 对理想塑性材料厚壁筒,从初始状态开始,历经加载后完全卸载。这一过程中,厚壁筒内会产生残余应力。沿径向R的残余应力如图2-3 所示。

图 2 径向残余应力 -半径曲线 图 2-3 中分别给出了径向残余应力和切向残余应力随半径的变化, 比较。 从图中可以看出, 程序解和解析解在数值上能够很好的吻合, 大的地方 有少许偏差, 这验证了程序计算结果的正确性。 最大误差发生在径向残余应力达到 10 并且和解析解进行了 只是在径向残余应力最 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 12 14 16 Radius R 18 20 -5 -10 -15 图 3 切向残余应力 -半径曲线

线性方程组的几种求解方法

线性方程组的几种解法 线性方程组形式如下: 常记为矩阵形式 其中 一、高斯消元法 高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。现举例说明如下: (一)消元过程 第一步:将(1)/3使x 1的系数化为1 得 再将(2)、(3)式中x 1的系数都化为零,即由(2)-2×(1)(1) 得 )1(32)2( (03) 4 32=+x x )1(321)1(......23132=++ x x x

由(3)-4×(1)(1) 得 第二步:将(2)(1) 除以2/3,使x 2系数化为1,得 再将(3)(1) 式中x 2系数化为零,即 由(3)(1) -(-14/3)*(2)(2) ,得 第三步:将(3)(2) 除以18/3,使x 3系数化为1,得 经消元后,得到如下三角代数方程组: (二)回代过程 由(3)(3) 得 x 3=1, 将x 3代入(2)(2) 得x 2=-2, 将x 2 、x 3代入(1)(1) 得x 2=1 所以,本题解为[x]=[1,2,-1]T (三)、用矩阵演示进行消元过程 第一步: 先将方程写成增广矩阵的形式 第二步:然后对矩阵进行初等行变换 初等行变换包含如下操作 (1) 将某行同乘或同除一个非零实数 ) 3(3)3(......1-=x )2(3)3( (63) 18-=x ) 2(32) 2(......02=+x x ) 1(32)3( (63) 10 314-=-- x x

(2)将某行加入到另一行 (3)将任意两行互换 第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形式如下: 示例: (四)高斯消元的公式 综合以上讨论,不难看出,高斯消元法解方程组的公式为 1.消元 (1)令 a ij(1) = a ij , (i,j=1,2,3,…,n) b i(1) =b i , (i=1,2,3,…,n) (2)对k=1到n-1,若a kk(k)≠0,进行 l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n) a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n) b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n) 2.回代 若a nn(n) ≠0 x n = b n(n) / a nn(n) x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n ) (五)高斯消元法的条件 消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。 注意A的顺序主子式D i(i=1,2,…,n),在消元的过程中不变,这是因为消元所作的变换是“将某行的若干倍加到另一行”。若高斯消元法的过程进行了k-1步(a ii(i) ≠0,i

线性代数方程组的直接解法_赖志柱

第二章线性代数方程组的直接解法 教学目标: 1.了解线性代数方程组的结构、基本理论以及相关解法的发展历程; 2.掌握高斯消去法的原理和计算步骤,理解顺序消去法能够实现的条件,并在此基础上理解矩阵的三角分解(即LU分解),能应用高斯消去法熟练计算简单的线性代数方程组; 3.在理解高斯消去法的缺点的基础上,掌握有换行步骤的高斯消去法,从而理解和掌握选主元素的高斯消去法,尤其是列主元素消去法的理论和计算步骤,并能灵活的应用于实际中。 教学重点: 1. 高斯消去法的原理和计算步骤; 2. 顺序消去法能够实现的条件; 3. 矩阵的三角分解(即LU分解); 4. 列主元素消去法的理论和计算步骤。 教学难点: 1. 高斯消去法的原理和计算步骤; 2. 矩阵的三角分解(即LU分解); 3. 列主元素消去法的理论和计算步骤。 教学方法: 教具: 引言 在自然科学和工程技术中,许多问题的解决常常归结为线性方程组的求解,有的问题的数学模型中虽不直接表现为线性方程组,但它的数值解法中将问题“离散化”或“线性化”为线性方程组。例如,电学中的网络问题、船体数学放样中建立三次样条函数问题、最小二乘法用于求解实验数据的曲线拟合问题、求解非线性方程组问题、用差分法或有限元法求解常微分方程边值问题及偏微分方程的定解问题,都要导致求解一个或若干个线性方程组的问题。 目前,计算机上解线性方程组的数值方法尽管很多,但归纳起来,大致可以分为两大类:一类是直接法(也称精确解法);另一类是迭代法。例如线性代数中的Cramer法则就是一种直接法,但其对高阶方程组计算量太大,不是一种实用的算法。实用的直接法中具有代表性的算法是高斯(Gauss)消元法,其它算法都是它的变形和应用。 在数值计算历史上,直接法和迭代法交替生辉。一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。一般说来,对同等规模的线性方程组,直接法对计算机的要求高于迭代法。对于中、低阶(200 n )以及高阶带形的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。对于一般高阶方程组,特别是系数矩阵为大型稀疏矩阵的线性方程组用迭代法有效。

第六章非线性方程组的迭代解法

第六章非线性方程组的迭代解法6.4 非线性方程组的数值解法 6.4.1 非线性方程组的不动点迭代法 6.4.2 非线性方程组的Newton法 6.4.3非线性方程组的Newton法

第六章非线性方程组的迭代解法 T n x f x f x f x F )) (),(),(()(21L =设含有n 个未知数的n 个方程的非线性方程组为 (6,4,1)其中为n 维列向量, 0)(=x F T n x x x x ),,(21L =6.4.1 非线性方程组的不动点迭代法 ),,2,1)((n i x f i L =中至少有一个是x 的非线性函数, 并假设自变量和函数值都是实数。多元非线性方程组 (6.4.1)与一元非线性方程f(x)=0具有相同的形式,可以与一元非线性方程并行地讨论它的迭代解法。例如不动点迭代法和Newton 型迭代法。但是,这里某些定理的证明较为复杂,我们将略去其证明。

第六章非线性方程组的迭代解法 T n x x x x x )) (,),(),(()(21???L =Φ=(6.4.2) 并构造不动点迭代法 L ,1,0),()()1(=Φ=+k x x k k (6.4.3) 把方程组(6.4.1)改写成下面便于迭代的等价形式: 的解。是方程组 从而的不动点,是迭代函数即满足连续函数.则的是自变量 是连续的,即且收敛, 若由此生成的序列对于给定的初始点)1.4.6()(),(,,,)(,),(),()(,*****2121)0(x x x x x x x x x x x x x x n n φφ???φ=L K {}k x *)(lim x x k k =∞ →

线性代数方程组求解

线性代数方程组求解 一、实验要求 编程求解方程组: 方程组1: 方程组2: 方程组3: 要求: 用C/C++语言实现如下函数: 1.bool lu(double* a, int* pivot, int n); 实现矩阵的LU分解。 pivot为输出参数,pivot[0,n)中存放主元的位置排列. 函数成功时返回false,否则返回true。 2.bool guass(double const* lu, int const* p, double* b, int n);

求线代数方程组的解 设矩阵Lunxn 为某个矩阵anxn 的LU 分解,在内存中按行优先次序存放。p[0,n)为LU 分解的主元排列.b 为方程组Ax=b 的右端向量.此函数计算方程组Ax=b 的解,并将结果存放在数组b [0,n )中.函数成功时返回false ,否则返回true 。 3。 void qr(double* a , double * d, int n);矩阵的QR 分解 假设数组anxn 在内存中按行优先次序存放。此函数使用HouseHolder 变换将其就地进行QR 分解。 d 为输出参数,d [0,n) 中存放QR 分解的上三角对角线元素。 4。 bool hshld(double const*qr , double const*d, double*b , int n); 求线代数方程组的解 设矩阵qrnxn 为某个矩阵anxn 的QR 分解,在内存中按行优先次序存放。d [0,n ) 为QR 分解的上三角对角线元素。b 为方程组Ax=b 的右端向量。 函数计算方程组Ax=b 的解,并将结果存放在数组b[0,n)中。 函数成功时返回false ,否则返回true 。 二、问题分析 求解线性方程组Ax=b ,其实质就是把它的系数矩阵A 通过各种变换成一个下三角或上三角矩阵,从而简化方程组的求解。因此,在求解线性方程组的过程中,把系数矩阵A 变换成上三角或下三角矩阵显得尤为重要,然而矩阵A 的变换通常有两种分解方法:LU 分解法和QR 分解法。 1、LU 分解法: 将A 分解为一个下三角矩阵L 和一个上三角矩阵U,即:A=LU , 其中 L=??????? ?????1001 00 12121 n n l l l , U=? ? ??? ? ??????nn n n u u u u u u 000 00222112 11 2、QR 分解法: 将A 分解为一个正交矩阵Q 和一个上三角矩阵R,即:A=QR 三、实验原理 解Ax=b 的问题就等价于要求解两个三角形方程组: ⑴ Ly=b,求y; ⑵ Ux=y,求x 。 设A 为非奇异矩阵,且有分解式A=LU , L 为单位下三角阵,U 为上三角

第10章(非线性有限元)分解

公式号、图号等 第十章 非线性动力有限元法 当机械结构受到较大的外载荷,或受到持续时间较短的冲击载荷作用时,结构会产生过大的变形, 以至于必须考虑结构几何大变形对结构整体刚度及固有频率的影响,即所谓的几何非线性影响。另外, 对于多数非线性动力学问题,还需要考虑材料非线性、接触非线性等方面的影响。 非线性动力学分析求解的基本方程有如下形式 0=-+P I u M (4.141) 式中,Ku u C I += 为粘性效应项,考虑阻尼、粘塑、粘弹等效应。P 为外部激励。 对于考虑各种非线性效应的动力学问题求解,需要对动力学方程进行直接时间积分。即非线性动力有限元分析具有如下特点:(1)问题分析过程需要考虑时间积分效应,不必做模态分析,不必提取固有频率;(2)采用直接积分方法求解非线性动力学方程,需要对时间作积分计算,因此计算量远远大于线性模态动力学方法;(3)非线性动力学分析中可以施加不同类型的载荷,包括结点力、非零位移、单元载荷;(4)在每个时间步上,进行质量、阻尼、及刚度的集成,采用完整矩阵,不涉及质量矩阵的近似;(5)可以同时考虑几何、材料和接触等多种非线性效应。 非线性动力有限元分析程序常采用隐式Hilber-Hughes-Taylor 法进行时间积分运算。这种方法适于模拟非线性结构的动态问题,对于冲击、地震等激发的结构动态响应以及一些由于塑性或粘性阻尼造成的能量耗散,隐式算法特别有效。隐式积分方法需要对刚度矩阵求逆计算,并通过多次迭代求解增量步平衡方程。隐式Hilber-Hughes-Taylor 时间积分算法为无条件稳定,对时间步长没有特别的限制。 采用子空间法也可以对动力学平衡方程作时间积分运算。子空间法是提取模态分析得到的各阶特征模态,并采用与线性模态动力学分析方法相近的分析方式进行求解。对于带有微小非线性效应的问题,如材料小范围进行入屈服、结点转角不大的情况,子空间法效率比进接积分法要高。 此外,非线性动力有限元分析还可以采用显式动态算法,如中心差分法。显式时间积分算法为有条件稳定,其临界稳定时间步长限制了时间步长的大小,与有限元模型最小单元尺寸、材料应力波速等有关。显式时间积分法适于模拟高速冲击、接触等问题。 上述方法的选择需要综合考虑计算量、分析问题的规模、单元限制等多方面因素,需要丰富的有限元模拟的理论、经验和实践知识。以下以几何非线性问题和材料非线性问题为例介绍非线性有限元法,其中粘弹粘塑性非线性材料问题的分析是典型的非线性动力有限元的求解思想。 9.1 几何非线性问题的有限元法 几何非线性问题一般是指物体经历大的刚体位移和转动,但固连于物体坐标系中的应变分量仍假设为小量, 即大位移小应变情况。

相关文档
最新文档