博弈论的经典案例
博弈论经典案例

博弈论经典案例在我们的生活中,博弈论的应用无处不在。
从商业竞争到政治决策,从人际关系到体育比赛,博弈论的智慧都在发挥着作用。
接下来,让我们一起来探讨几个经典的博弈论案例。
案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警察抓住,但警察并没有足够的证据证明他们有罪。
于是,警察将两人分别关押在不同的房间进行审讯,并给出了以下的条件:如果 A 和 B 都保持沉默(不认罪),那么他们都会被判刑 1 年。
如果 A 认罪并指证 B,而 B 保持沉默,那么 A 将被无罪释放,B将被判刑 10 年。
如果 B 认罪并指证 A,而 A 保持沉默,那么 B 将被无罪释放,A将被判刑 10 年。
如果 A 和 B 都认罪并互相指证,那么他们都会被判刑 8 年。
从理性的角度来看,对于 A 来说,如果 B 保持沉默,那么自己认罪可以无罪释放;如果B 认罪,那么自己认罪也能少判刑2 年。
所以,A 会选择认罪。
同样的,B 也会做出相同的选择。
最终的结果是,两人都认罪,都被判刑 8 年。
然而,从整体的最优结果来看,如果两人都保持沉默,那么他们总共只需要判刑 2 年。
但由于双方无法信任对方,都为了自身利益做出了看似最优的选择,却导致了次优的结果。
这个案例在现实生活中有很多应用。
比如在商业竞争中,两个企业可能会为了争夺市场份额而采取降价策略。
如果双方都不降价,可能都能获得一定的利润;但如果一方降价,另一方不降价,那么降价的一方就能获得更多的市场份额;如果双方都降价,虽然都能获得一些市场份额,但利润都会大幅减少。
案例二:智猪博弈假设猪圈里有一头大猪和一头小猪。
猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮。
按一下按钮会有 10 个单位的猪食进槽,但谁按按钮就会首先付出 2 个单位的成本。
若大猪先到槽边,大猪吃到 9 个单位,小猪只能吃到 1 个单位;若同时到槽边,大猪吃 7 个单位,小猪吃 3 个单位;若小猪先到槽边,大猪吃 6 个单位,小猪吃 4个单位。
博弈论经典案例

博弈论经典案例博弈论是研究决策者之间策略和利益的数学理论,它在经济学、政治学、生物学等领域有着广泛的应用。
在博弈论中,经典案例是帮助我们理解和应用博弈论理论的重要工具。
下面,我们将介绍几个经典的博弈论案例,帮助大家更好地理解博弈论的核心概念和应用。
第一个经典案例是囚徒困境。
囚徒困境是指两个犯罪嫌疑人被分开审讯,如果两人都沉默不发言,警方只能以轻罪定罪,每人判刑一年;如果其中一人选择认罪举证,而另一人沉默不发言,认罪者将免于刑事处罚,而另一人将被判十年重刑;如果两人都选择认罪举证,警方将以共同犯罪定罪,每人判刑八年。
在这个案例中,每个囚徒都面临着合作和背叛的选择,他们的最佳策略取决于对方的选择。
囚徒困境案例展示了合作和背叛之间的博弈,以及如何在利益最大化和风险最小化之间进行权衡。
第二个经典案例是孩子分糖果。
假设有两个孩子,他们要平分一袋糖果。
如果他们能够达成一致,那么每个人都会得到一半的糖果;但如果他们无法达成一致,糖果将被拿走。
在这个案例中,每个孩子都需要考虑对方的利益和策略,以及如何最大化自己的利益。
这个案例展示了博弈论在日常生活中的应用,以及如何在博弈中进行合作和谈判。
第三个经典案例是价格竞争。
假设有两家公司在同一个市场上销售相似的产品,它们需要决定产品的定价策略。
如果它们选择相同的价格,那么它们将平分市场份额;但如果它们选择不同的价格,价格较低的公司将获得更多的市场份额。
在这个案例中,每家公司都需要考虑对方的定价策略,以及如何最大化自己的利润。
这个案例展示了博弈论在市场竞争中的应用,以及如何在竞争中制定最佳策略。
以上三个经典案例展示了博弈论在不同领域的应用,以及博弈论理论对于理解和解决现实生活中的冲突和竞争问题的重要性。
通过学习这些经典案例,我们可以更好地理解博弈论的核心概念和方法,为我们在实际问题中的决策和策略制定提供有益的启示。
希望大家能够通过这些案例,深入了解博弈论的精髓,为自己的决策和行为提供更加理性和有效的指导。
博弈论经典案例

博弈论经典案例1. 囚徒困境:这是一种经典的博弈论案例,两名囚犯被关押在不同的牢房中,警方缺乏确凿的证据将他们定罪,决定让他们进行交涉。
如果两人都认罪,每人将会被判刑5年;如果一个人认罪而另一个人保持沉默,认罪的人将会被判刑1年,而保持沉默的人将被判无期徒刑;如果两人都保持沉默,每人将被判刑3年。
在这种情况下,每个囚犯都面临着是否信任对方合作的决策。
2. 麦氏定理:这是美国经济学家约翰·N·纳什于1950年提出的经典问题。
假设有两家咖啡店A和B,它们的位置一个在城市的北边,另一个在南边。
两家咖啡店需要决定每天早上的开门时间。
如果A咖啡店在北边开门,而B咖啡店在南边也同样开门,北部居民会去A店,南部居民会去B店,两家店的收入会平均分。
但是,如果A店在北边开门,而B店在南边关门,南部居民不得不去北边排队等待,这将导致北边的队伍变长,北部居民也会选择去B店。
麦氏定理指出,当两家店选择不同的开门时间时,总是有一种策略,使得两家店的收入之和最大。
3. 社交圈中的追逐游戏:在一个社交聚会上,一对情侣分手后,男方试图追回女方。
男方完成了一连串的行动,女方必须在每个行动之后做出回应。
游戏的目标是让女方接受男方的求爱。
这个案例涉及到博弈论中的策略选择和不确定性。
4. 价格竞争:在一场市场竞争中,两家公司决定销售产品的价格。
低价通常会吸引更多的消费者,但是公司也需要考虑到自己的成本和利润。
每家公司需要在出售产品的定价上权衡竞争和利润之间的平衡。
这个案例涉及到博弈论中的纳什均衡和即时反应策略。
5. 投标博弈:在一场拍卖中,多个竞争者竞相出价,以获得拍卖品。
每个竞争者必须决定自己的出价,以获得最大的利润。
这个案例涉及到博弈论中的最优出价和风险评估。
博弈论的经典案例五篇

博弈论的经典案例五篇博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。
本站为大家整理的相关的博弈论的经典案例供大家参考选择。
博弈论的经典案例篇一囚徒困境学习管理学或经济学的人一定都了解一些博弈论方面的知识。
在博弈论中有一个经典案例囚徒困境,非常耐人回味。
“囚徒困境”说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。
这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。
但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。
而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了。
但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
十大博弈论经典案例

十大博弈论经典案例1.《囚徒困境》。
囚徒困境是博弈论中最著名的案例之一。
在这个案例中,两名囚犯被捕,但检察官没有足够的证据来判定他们犯罪。
如果两名囚犯都沉默,他们将被判处较轻的刑罚;如果其中一人选择交代,而另一人保持沉默,那么交代的囚犯将获得豁免,而另一人将被判处重刑;如果两人都交代,他们将被判处较重的刑罚。
在这种情况下,每个囚犯都面临着一个困境,无论对方选择什么,自己都会受到损失。
2.《合作博弈》。
合作博弈是指参与者之间可以进行合作的博弈。
在合作博弈中,参与者可以通过合作来获得更好的结果。
例如,两家公司可以通过合作来共同开发新产品,从而获得更大的利润。
合作博弈强调参与者之间的合作和协调,以实现共同的利益。
3.《竞争博弈》。
竞争博弈是指参与者之间存在竞争关系的博弈。
在竞争博弈中,参与者的利益往往是相互对立的。
例如,两家公司在市场上竞争销售同一种产品,它们的利润往往是相互竞争的。
竞争博弈强调参与者之间的竞争和对抗,以争取最大的利益。
4.《博弈的策略》。
在博弈中,参与者可以选择不同的策略来影响结果。
策略是参与者在博弈中可以采取的行动。
不同的策略选择会导致不同的结果,而博弈论就是研究参与者如何选择最优策略以达到最大利益的学科。
5.《信息不对称博弈》。
信息不对称博弈是指参与者在博弈中拥有不同的信息。
在这种情况下,有一方可能掌握更多的信息,从而在博弈中占据优势。
信息不对称博弈强调信息的重要性,以及如何在信息不对称的情况下做出最优决策。
6.《博弈的均衡》。
博弈的均衡是指在博弈中参与者达到一种稳定状态的结果。
在这种状态下,参与者不会再改变自己的策略,因为任何单方面的改变都不会给自己带来更好的结果。
博弈的均衡是博弈论中非常重要的概念,它可以帮助我们预测参与者的行为和结果。
7.《博弈的合作与对抗》。
在博弈中,合作和对抗是两种常见的行为方式。
合作可以带来共同的利益,而对抗则是为了争取最大的利益。
在实际的博弈中,参与者往往需要权衡合作和对抗之间的关系,以达到最优的结果。
博弈论经典案例

博弈论经典案例1. 恶魔的游戏 (Devil's game)这是一种博弈论的思想实验,假设有两个玩家 A 和 B 同时选择一个数字,如果两个数字相等,则 A 赢;如果两个数字不相等,则 B 赢。
问题在于,无论 A 和B 怎样选择,是否存在一种策略,使得 A 有必胜的把握?答案是不存在这样的必胜策略。
因为无论 A 和 B 怎样选择,都有 50% 的概率两个数字相等,这个概率不受选择策略的影响。
所以,这个游戏是一个“随机游戏”,任何一方都没有必胜策略。
2. 囚徒困境 (Prisoner's dilemma)囚徒困境是最著名的博弈论案例之一。
在这个游戏里,有两个人被抓住了,被判处各自坐牢20 年。
检察官给他们一个选择:如果两个人都认罪,那么各坐8 年;如果其中一个人认罪,而另一个人不认罪,那么认罪的人不用坐牢,而不认罪的人要坐 30 年;如果两个人都不认罪,那么各坐 20 年。
问题在于,两个人应该做什么选择才能最大化自己的利益?这个游戏的特殊之处在于,两个人之间的合作可以带来更大的利益,但是他们又互相不信任。
如果两个人都认罪,那么他们的利益是最小的,但是这么做可以避免另一个人的背叛,因此是一种安全策略。
如果两个人都不认罪,那么他们的利益也不是最大的,因为他们错失了合作的机会。
最终,由于信任问题,两个人可能会都选择认罪,而得到不太理想的结果。
3. 鸽子和猫 (Pigeon and Cat)这是一个有趣的案例。
假设有一个狭长的走廊,有一只鸽子和一只猫在两端等待。
如果鸽子朝左走,那么猫就会朝右走;如果鸽子朝右走,那么猫就会朝左走。
如果两只动物在同一个地方相遇,那么鸽子就会被吃掉。
问题在于,这个走廊有多长时,鸽子才有足够的概率逃脱?答案是 2/3。
如果走廊长度小于等于 2/3,那么猫可以直接守在鸽子的对面,而鸽子无法逃脱。
如果走廊长度大于 2/3,那么猫不得不冒着追错方向的风险前进,这就给了鸽子逃脱的机会。
博弈论66个经典例子

博弈论66个经典例子篇一:《博弈论三大经典案例》经典的囚徒困境1950年,由就职于兰德公司的梅里尔·弗拉德(Merrill Flood)和梅尔文·德雷希尔(Melvin Dresher)拟定出相关困境的理论,后来由顾问阿尔伯特·塔克(Albert Tucker)以囚徒方式阐述,并命名为“囚徒困境”。
经典的囚徒困境如下:警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。
于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检举对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。
若二人都保持沉默(相关术语称互相“合作”),则二人同样判监半年。
若二人都互相检举(互相“背叛”),则二人同样判监2年。
用表格概述如下:甲沉默(合作)乙沉默(合作)二人同服刑半年甲认罪(背叛)甲即时获释;乙服刑10年乙认罪(背叛)甲服刑10年;乙即时获释二人同服刑2年如同博弈论的其他例证,囚徒困境假定每个参与者(即“囚徒”)都是利己的,即都寻求最大自身利益,而不关心另一参与者的利益。
参与者某一策略所得利益,如果在任何情况下都比其他策略要低的话,此策略称为“严格劣势”,理性的参与者绝不会选择。
另外,没有任何其他力量干预个人决策,参与者可完全按照自己意愿选择策略。
囚徒到底应该选择哪一项策略,才能将自己个人的刑期缩至最短?两名囚徒由于隔绝监禁,并不知道对方选择;而即使他们能交谈,还是未必能够尽信对方不会反口。
就个人的理性选择而言,检举背叛对方所得刑期,总比沉默要来得低。
试设想困境中两名理性囚徒会如何作出选择:若对方沉默、背叛会让我获释,所以会选择背叛。
若对方背叛指控我,我也要指控对方才能得到较低的刑期,所以也是会选择背叛。
二人面对的情况一样,所以二人的理性思考都会得出相同的结论——选择背叛。
背叛是两种策略之中的支配性策略。
因此,这场博弈中唯一可能达到的纳什均衡,就是双方参与者都背叛对方,结果二人同样服刑2年。
经济学博弈

•
试想有两只公鸡遇到一起,每只公鸡有两
个行动选择:一是退下来,一是进攻。如果
一方退下来,而对方没有退下来,对方获得
胜利,这只公鸡则很丢面子;如果对方也退
下来双方则打个平手;如果自己没退下来,
而对方退下来,自己则胜利,对方则失败;
如果两只公鸡都前进,那么则两败俱伤。因
此,对每只公鸡来说,最好的结果是,对方
注意①对每一方,有限军备都是全局优势策略,扩军和
不设防都是全局劣势策略。
②此问题也可用重复剔除的占优均衡求得博弈问题
的解为(有限军备,有限军备)。
2024/10/12
中南财经政法大学信息学院
22
例7:寻找纳什均衡
2024/10/12
C1
C2
R1
100,100
0,0
50,101
R2
50,0
1,1
60,0
中南财经政法大学信息学院
21
军备考虑为扩军、有限军备、不设防,那么G为:
B
扩军
有限
裁军
扩军
(-2000,-2000)
(-1600,-1500)
(8000,-∞)
有限
(-1500,-1600)
(-500,-500)
(9500,-∞)
裁军
(-∞,8000)
(-∞,9500)
(0,0)
A
据划线法求得Nash均衡为双方采用有限军备策略。
中南财经政法大学信息学院
11
纳什均衡的含义就是:
给定你的策略,我的策略是最好的策略;给定我
的策略,你的策略也是你的最好的策略。即双方在给
定的策略下不愿意调整自己的策略。请同学分析:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智猪博弈
按钮 食槽
智猪博弈
假设食物进入食槽后, 1.大猪先吃,吃9个食物; 2.小猪先吃,吃4个食物; 3.同时吃,大猪吃7个食物,小 猪吃3个食物。
智猪博弈
小猪
按 按 大猪 等待 5, 1 9,-1 等待 4,4 0,0
智猪博弈
大猪按按钮。
Nash均衡——(按,等待)。
结果——(4,4)。
斗鸡博弈
性别战和斗鸡博弈引出的问题:
当存在多个Nash均衡时,如 何选择,即如何达到一致性预测。
5 猜硬币
甲乙两人玩猜硬币游戏。甲出正反, 乙猜正反。若乙猜对,则甲给乙一元钱; 否则,乙给甲一元钱。
猜硬币
B 正 反
1,-1
正
A 反
- 1 ,1
1,-1 -1,1
猜硬币
不存在前面所讨论的Nash均衡。
斗鸡博弈
B 进 退
2, 0 0, 0
进
A 退
-3,-3 0, 2
斗鸡博弈
斗鸡博弈存在两个Nash均衡——(进, 退)和(退,进)。
博弈结果——(2,0)和(0,2)。
斗鸡博弈
斗鸡博弈实例:
1.公共产品提供; 2.美苏争霸; 3.警察与游行队伍; 4.夫妻吵架; 5. 古巴导弹危机。
斗鸡博弈
现实生活中的象骑虎难下、进退 两难的局面都可看成是斗鸡博弈的具 体体现。
3 性别战
女 足球 足球 男 芭蕾 芭蕾
2,1 0,0
0,0 1,2
性别战
性别战博弈中存在两个Nash均衡— —(足球,芭蕾)和(芭蕾,足球)。
博弈结果——(2,1)和(1,2)。
4 斗鸡博弈
设想两个勇士举着火棍从独木桥两端冲向 中央进行火拼。
万丈深渊
斗鸡博弈
每个人都有两种选择——前进或后 退。 两人都前进,则两败俱伤; 一人进另一人退,则进者胜,退则 丢面子; 两人都退,都丢面子。
“囚徒困境”引申出来的结论:
一种制度(体制,协议)安排, 要发生效力,必须是一种 Nash 均衡。否则,这种制度安排便不 能成立。
2
智猪博弈
现有一猪圈,里面有两头猪——大猪和 小猪(参与人);
猪圈的一端是食槽,一端是按钮。(大 猪或小猪)按按钮,食槽中可进10个单位的 食物,按按钮的成本为2个单位的食物。
囚徒困境
参与人——小偷 参与人策略集——{坦白,抵赖} 参与人的支付——判刑年限
囚徒困境Bຫໍສະໝຸດ 坦白坦白A
-10, 0
抵赖
-1,-1
-8,-8 0,-10
抵赖
囚徒困境
解决问题的思路: 给定对方的选择,寻找自己的最优战略。 每位参与者要选择的战略必须是针对其 它参与者选择战略的最优反应。
囚徒困境
结果——(坦白,坦白)(或(-8,-8))。该 结果称为博弈的Nash均衡。
(-1,-1)相对于(-8,-8)为Pareto最 优。
囚徒困境
“囚徒困境”反映的问题:
个人理性与集体理性的矛 盾!
囚徒困境
现实生活中哪些情形具有“囚徒困境”?
1. 寡头垄断市场上产量的确定,如石油输 出国组织(OPEC); 2. 公共产品的供给;
3. 美苏军备竞赛;
4. 素质教育与应试教育。
囚徒困境
实例
1.囚徒困境 2.智猪博弈 3.性别战 4. 斗鸡博弈 5.猜硬币 6.市场进入阻扰博弈
1 囚徒困境
两个小偷作案后被警察抓住,分别 关在不同的屋子里审讯。警察告诉他们: 如果两个人都坦白,各判刑8年;如果两 个人都抵赖,各判1年(可能因证据不足); 如果其中一人坦白另一人抵赖,坦白的 放出去,而抵赖的判刑10年。
1,-1 -1, 1
剪刀 布
1,-1 -1,1
6 石头、剪刀、布
存在类似于猜硬币游戏的均衡吗?
7 市场进入阻扰博弈
在某一产品生产领域,一厂商(称为 在位者)单独生产该产品,获得高额利润 300。现有另一厂商(进入者)准备进入该 产品市场。
市场进入阻扰博弈
进入者面临的选择——“进入”或“不 进入”; 在位者面临的选择——“默许”或“斗 争”。
实际中,甲乙都以50%的概率选择 “正”、“反”。
猜硬币
此时,甲乙都不再采用单纯“正”策 略和“反”策略,而是采用混合策略, 即以50%的概率选择策略“正”、 “反”。
甲——(50%,50%) 乙——(50%,50%)
6 石头、剪刀、布
B
石头 石头
A
剪刀
0, 0
布
1, -1 0, 0
0,0 -1 , 1
智猪博弈
智猪博弈反映:
多劳者不多得!
智猪博弈
智猪博弈的实例:
1.股东对股份公司的监督; 2.股票市场; 3.大、小企业对新产品的开发; 4.公共产品的提供。
3 性别战
一对恋人决定周末出去活动。他们 的活动选择有——看足球和看芭蕾。
假设男孩喜欢看足球,女孩喜欢看 芭蕾,但他们又不愿意分开活动。如果 他们各自单独决策,将如何选择?
市场进入阻扰博弈
B 默许 斗争
-10,0 0,300
进入
A 不进入
不是Nash均衡
40,50 0,300
市场进入阻扰博弈
该博弈同样存在两个Nash均衡—— (进入,默许)和(不进入,斗争)。 博弈结果——(40,50)和(0,300)。
休息一会!!!