定积分在物理中的应用
定积分在物理中的应用

定积分在物理中的应⽤定积分在物理中的应⽤⽬录:⼀.摘要⼆.变⼒沿直线所作的功三.液体的侧压⼒四.引⼒问题五.转动惯量摘要:伟⼤的科学家⽜顿,有很多伟⼤的成就,建⽴了经典物理理论,⽐如:⽜顿三⼤定律,万有引⼒定律等;另外,在数学上也有伟⼤的成就,创⽴了微积分。
微积分(Calculus)是⾼等数学中研究函数的微分、积分以及有关概念和应⽤的数学分⽀。
它是数学的⼀个基础学科。
内容主要包括极限、微分学、积分学及其应⽤。
微分学包括求导数的运算,是⼀套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可⽤⼀套通⽤的符号进⾏讨论。
积分学,包括求积分的运算,为定义和计算⾯积、体积等提供⼀套通⽤的⽅法。
微积分最重要的思想就是⽤"微元"与"⽆限逼近",好像⼀个事物始终在变化你很难研究,但通过微元分割成⼀⼩块⼀⼩块,那就可以认为是常量处理,最终加起来就⾏。
微积分学是微分学和积分学的总称。
它是⼀种数学思想,‘⽆限细分’就是微分,‘⽆限求和’就是积分。
⽆限就是极限,极限的思想是微积分的基础,它是⽤⼀种运动的思想看待问题。
微积分堪称是⼈类智慧最伟⼤的成就之⼀。
在⾼中物理中,微积分思想多次发挥了作⽤。
定义:设函数f(x)在[a,b]上有界,在[a ,b]中任意插⼊若⼲个分点 a=X0在每个⼩区间[Xi-1,Xi]上任取⼀点ξi(Xi-1≤ξi≤Xi),作函数值f(ξi)与⼩区间长度的乘积f(ξi)△Xi ,并作出和()in i ix s ?=∑=1ξ如果不论对[a,b]怎样分法,也不论在⼩区间上的点ξi 怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数f(x)在区间[a,b]上的定积分,记作: ()dx x f ab ?即: ()()ini iab x f I dx x f ?==∑?==11设物体在连续变⼒F(x)作⽤下沿x 轴从x=a 移动到x=b,⼒的⽅向与运动⽅向平⾏,求变⼒所作的功.在[a,b]上任取⼦区间[x,x+dx],在其上所作的功元素为()dx x F dW =因此变⼒F(x)在区间[a,b]上所作的功为()dx x F W b a=例1.在⼀个带+q 电荷所产⽣的电场作⽤下,⼀个单位正电荷沿直线从距离点电荷a 处移动到b 处(a解:当单位正电荷距离原点r 时,由库仑定律电场⼒为2rq kF =则功的元素为dr rkq dW 2=所求功为:-=-==b a kq r kq dr r kq W bab a1112说明:电场在r=a 处的电势为akq dr r kq a=?∞+2例2. 在底⾯积为S 的圆柱形容器中盛有⼀定量的⽓体,由于⽓体的膨胀,把容器中的⼀个⾯积为S 的活塞从点a 处移动到点b 处(如图),求移动过程中⽓体压⼒所作的功.解:建⽴坐标系如图.由博伊尔马略特定律知压强p 与体积V 成反⽐,即xSpS F ==功元素为dx xkFdx dW ==所求功为[]ab k x k dx x k W babaln ln ===?例3.⼀蓄满⽔的圆柱形⽔桶⾼为5m ,底圆半径为3m ,试问要把桶中的⽔全部吸出需做多少功?解:建⽴坐标系如图,在任⼀⼩区间[x,x+dx]上的⼀薄层⽔的重量为dx g 23πρ??(KN )这薄层⽔吸出桶外所做的功(功元素)为xdx dW πρ9=故所求功为:5502299?==xg xdx g W ρπρπρπg 5.112=(KJ )液体侧压⼒设液体密度为ρ深为h 处的压强:h g pρ=*当平板不与⽔⾯平⾏时,所受侧压⼒就需⽤积分解决.例4.⼀⽔平横放的半径为R 的圆桶,内盛半桶密度为ρ的液体,求桶的⼀个端⾯所受的侧压⼒. 解:建⽴坐标系如图.所论半圆的⽅程为 2 2xR y-±=()R x ≤≤0利⽤对称性,侧压⼒元素 dx x R x g dP222-=ρ端⾯所受侧压⼒为322322R g dx x R x g P ?=-=ρρ说明:当桶内充满液体时,⼩窄条上的压强为()x R g +ρ,侧压⼒元素 ()dx x R x R g dP222-+=ρ,故端⾯所受侧压⼒为 ()dx x R x R g PR R222++=?-ρ令 t R x sin =↓Rg 0222arcsin 224?+-=ρ3R g ρπ=引⼒问题质量分别为1m ,2m 的质点,相距r ,⼆者间的引⼒:⼤⼩:221rmm kF =⽅向:沿两质点的连线若考虑物体对质点的引⼒,则需⽤积分解决.例5.设有⼀长度为l ,线密度为µ的均匀直棒,在其中垂线上距a 单位处有⼀质量为m 的质点M.式计算该棒对质点的引⼒.解:建⽴坐标系如图.细棒上⼩段[x ,x+dx]对质点的引⼒⼤⼩为22xa dxm kdF +=µ故垂直分⼒元素为αcos dF dF y22xa a x a dx m k +?+-=µ()2322x a dxakm +-=µ棒对质点的引⼒的垂直分⼒为()+-=2023222l yxa dxa km F µ2222l x a a x a km+-=µa a l km +-=µ棒对质点引⼒的⽔平分⼒0=x F故棒对质点的引⼒⼤⼩为22412la a l km F +=µ说明1.当细棒很长时,可视l 为⽆穷⼤,此时引⼒⼤⼩为akm µ2⽅向与细棒垂直且指向细棒.2. 若考虑质点克服引⼒沿y 轴从a 处移动到b (a dy ly y l km dW 22412+-=µ+-=b aly y dyl km W 2242µ3.当质点位于棒的左端点垂线上时,()2cos xa dxakm dF dF y +-=?-=µα()2322sin xa xdxkm dF dF x +=?=µα∴ ()+-=lyxa dxa km F 02322µ()+=lxkm F 02322µ引⼒⼤⼩为yxFF F22+=转动惯量质量为m 的质点关于轴l 的转动惯量为2mr I =与轴l 的距离为ir ,质量为im (i =1,2,…,n )的质点系关于轴l 的转动惯量为2inli irm I ∑==若考虑物体的转动惯量,则需⽤积分解决. 例6.设有⼀个半径为R,质量为M 的均匀圆盘,(1)求圆盘对通过中⼼与其垂直的轴的转动惯量. (2)求圆盘对直径所在轴的转动惯量.解:(1)建⽴坐标系如图.设圆盘⾯积为ρ.对应于[x,x+dx]的⼩圆环对轴l 的转动惯量为 dx x dI32πρ=故圆盘对轴l 的转动惯量为321212I MRR dx x ===?πρπρ ??? ?=2R M πρ(2)取旋转轴为y 轴,建⽴坐标系如图.对应于[x,x+dx]的平⾏y 轴的细条关于y 轴的转动惯量元素为dx x R xdx yx dI y222222-==ρρ故圆盘对y 轴的转动惯量为dx x R RR y--=222I ρdx x R xR2224-=?ρtdt t R 220ρ(令x=Rsint )244141MRR ==ρπ ??? ?=2R M πρ1. ⽤定积分求⼀个分布在某区间上的整体量Q 的步骤:(1)先⽤微分分析法求出它的微分表达式dQ ⼀般微分的⼏何形状有:条、段、环、带、扇、⽚、壳等. (2)然后⽤定积分来表⽰整体量Q ,并计算他. 2. 定积分的物理应⽤:变⼒做功,侧压⼒,引⼒,转动惯量等.○1抓起污泥后提出井⼝,已知井深30m ,抓⽃⾃重400N ,缆绳每⽶重50N ,抓⽃抓起的污泥中2000N ,提升速度为3m/s,在提升过程中污泥以20N/s 的速度从抓⽃缝隙中漏掉,现将抓起污泥的抓⽃提升到井⼝,问克服重⼒需做多少焦⽿(J )功?(99考研)提⽰:作x 轴如图.将抓起污泥的抓⽃由x 提升dx 所作的功为井深30m ,抓⽃⾃重400N ,缆绳每⽶重50N ,抓⽃抓起的污泥中2000N,提升速度为3m/s,污泥以20N/s 的速度从抓⽃缝隙中漏掉321d dW dW dW W ++=克服抓⽃⾃重:dx dW 4001=克服缆绳中:()dx x dW -?=30502抓⽃升⾄x 处所需时间:3x(s )提升抓⽃中的污泥:-=32020003()dx x x W??-+-+=∴30032020003050400()J 91500=○2.设星形线t a x 3cos =,t a y 3sin =上没⼀点处线密度的⼤⼩等于该点到原点距离的⽴⽅,再点O 处有⼀单位质点,求星形线在第⼀象限的弧段对这质点的引⼒.提⽰:如图.()()ds y x k yx ds y x k dF 2122222322+=++=αcos ?=dF dF x()ds yx x yx k 222122+?+=kxds =kyds dF dF y=?=αsin()[]()dtt t a t t a t a k F x22223cos sin3sin cos 3cos ?+-??=? ??=2042sin cos 3πtdt t k a253ka=同理253kaF y=故星形线在第⼀象限的弧段对该质点的引⼒⼤⼩为2253kaF =在⾼中物理中还有很多例⼦,⽐如我们学过的瞬时速度,瞬时加速度、感应电动势、引⼒势能等都⽤到了微积分思想,所有这些例⼦都有它的共性。
定积分物理应用公式

定积分物理应用公式定积分在物理学中有着广泛的应用,可以帮助我们计算一些重要的物理量,如质心、力矩和功等。
下面我们将分别介绍这些应用。
1. 质心的计算:质心是一个物体的平均分布位置,可以用定积分来计算。
对于一维情况下的质心计算,我们可以使用以下公式:质心位置x_c = (1/M) * ∫(x * dm)其中,M是物体的总质量,x是物体的位置,dm是质量元素。
通过对物体的质量进行微元的划分,然后对每个微元的位置乘以质量进行积分,就可以得到质心的位置。
2. 力矩的计算:力矩是一个物体受力时产生的转动效应,可以通过定积分来计算。
对于一维情况下的力矩计算,我们可以使用以下公式:力矩M = ∫(r x F) dx其中,r是力矩臂的长度,F是作用在物体上的力,dx是位置元素。
通过对物体的位置进行微元的划分,然后对每个微元的位置乘以力进行积分,再乘以力矩臂的长度,就可以得到力矩的大小。
3. 功的计算:功是一个物体在受力作用下所做的功,可以通过定积分来计算。
对于一维情况下的功计算,我们可以使用以下公式:功W = ∫(F dx)其中,F是作用在物体上的力,dx是位置元素。
通过对物体的位置进行微元的划分,然后对每个微元的位置乘以力进行积分,就可以得到功的大小。
以上是定积分在物理学中的一些应用。
通过定积分的计算,我们可以得到质心的位置,力矩的大小和功的大小,从而帮助我们更好地理解和分析物体的运动和受力情况。
这些应用不仅在理论研究中有着重要的作用,而且在工程实践中也有着广泛的应用。
在实际应用中,我们可以通过测量和实验来获取所需的物理量,然后将其代入相应的定积分公式中进行计算。
这样可以帮助我们更好地理解物体的运动和受力情况,从而指导我们的实际操作和应用。
定积分在物理学中有着重要的应用,可以帮助我们计算质心、力矩和功等物理量。
通过定积分的计算,我们可以更好地理解和分析物体的运动和受力情况,从而指导我们的实际操作和应用。
这些应用不仅在理论研究中有着重要的作用,而且在工程实践中也有着广泛的应用。
定积分在物理上的应用

定积分在物理上的应用
一、变力做功
1.某质点受到F=6x2的力的作用,从x=0处移动到x=
2.0m处,求力F做了多少功
2.半径等于r的半球形水池,期中充满了水,把池内完全抽干,至少要做多少功?
3.地球质量M,半径为R,万有引力常量G,地球表面质量为m的物体具有的重力势能多大?
4.一质量为m的机动小车,以恒定速度v在半径为R的竖直圆轨道内绕“死圈”运动,已知动摩擦因数为μ,问在小车从最低点运动到最高点过程中,摩擦力做了多少功?
二、求位移或时间
5.蚂蚁离开巢沿直线爬行,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心L1=1m 的A点处时,速度为v1=2cm/s。
问蚂蚁继续由A点爬到距离巢中心2m的B点需要多长时间?
三.求力
6.设有一竖直的阐门,形状是等腰梯形,尺寸如图所示,当水面齐闸门顶时,求闸门所受的水的压力
3m
7.有一密度为ρl,半径为r的半球放在盛有密度为ρ2的液体的容器底部,它与容器底部密切接触(即半球表面与容器底面间无液体),若液体深度为H,问半球体上表面所受压力是多大?
8.一根长为L的均匀直棒,其线密度为ρ在它的一端垂线上距直棒a处有质量为m的质点,求棒对质点一引力。
四、求转动动能
9.长为L,质量为m均质杆在水平面内以角速度ω绕通过杆端的竖直轴o转动,试求杆的动能
10一圆环质量为m,半径为R,绕它的一条直径为轴以角速度ω转动,求其动能
11.上题改为球壳,求球壳的动能
12.上题改为球体,求球的动能
五、证明正弦交流电的最大值的有效值的2倍。
定积分在物理学上的应用

如 果 物 体 在 运 动 的 过 程 中 所 受 的 力 是 变 化 的 , 就 不 能 直 接 使 用 此 公 式 , 而 采 用 “ 微 元 法 ” 思 想 .
例 1 把一个带 q 电量的点电荷放在 r 轴上坐
标原点处,它产生一个电场.这个电场对周围的电
荷有作用力.由物理学知道,如果一个单位正电荷
o x Rx
故圆盘对y 轴的转动惯量为
细条质量:
I
y
2Rx2 R
R2x2dx4Rx2 0
R2x22dx y dx
402 R4si2ntco2tsdt (令 xRsitn )
1 R4 1 M R2
4
4
( MR2)
五、小结
1.用定积分求一个分布在某区间上的整体量 Q 的步骤: (1) 先用微元分析法求出它的微分表达式 dQ 一般微元的几何形状有: 条、段、环、带、 扇、片、壳 等. (2) 然后用定积分来表示整体量 Q , 并计算之.
am dy
dF x k(a2y2)23,
Fx2l2l k(aa2 myd2)y23
2kml
a(4a2 l2)12
,
由对称性知,引力在铅直方向分力为 Fy 0.
说明: 1) 当细棒很长时,可视 l 为无穷大 ,
此时引力大小为 2k m
a 方向与细棒垂直且指向细棒 .
2) 若考虑质点克服引力沿 y 轴从 a 处
移到 b (a < b) 处时克服引力作的功,
则有
dW2km yl
1 4y2l2 d y
l 2
W2km l b dy ay 4y2l2
y b
y a
xdx ox l x
2
3) 当质点位于棒的左端点垂线上时,
定积分在物理上的简单应用

v /m/s
30
A
B
20
10
C t/s
oห้องสมุดไป่ตู้
10
20 30
40 50
60
图1.7 3
S 3tdt 30dt 1.5t 90dt
3 2 40 3 2 t 30t 10 t 90t 1350m. 2 0 4 40
10 60
答 汽车在这1min 行驶的路程是 1350m.
• 法二:由定积分的几何意义,直观的可以得出路程 即为如图所示的梯形的面积,即
30 60 s 30 1350 2
练习: 1. 物体以速度 v(t ) 3t 2 2t 3 (m/s) 作直线运动 , 它 在时刻 t 0 (s)到 t 3 (s)这段时间内的位移是( )m (A)9 (B)18 (C)27 (D)36
1.7.2 定积分在物理中的应用
1、变速直线运动的路程
设做变速直线运动的物体运动的速度v=v(t)≥0, 则此物体在时间区间[a, b]内运动的距离s为
s v(t )dt
a
b
v
v v(t )
O
a
b
t
v /m/s
例: 一辆汽车的 速 度 时间曲 线 如图 1.7 3所示.求汽车在 这1min 行驶的路程 .
30
A
B
20
10
C t/s
o
10
20 30
40 50
60
图1.7 3
解 由速度 时间曲线可知 : 3t , 0 t 10 ; 10 t 40; vt 30 , 1.5t 90, 40 t 60. 因此汽车在这 1min 行驶的路 程是 :
定积分的应用于物理学

定积分的应用于物理学定积分是微积分中一个极为重要的概念,它可以描述一个函数在一定区间内的面积。
除了数学上的应用之外,定积分在物理学中也有广泛的应用。
一、定积分在物理学中的应用1.速度和加速度在物理学中,速度和加速度是两个基本的物理量。
对于一个以某个加速度运动的物体,我们可以通过求解其速度关于时间的定积分来得到运动过程中的位移。
而得到位移后,我们还可以对它进行求导来获得速度和加速度的函数式。
2.质量和质心质量是物理学中另外一个基本的物理量,而质心则是一个系统的重心。
对于一个由若干个质点组成的系统,我们可以将每个质点的质量加起来,然后用质心的坐标来描述整个系统。
这个质心的坐标可以用各个质点坐标的定积分来求解。
3.力和功在物理学中,力是另一个基本的物理量。
对于一个物体在某个力场中做功,我们可以通过对力在某段距离上的积分来得到。
与此同时,我们也可以通过对某个物体所受多个力的叠加效应进行积分来得到最终的合力。
二、例子:牛顿第二定律牛顿第二定律是经典力学中的一个基本法则,它表明力等于物体质量乘以物体的加速度。
具体而言,我们可以用定积分来解决一个常见的牛顿第二定律问题。
假设一个物体受到一个恒定的力F作用,那么根据牛顿第二定律,我们可以得到以下方程:F = ma其中,a是物体的加速度,m是物体的质量。
为了求解这个方程,我们需要将其改写为以下形式:a = F/m这个定理告诉我们,当一个物体受到一个力的作用时,它的加速度是与它的质量成反比例的。
因此,我们可以用定积分来求解运动过程中的位移。
假设我们知道物体的初始速度v0和它所受的力F(t)关于时间t 的函数式,我们可以求出物体在某段时间内的加速度函数a(t)。
一旦我们知道了加速度函数,我们就可以将它关于时间的定积分求解出来,得到物体在受到力的作用下所走过的位移。
这个过程可以用以下公式来描述:x(t) = v0t + ∫0t a(t)dt其中,v0是物体的初始速度,a(t)是物体在受到力的作用下的加速度函数。
定积分在物理上的应用

连线方向.
如果要计算一根细棒对一个质点的引力, 那么,由于细棒上各点与该质点的距离是变化 的,且各点对该质点的引力方向也是变化的, 就不能用此公式计算.
例 3 有一长度为 l 、线密度为 r 的均匀细棒,
在其中垂线上距棒 a 单位处有一质量为 m 的质点
M ,计算该棒对质点 M 的引力.
解
建立坐标系如图
(k 是常数),当这个单位正电荷在电场中从
r a 处沿 r 轴移动到 r b 处时,计算电场力F 对
它所作的功.
解 取r 为积分变量,
q
•o
a•
1
•r•
•
r
•
•
dr
•b
r
r [a,b],
取任一小区间[r, r dr], 功元素
dw
kq r2
dr,
所如求果功要为考w虑将ab单krq2位dr电荷k移q到 1r无ba穷远kq处 a1
o
x
x dx
x
小矩形片的压力元素为 dP 2x R2 x2dx
端面上所受的压力
P
R
0
2x
R2 x2dx
R
0
R2 x2d(R2 x2)
2 3
R2 x2
3
R 0
2
3
R3.
例 2 将直角边各为 a 及 2a 的直角三角形薄板
垂直地浸人水中,斜边朝下,长直角边与水面 平行,且该边到水面的距离恰等于该边的边 长,求薄板所受的侧压力.
压力
由 物 理 学 知 道 , 在 水 深 为h 处 的 压 强 为
p h,这里 是水的比重.如果有一面积为A
的平板水平地放置在水深为h 处,那么,平板一 侧所受的水压力为P p A.
定积分在物理中的应用上

03
CHAPTER
动能与势能的定积分表示
动能的定积分表示
总结词
动能的定积分表示是物体在某段时间内通过的路径与该路径上的力的乘积的积分。
详细描述
根据牛顿第二定律,物体的动能为物体质量与速度平方的一半的乘积。在定积分形式下,动能的表示为 ∫F·dx,其中F是作用在物体上的力,dx是物体在该力作用下的位移。
瞬时加速度表示物体在某一时刻的速 度变化快慢,而平均加速度表示物体 在某段时间内速度变化的平均快慢。
速度与加速度的连续变化
在物理中,物体的速度和加速度通常都是随时间连续变化的。定积分可以 用来描述这种连续变化的过程。
通过定积分,我们可以计算物体在任意时间段内的速度和加速度的变化量, 以及物体在任意时刻的速度和加速度的大小。
详细描述
在热力学中,温度场是一个连续变化的物理量,它描述 了物体内部各点的温度分布。通过定积分,可以将温度 场表示为一个连续的函数,从而方便地计算物体内部各 点的温度值。
热量传递的定积分表示
总结词
热量传递的过程可以通过定积分来描述,包括热传导、热对流和热辐射等。
详细描述
热量传递是热力学中的重要过程,包括热传导、热对流和热辐射等。这些过程都可以通过定积分来描 述。通过定积分,可以计算热量传递的速率、方向和分布,从而更好地理解和控制热量传递的过程。
VS
详细描述
在匀速直线运动中,物体的速度是恒定的 ,因此物体的位移量可以通过速度与时间 的乘积来计算。定积分可以用来计算在一 段时间内物体的总位移量。
匀加速直线运动的定积分表示
总结词
定积分在匀加速直线运动中可以表示物体的 速度和位移量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从而变力为 F 100 x
所求的功
比例系数
F Ex
后退
主 页 目录 退 出
2017/5/13
W 100 xdx 0.5J
0
0.1
x x
5
第六节 定积分在物理中的应用
例 2 一圆柱形蓄水池 高为 5 米,底半径为 3 米,池内盛满了水. 问要把池内的水全部 吸出,需作多少功?
点击图片任意处播放\暂停
o a
x
x dx
F ( x)
b
x
本节 重点 与难 点
本节 复习 指导
W dW F ( x )dx
a a
b
b
后退
主 页 目录 退 出
2017/5/13
4
本节 知识 引入 本节 目的 与要 求
本节 重点 与难 点
本节 复习 指导
第六节 定积分在物理中的应用 例1 设弹簧在1N力的作用下伸长0.01米,要 使弹簧伸长0.1米,需作多少功? 解 如图:建立直角坐标系。 因为弹力的大小与弹簧的 伸长(或压缩)成正比, 即 F Ex 已知 F 1N , x 0.01 o 代入上式得 E 100
ba 每个小区间的长度 x ; n (2)求和:设各分点处的函数值为 y0 , y1 , y2 ,, yn
本节 重点 与难 点
本节 复习 指导
函数 f ( x ) 在区间[a , b] 上的平均值近似为
y0 y1 y2 yn1 ; n (3)取极限: 每个小区间的长度趋于零.
本节 重点 与难 点
本节 复习 指导
q k 那么电场对它的作用力的大小为 F k 2 ( r ra 是常数) ,当这个单位正电荷在电场中从
处沿 r 轴移动到 r b 处时,计算电场力F 对它所作的功.
21
后退
主 页 目录 退 出
2017/5/13
第六节 定积分在物理中的应用 解 取 r 为积分变量,
x
9
2017/5/13
第六节 定积分在物理中的应用
本节 知识 引入 本节 目的 与要 求
小矩形片的压力元素为 dP 2gx R 2 x 2 dx
端面上所受的压力
本节 重点 与难 点
本节 复习 指导
P 2gx R 2 x 2 dx
0
R
g
R
0
R2 x 2 d ( R2 x 2 )
这一薄层水的重力为
9.8 32 dx
x dx
5
本节 重点 与难 点
本节 复习 指导
功元素为 dw 88.2 x dx,
x
w 88.2 x dx
0
5
x 88.2 3462 (千焦). 2 0
2017/5/13 7
2 5
后退
主 页 目录 退 出
1 b 2 f ( x )dx . 函数的均方根(有效值) a ba (理解平均功率、电流的有效值等概念)
20
后退
主 页 目录 退 出
2017/5/13
第六节 定积分在物理中的应用
练习题
本节 知识 引入 本节 目的 与要 求
1.
把一个带 q 电量的点电荷放在 r 轴上
坐标原点处,它产生一个电场. 这个电场对周围 的电荷有作用力. 由物理学知道,如果一个单位 正电荷放在这个电场中距离原点为 r 的地方,
18
2017/5/13
第六节 定积分在物理中的应用
正弦交流电i ( t ) I m sin t 的有效值
本节 知识 引入 本节 目的 与要 求
I
1
2
0
2
2
I m sin tdt
2 2
2
Im 2
2
0
2
sin2 td ( t )
本节 重点 与难 点
本节 复习 指导
2 Im R sin 2 t I m 2 R Im R t 2 4 2 0 4 2
本节 重点 与难 点
本节 复习 指导
2
2
后退
主 页 目录 退 出
I mU m . (U m I m R) 2 结论:纯电阻电路中正弦交流电的平均功率 等于电流、电压的峰值的乘积的二分之一.
第六节 定积分在物理中的应用
II.
本节 知识 引入 本节 目的 与要 求
液体的静压力
一、预备知识
h 处的 由物理学知道,距液体表面深度为 g 是 是液体密度, 液体压强为 p gh ,这里 A 的平板水平地 重力加速度。如果有一面积为 放置在液体深为h 处,那么,平板一侧所受的 液体压力为 P p A .
变力沿直线所作的功
一、预备知识
1. 由物理学知道,如果物体在作直线运动的 F 作用在这物体上,且 过程中有一个不变的力 这力的方向与物体的运动方向一致,那么,物 体位移为s 时,力F 对物体所作的功为F F ( x ) W F s. 2. 微元法
本节 重点 与难 点
本节 复习 指导
二、变力沿直线所作的功
如果物体在运动的过程中所受的力F F ( x )
后退
主 页 退 出
目录
是变化的,就不能直接使用此公式,而采用 “微元法”思想. 2017/5/13
3
第六节 定积分在物理中的应用 如图:以 x 为积分变量,积分区间为 [a , b].
本节 知识 引入 本节 目的 与要 求
在区间 [a , b] 内任取一小区间[ x , x dx ], 功的微元数 dW F ( x )dx 所以
本节 知识 引入 本节 目的 与要 求
解
设电阻为 R , 则电路中的电压为
本节 重点 与难 点
本节 复习 指导
u iR I m R sin t ,
2 I R sin t, p ui 功率 m 2
一个周期区间 [0, 平均功率 p
2
2
],
后退
主 页 目录 退 出
2
0
定积分在物理中的应用
2017/5/13
1
第五章 定积分
本节知识 引入 本节目的 与要求 本节重点 与难点 本节复习 指导
I. 变力沿直线所作的功 II.液体的录
退 出
2017/5/13
2
第六节 定积分在物理中的应用
I.
本节 知识 引入 本节 目的 与要 求
本节 知识 引入 本节 目的 与要 求
q
kq 取任一小区间[r , r dr ], 功元素 dw 2 dr , r
r [a , b],
o
r a r dr b
1
r
本节 重点 与难 点
本节 复习 指导
1 kq 1 1 所求功为 w 2 dr kq kq . a r r a a b
第六节 定积分在物理中的应用
小结
本节 知识 引入 本节 目的 与要 求
1. 利用“微元法”思想求变力作 功、水压力等物理问题.
(注意熟悉相关的物理知识)
本节 重点 与难 点
本节 复习 指导
2. 利用“微元法”思想求平均值、 均方差. 1 b y f ( x )dx; 函数的平均值 ba a
本节 重点 与难 点
本节 复习 指导
二、液体的静压力
如果平板垂直放置在液体中,由于液体 在不同的深度压强 p 不同,平板一侧所受的 液体的压力就不能直接使用此公式,可采用 “微元法”来计算.
8
后退
主 页 目录 退 出
2017/5/13
第六节 定积分在物理中的应用
例 3 一个横放着的圆柱形水桶,桶内盛有半桶水, R ,水的比重为 ,计算桶的一端面 设桶的底半径为 上所受的压力.
1
I m R sin2 tdt
15
2
2017/5/13
第六节 定积分在物理中的应用
本节 知识 引入 本节 目的 与要 求
p
1
2
0
2
2
Im
2
I m R 2 2 R sin tdt sin td ( t ) 0 2
2
2
I m R 2 (1 cos 2 t )d ( t ) 0 4
1 b y f ( x )dx ba a
几何平均值公式
后退
主 页 目录 退 出
区间长度
(b a ) y (b a ) f ( )
14
2017/5/13
第六节 定积分在物理中的应用
例 4 计算纯电阻电路中正弦交流电i I m sin t 在 一个周期上的功率的平均值(简称平均功率).
本节 知识 引入 本节 目的 与要 求
解 在端面建立坐标系如图
取x为积分变量,x [0, R]
取任一小区间[ x , x dx ]
o
x
本节 重点 与难 点
本节 复习 指导
后退
主 页 目录 退 出
小矩形片上各处的压强近 似相等p gx, 小矩形片的面积为 2 R2 x 2 dx.
x dx
本节 知识 引入 本节 目的 与要 求
本节 重点 与难 点
本节 复习 指导
解 建立坐标系如图
取x为积分变量, x [0,5]
取任一小区间[ x , x dx ],
o
x
x dx
5
后退
主 页 目录 退 出
x
6
2017/5/13
第六节 定积分在物理中的应用
o
x
本节 知识 引入 本节 目的 与要 求