初三中考数学 尺规作图

合集下载

【中考数学】答题技巧与模板构建:专题12尺规作图题型总结(解析版)

【中考数学】答题技巧与模板构建:专题12尺规作图题型总结(解析版)

专题12 尺规作图题型总结题型解读|模型构建|通关试练本专题主要对初中阶段的一般考查学生对基本作图的掌握情况和实践操作能力,并且在作图的基础上进一步推理计算(或证明)。

尺规作图是指用没有刻度的直尺和圆规作图。

尺规作图是中考必考知识点之一,复习该版块时要动手多画图,熟能生巧!本专题主要总结了五个常考的基本作图题型,(1)作相等角;(2)作角平分线;(3)作线段垂直平分线;(4)作垂直(过一点作垂线或圆切线);(5)用无刻度的直尺作图。

模型01 作相等角①以∠α的顶点O为圆心,以任意长为半径作弧,交∠α的两边于点P,Q;②作射线O'A';③以O'为圆心,OP长为半径作弧,交O'A'于点M;④以点M为圆心,PQ长为半径作弧,交③中所作的弧于点N;⑤过点N作射线O'B',∠A'O'B'即为所求作的角.原理:三边分别相等的两个三角形全等;全等三角形对应角相等延伸:作平行线模型02 作角平分线①以O为圆心,任意长为半径作弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③过点O作射线OP,OP即为∠AOB的平分线.原理:三边分别相等的两个三角形全等;全等三角形对应角相等延伸:②到两边的距离相等的点②作三角形的内切圆模型03 作线段垂直平分线①分别以点A,B为圆心,大于AB长为半径,在AB两侧作弧,分别交于点M和点N;②过点M,N作直线MN,直线MN即为线段AB的垂直平分线.原理:到线段两端距离相等的点在这条线段的垂直平分线上延伸:①到两点的距离相等的点②作三角形的外接圆③找对称轴(旋转中心)④找圆的圆心模型04 作垂直(过一点作垂线或圆切线)(点P在直线上)①以点P为圆心,任意长为半径向点P两侧作弧,分别交直线l于A,B两点;②分别以点A,B为圆心,以大于AB的长为半径作弧,两弧交于点M;③过点M,P作直线MP,则直线MP即为所求垂线.原理:等腰三角形的“三线合一”,两点确定一条直线延伸:确定点到直线的距离(内切圆半径)(点P在直线外)①以点P为圆心,大于P到直线l的距离为半径作弧,分别交直线l于A,B两点;②分别以A,B为圆心,以大于AB的长为半径作弧交于点N;③过点P,N作直线PN,则直线PN即为所求垂线.原理:到线段两端距离相等的点在这条线段的垂直平分线上模型05 仅用无刻度直尺作图无刻度直尺作图通常会与等腰三角形的判定,三角形中位线定理,矩形的性质和勾股定理等几何知识点结合,熟练掌握相关性质是解题关键.模型01作相等角考|向|预|测做相等角该题型近年主要以解答题形式出现,一般为解答题型的其中一问,难度系数较小,在各类考试中基本为送分题型。

中考专题复习——初中最基本的尺规作图总结与典型例题

中考专题复习——初中最基本的尺规作图总结与典型例题

初中基本尺规作图总结与典型例题一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

中考数学一轮复习讲义第29讲 尺规作图_20231016182455

中考数学一轮复习讲义第29讲 尺规作图_20231016182455

中考数学一轮复习讲义考点二十九:尺规作图聚焦考点☆温习理解1.尺规作图的作图工具限定只用圆规和没有刻度的直尺2.基本作图(1)作一条线段等于已知线段,以及线段的和﹑差;(2)作一个角等于已知角,以及角的和﹑差;(3)作角的平分线;(4)作线段的垂直平分线;(5)过一点作已知直线的垂线.3.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆;(3)作圆的内接正方形和正六边形.5.有关中心对称或轴对称的作图以及设计图案是中考的常见类型6.作图的一般步骤尺规作图的基本步骤:(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,它符合什么条件,一一具体化;(3)作法:应用“五种基本作图”,叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹;(4)证明:为了验证所作图形的正确性,把图作出后,必须再根据已知的定义、公理、定理等,结合作法来证明所作出的图形完全符合题设条件;(5)讨论:研究是不是在任何已知的条件下都能作出图形;在哪些情况下,问题有一个解、多个解或者没有解;(6)结论:对所作图形下结论.名师点睛☆典例分类考点典例一、应用角平分线、线段的垂直平分线性质画图【例1】如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③△ABD是等腰三角形④点D到直线AB的距离等于CD的长度.A.1B.2C.3D.4【举一反三】A B C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,如图,,,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离.请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)考点典例二、画已知直线的平行线,垂线【例2】下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图依据是__________________________________________________.【例3】如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【举一反三】下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④考点典例三、画三角形【例4】如图,已知等边△ABC ,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC 的外心O ;(2)设D 是AB 边上一点,在图中作出一个正六边形DEFGHI ,使点F ,点H 分别在边BC 和AC 上.【举一反三】已知:线段a 、c 和∠β(如图),利用直尺和圆规作△ABC ,使BC=a ,AB=c ,∠A BC=∠β.(不写作法,保留作图痕迹).考点典例四、通过画图确定圆心【例5】如图,已知ABC ∆,40B ∠=︒.(1)在图中,用尺规作出ABC ∆的内切圆O ,并标出O 与边AB ,BC ,AC 的切点D ,E ,F (保留痕迹,不必写作法);(2)连接EF ,DF ,求EFD ∠的度数.【举一反三】如图,(1)作△ABC的外接⊙O(用尺规作图,保留作图痕迹,不写作法);(2)若AB=6cm,AC=BC=5cm,求⊙O的半径.课时作业☆能力提升1.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC2.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边3.如图,已知钝角∆ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.AC平分∠BADB.BH垂直平分线段ADC.D.AB=AD的值最小,4.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA PB则下列作法正确的是().A. B. C. D.5.如图,用尺规作图作∠AOC =∠AOB 的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA 、OB 于点E 、F ,那么第二步的作图痕迹②的作法是()A.以点F 为圆心,OE 长为半径画弧B.以点F 为圆心,EF 长为半径画弧C.以点E 为圆心,OE 长为半径画弧D.以点E 为圆心,EF 长为半径画弧6.如图,用尺规作图作“一个角等于已知角”的原理是:因为D O C DOC ∆≅∆''',所以D O C DOC ∠=∠'''.由这种作图方法得到的D O C ∆'''和DOC ∆全等的依据是()A.SSSB.SASC.ASAD.AAS7.尺规作图特有的魅力曾使无数人沉湎期中,连当年叱咤风云的拿破仑也不例外,我们可以只用圆规将圆等分。

初三数学复习尺规作图ppt课件

初三数学复习尺规作图ppt课件

作法:
1.以O为圆心,适当 长为半径作弧,交OA于M, 交OB于N.
2.分别以M,N为
圆心.大于 1 MN的长为 2
半径作弧.两弧在∠AOB
的内部交于C. 3.作射线OC.
A
M C


则射线OC即为所求.

4
作线段的垂直平分线。
已知:线段AB,
A
求作:线段AB的垂直平分线。 作法:(大两1)于弧分—交别12—于以AC点B、的AD、长两B为点为半;圆径心作,弧以,
2、连接AB’、B’C’、C’A。 2、连接A’B’、B’C、CA’。
17
利用位似定义如何将一个图形进行
放大或缩小? A
请把图中的四边
形缩小到原来的二
D
分之一
B
C
18
A
作法一
(1)在边形ABCD外任取一点O
D
(2)过点o分别作射线
B
OA,OB,OC,OD
A.
(3)分别在射线OA, OB,OC,OD上取点A,
A

B

O


D
C
21
a
⑶ 以B为圆心,b为半径画弧,交射线CN于点 A; ⑷ 连接AB; (5)△ABC即为所求的直 角三角形
9
已知:不在同一直线上的三点
A、B、C
求作:⊙O,使它经过A、B、C
B
作法:
F A O
1、连结AB,作线段AB的垂
C
直平分线DE,
G
2、连结BC,作线段BC的垂直平
分线FG,交DE于点O,
3、以O为圆心,OB为半径作圆,
. D. B . C
. B,,C,,D,, O

2023年九年级数学中考专题:尺规作图类训练题(含简单答案)

2023年九年级数学中考专题:尺规作图类训练题(含简单答案)

2023年九年级数学中考专题:尺规作图类训练题一、单选题1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于12AC长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )A .B .5C .6D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )A .AB BC + B .BC AC + C .+AB ACD .AB AC BC ++4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )A .SASB .AASC .SSSD .SSA5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若28AOB ∠︒=,则BOD ∠的补角的度数为( )A .124︒B .39︒C .56︒D .144︒6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )A .7B .8C .9D .108.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于点M .下列结论中不正确的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP的最小值为______.11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点C ,D 为圆心,大于12CD 长为半径画弧,两弧交于点E ,作射线BE交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC于点M ,N ;①分别以M ,N 为圆心12MN 的长为半径作弧,两弧在ABC ∠内交于点P ,交AC 于点D .若16,8ABDSAB ==,则线段CD 的长为 ___________.15.如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为圆心,大于12BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,6BF =,5AB =,则AE 的长为 ___________.16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C ,E 为圆心、大于12CE 的长为半径作弧,两弧交于点P ,作射线BP交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.三、解答题17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方法即可)(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.(1)在图①中BC 上找一点E ,使12BE BC =; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使12MN BC =.参考答案:1.B2.A3.C4.C5.A6.C7.A8.C9.3612610.12 511.30 12.54 13.45︒14.4 15.816.18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC=,答案第1页,共1页。

中考数学专题训练-尺规作图 (1-3)(原卷版)

中考数学专题训练-尺规作图 (1-3)(原卷版)

中考数学专题训练-尺规作图(1)一:作已知角的平分线(1)以O为圆心,任意长为半径作弧,分别交OA,OB于点M,N;(2)分别以点M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;(3)作射线OP,OP即为所作的角平分线. 二:作已知线段的垂直平分线(1)分别以M、N为圆心,大于12MN的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ,交MN于O.则PQ就是所求作的MN的垂直平分线.1.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD 的长为()A.22B.4 C.3 D.102.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD3.如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3 D.CD=12 BD4.如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.5.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.6.在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.1.如图,已知矩形AOBC 的三个顶点的坐标分别为O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交OC,OB 于点D,E;②分别以点D,E 为圆心,大于12DE 的长为半径作弧,两弧在∠BOC 内交于点F;③作射线OF,交边BC于点G,则点G 的坐标为( )A. (4,43) B. (43,4) C. (53,4) D. (4,53)2.在数学课上,老师提出如下问题:尺规作图:确定图1中CD所在圆的圆心.已知:CD.求作:CD所在圆的圆心O.曈曈的作法如下:如图2,(1)在CD上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是CD所在圆的圆心.老师说:“曈曈的作法正确.”请你回答:曈曈的作图依据是_____.3.如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于12CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则BE的值为()A. 77774.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A. ∠CAD =40°B. ∠ACD =70°C. 点D 为△ABC 的外心D. ∠ACB =90° 5.如图,直线443y x =-+与x 轴、y 轴的交点为A ,B ,按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交AB ,x 轴于点C ,D ;②分别以点C ,D 为圆心,大于12CD 的长为半径作弧,两弧在∠OAB 内交于点M ;③作射线AM ,交y 轴于点E ,则点E 的坐标为( )A. (0,2)B. (0,3)C. (0,32)D. (0,43) 6.如图,在△ABC 中,AB =AC .(1)用尺规作图法在AC 边上找一点D ,使得BD =BC (保留作图痕迹,不要求写作法):(2)若∠A =30°,求∠ABD 的大小.7.如图,在Rt ABC 中,C 90∠=,B 30∠=.()1用直尺和圆规作O ,使圆心O 在BC 边,且O 经过A ,B 两点上(不写作法,保留作图痕迹); ()2连接AO ,求证:AO 平分CAB ∠.8.如图,在Rt△ABC中,∠C=90°,∠A=28°.(1)作AC边上的垂直平分线DE,交AC于点D,交AB于点E(用直尺和圆规作图,不写作法,但要保留作图痕迹);(2)连接CE,求∠BCE的度数.9.如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.中考数学专题训练-尺规作图 (2)一.选择题1.如图,矩形ABCD 中60BAC ∠=︒,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于点M ,N两点,再分别以点M ,N 为圆心,以大于12MN 的长为半径作弧交于点P ,作射线AP 交BC 于点E ,若2BE cm =,则CE 的长为( )A .6cmB .63cmC .4cmD .43cm2.如图,60AOB ∠=︒,以点O 为圆心,以任意长为半径作弧交OA ,OB 于C ,D 两点;分别以C ,D为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段4OM =,则M 点到OB 的距离为( )A .4B .3C .2D .233.如图,Rt OAB ∆的直角边OA 在x 轴上,OB 在y 轴的正半轴上,且(3,0)A ,4sin 5OAB ∠=.按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交OA ,AB 于点C ,D ;②分别以C ,D 为圆心,大于12CD 的长为半径作弧,两弧在OAB ∠内交于点M ;③作射线AM ,交y 轴于点E .则点E 的坐标为( )A .4(0,)3B .3(0,)2C .(0,3)D .(0,2)4.如图所示,在Rt ABC ∆中,90C ∠=︒,按以下步骤作图:①以点A 为圆心,以小于AC 的长为半径作弧,分别交AC 、AB 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点O ; ③作射线OA ,交BC 于点E ,若6CE =,10BE =.则AB 的长为( )A .11B .12C .18D .205.如图,ABCD 中,4CD =,6BC =,按以下步骤作图:①以点C 为圆心,适当长度为半径作弧,分别交BC ,CD 于M ,N 两点:②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在ABCD 的内部交于点P ;③连接CP 并延长交AD 于点E ,交BA 的延长线于点F ,则AF 的长为( )A .1B .2C .2.5D .36.在ABC ∆中,5BC =,12AC =,90C ∠=︒,以点B 为圆心,BC 为半径作圆弧,与AB 交于D ,再分别以A ,D 为圆心,大于12AD 的长为半径作圆弧交于点M ,N ,作直线MN ,交AC 于E ,则AE 的长度为( )A .42B .4C .133D .57.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的同样的长为半径作弧,两弧交于M ,N 两点; ②作直线MN ,交CD 于点E ,连接BE .若直线MN 恰好经过点A ,则下列说法错误的是( )A .60ABC ∠=︒B .2ABE ADE S S ∆∆=C .若4AB =,则47BE =D .3tan 5CBE ∠= 8.如图,Rt ABC ∆中,90ACB ∠=︒.(1)以点C 为圆心,以CB 的长为半径画弧,交AB 于点G ,分别以点G ,B 为圆心,以大于12GB 的长为半径画弧,两弧交于点K ,作射线CK ;(2)以点B 为圆心,以适当的长为半径画弧,交BC 于点M ,交AB 的延长线于点N ,分别以点M ,N为圆心,以大于12MN 的长为半径画弧,两弧交于点P ,作直线BP 交AC 的延长线于点D ,交射线CK 于点E ;(3)过点D 作DF AB ⊥交AB 的延长线于点F ,连接CF .根据以上操作过程及所作图形,有如下结论:①CE CD =;②BC BE BF ==;③12CDFB S CF BD =⋅四边形; ④BCF BCE ∠=∠.所有正确结论的序号为( )A .①②③B .①③C .②④D .③④二.填空题9.如图,在ABC ∆中,按以下步骤作图: ①分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于点M 和N ; ②作直线MN ,分别交边AB ,BC 于点D 和E ,连接CD .若90BCA ∠=︒,8AB =,则CD 的长为 .10.如图,BD 是矩形ABCD 的对角线,在BA 和BD 上分别截取BE ,BF ,使BE BF =,分别以E ,F为圆心,以大于12EF 的长为半径作弧,两弧在ABD ∠内交于点G ,作射线BG 交AD 于点P ,若5AP =,则点P 到BD 的距离为 .11.如图,四边形ABCD 中,//AD BC ,90D ∠=︒,4AD =,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,射线BE 交AD 于点F ,交AC 于点O .若点O 恰好是AC 的中点,则CD 的长为 .12.如图,在ABC ∆中,90B ∠=︒,以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点D ,E ,再分别以D ,E 点为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若1BG =,4AC =,则ACG ∆的面积为 .13.如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,12AB =,则ABD ∆的面积是 .14.如图,在菱形ABCD 中,按以下步骤作图:①分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 、F ;②作直线EF 交BC 于点G ,连接AG ;若AG BC ⊥,3CG =,则AD 的长为 .三.解答题15.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P .求作:直线PQ ,使得//PQ l .作法:如图,①任意取一点K ,使点K 和点P 在直线l 的两旁;②以P 为圆心,PK 长为半径画弧,交l 于点A ,B ,连接AP ;③分别以点P ,B 为圆心,以AB ,PA 长为半径画弧,两弧相交于点Q (点Q 和点A 在直线PB 的两旁);④作直线PQ .所以直线PQ 就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接BQ ,PQ = ,BQ = ,∴四边形PABQ 是平行四边形( )(填推理依据).//PQ l ∴.16.下面是小元设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:如图,直线l 和直线外一点P .求作:过点P 作直线l 的平行线.作法:如图,①在直线l 上任取点O ;②作直线PO ;③以点O 为圆心OP 长为半径画圆,交直线PO 于点A ,交直线l 于点B ;④连接AB,以点B为圆心,BA长为半径画弧,交O于点C(点A与点C不重合);⑤作直线CP;则直线CP即为所求.根据小元设计的尺规作图过程,完成以下任务.(1)补全图形;(2)完成下面的证明:证明:连接BP、BC,=,AB BC∴AB BC=,∴∠=∠,=,又OB OP∴∠=∠,∴∠=∠,CPB OBP∴)(填推理的依据).CP l//(17.下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:∆.已知:ABC求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.作法:如图,∠的平分线,交BC于点D.作BAC则点D即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.⊥于点F,证明:作DE AB⊥于点E,作DF AC∠,AD平分BAC∴=()(括号里填推理的依据).18.如图,在O 中,点A 为弧CD 的中点过点B 作O 的切线BF ,交弦CD 的延长线于点F . (Ⅰ)如图①,连接AB ,若50F ∠=︒,求ABF ∠的大小;(Ⅱ)如图②,连接CB ,若35F ∠=︒,//AC BF ,求CBF ∠的度数.19.如图,已知MON ∠,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在MON ∠的内部确定一点C ,使得//BC OA 且12BC OA =;(保留作图痕迹,不写作法) (2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得2OD CD =,并证明2OD CD =.20.【概念认识】若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.如图①,点P 是锐角ABC ∆的边BC 上一点,以P 为圆心的半圆上的所有点都在ABC ∆的内部或边上.当半径最大时,半圆P 为边BC 关联的极限内半圆.【初步思考】若等边ABC ∆的边长为1,则边BC 关联的极限内半圆的半径长为 .如图②,在钝角ABC ∆中,用直尺和圆规作出边BC 关联的极限内半圆(保留作图痕迹,不写作法).【深入研究】如图③,30AOB ∠=︒,点C 在射线OB 上,6OC =,点Q 是射线OA 上一动点.在QOC ∆中,若边OC 关联的极限内半圆的半径为r ,当1≤r ≤2时,求OQ 的长的取值范围.21.如图,已知线段AB . (1)仅用没有刻度的直尺和圆规作一个以AB 为腰、底角等于30︒的等腰ABC ∆.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若2AB cm =,则等腰ABC ∆的外接圆的半径为 cm .22.人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,其中转化思想是中学数学中最活跃,最实用,也是最重要的数学思想,例如将不规则图形转化为规则图形就是研究图形问题比较常用的一种方法.51013的三角形的面积.问题解决:在解答这个问题时,先建立一个正方形网格(每个小正方形的边长为1)5、1013的格点三角形ABC ∆(如图1).5AB =是直角边分别为1和2的直角三角形的斜边,10BC =1和3的直角三角形的斜边,13AC =2和3的直角三角形的斜边,用一个大长方形的面积减去三个直角三角形的面积,这样不需求ABC ∆的高,而借用网格就能计算出它的面积.(1)请直接写出图1中ABC ∆的面积为 .(2)类比迁移:求出边长分别为5、22、17的三角形的面积(请利用图2的正方形网格画出相应的ABC ∆,并求出它的面积).23.如图,已知ABC ∆,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作ABC ∆的外接圆;(2)若ABC ∆所在平面内有一点D ,满足CAB CDB ∠=∠,BC BD =,求作点D .中考数学专题训练-尺规作图(3)1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

中考数学专题复习 专题30 尺规作图问题(教师版含解析)

中考数学专题复习 专题30  尺规作图问题(教师版含解析)

中考专题30 尺规作图问题1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考专题要求(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).【经典例题1】(2020年•台州)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【标准答案】D【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出标准答案.【答案剖析】由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD【知识点练习】(2019•丽水模拟题)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是( )A.矩形B.菱形C.正方形D.等腰梯形【标准答案】B【答案剖析】根据垂直平分线的画法得出四边形ADBC 四边的关系进而得出四边形一定是菱形。

中考数学总复习之尺规作图

中考数学总复习之尺规作图

中考数学总复习之尺规作图1.(4分)(2022•贵港)尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.2.(4分)(2022•沈阳)如图,在△ABC中,AD是△ABC的角平分线,分别以点A,D为圆心,大于AD的长为半径作弧,两弧交于点M,N,作直线MN,分别交AB,AD,AC于点E,O,F,连接DE,DF.(1)由作图可知,直线MN是线段AD的.(2)求证:四边形AEDF是菱形.3.(4分)(2022•赤峰)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.4.(4分)(2022•襄阳)如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.5.(4分)(2022•宁夏)如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.6.(4分)(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)7.(4分)(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CF A中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①.∵EF∥BC,∴②.又∵③,∴△ADC≌△CF A(AAS).同理可得:④.S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.8.(4分)(2021•陕西)如图,已知△ABC,AB>AC.请在边AB上求作一点P,使点P到点B、C的距离相等.(尺规作图,保留作图痕迹,不写作法)9.(4分)(2021•广州)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.10.(4分)(2022•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.11.(4分)(2022•甘肃)中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,∠ABC为直角,以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与交于点F;再以点E为圆心,仍以BD长为半径画弧与交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.12.(4分)(2022•丽水)如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.13.(4分)(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.求作:Rt △ABC ,使∠C =90°,且点C 在∠O 内部,∠BAC =∠O .14.(4分)(2022•青岛)已知:Rt △ABC ,∠B =90°.求作:点P ,使点P 在△ABC 内部.且PB =PC ,∠PBC =45°.15.(4分)(2022•南通)【阅读材料】 老师的问题:已知:如图,AE ∥BF .求作:菱形ABCD ,使点C ,D 分别在BF ,AE 上.小明的作法:(1)以A 为圆心,AB 长为半径画弧,交AE 于点D ; (2)以B 为圆心,AB 长为半径画弧,交BF 于点C ; (3)连接CD .四边形ABCD 就是所求作的菱形.【解答问题】请根据材料中的信息,证明四边形ABCD 是菱形.16.(4分)(2022•烟台)如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC 的长.17.(4分)(2022•绥化)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.18.(4分)(2022•无锡)如图,△ABC为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且CD⊥AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若∠B=60°,AB=2,BC=3,则四边形ABCD的面积为.19.(4分)(2022•荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC 有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.20.(4分)(2022•扬州)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)21.(4分)(2022•江西)课本再现(1)在⊙O中,∠AOB是所对的圆心角,∠C是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与∠C的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明∠C=∠AOB;知识应用(2)如图4,若⊙O的半径为2,P A,PB分别与⊙O相切于点A,B,∠C=60°,求P A的长.22.(4分)(2022•重庆)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E 是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.23.(4分)(2021•泰州)(1)如图①,O为AB的中点,直线l1、l2分别经过点O、B,且l1∥l2,以点O为圆心,OA长为半径画弧交直线l2于点C,连接AC.求证,直线l1垂直平分AC;(2)如图②,平面内直线l1∥l2∥l3∥l4,且相邻两直线间距离相等,点P、Q分别在直线l1、l4上,连接PQ.用圆规和无刻度的直尺在直线l4上求作一点D,使线段PD最短.(两种工具分别只限使用一次,并保留作图痕迹)24.(4分)(2022•淮安)如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.25.(4分)(2021•遵义)在复习菱形的判定方法时,某同学进行了画图探究,其作法和图形如下:①画线段AB;②分别以点A,B为圆心,大于AB长的一半为半径作弧,两弧相交于M、N两点,作直线MN交AB于点O;③在直线MN上取一点C(不与点O重合),连接AC、BC;④过点A作平行于BC的直线AD,交直线MN于点D,连接BD.(1)根据以上作法,证明四边形ADBC是菱形;(2)该同学在图形上继续探究,他以点O为圆心作四边形ADBC的内切圆,构成如图所示的阴影部分,若AB=2,∠BAD=30°,求图中阴影部分的面积.26.(4分)(2022•衢州)如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.27.(4分)(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ ∽△ABC,且相似比为1:2.28.(4分)(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.29.(4分)(2021•河池)如图,∠CAD是△ABC的外角.(1)尺规作图:作∠CAD的平分线AE(不写作法,保留作图痕迹,用黑色墨水笔将痕迹加黑);(2)若AE∥BC,求证:AB=AC.30.(4分)(2022•六盘水)“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x 之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档