完整污水处理厂高程计算.docx
污水处理厂高程计算

污水处理厂高程设计
=
1.3
= 120000 m3/d
5000.00 m3/h =
=
1.389 m3/s
6500.00 m3/h =
=
1.806 m3/s
=
30.5 m
29.90 m
=
=
0.45 m
=
30.35 m
1500 =
=
1.02 m/s
=
0.69 m
=
0.79 m/s
=
0.42 m
损失
h= iXl
局部水称
规格
x
n
nx
闸门
小计
总水头损 失
=
0.01 +
=
0.04 m
V
V2/2g
0.030
nxV2/2g 0.030 0.030
细格栅栅 后水位 细格栅水 头损失 细格栅栅 前水位 细格栅栅 前渠道水 头损失
=
34.54 m
=
0.30 m
=
34.84 m
0.04 m =
1200 900 900
长度 6.6 60.7 27.6 6.9 44.4
1000i
0.69
1.00 1.13 1.13
iXl 0.005 0.042 0.028 0.008 0.050
0.132 m
局部水头 损失:
名称
规格
x
消毒池进
口
DN1500
45度弯头 DN1500
三通
DN1500X 1200
0.053
0.027
0.14
=
0.11 +
0.14
污水处理厂高程计算

污水处理厂高程计算污水处理厂高程计算是指根据实际情况对污水处理厂的高程进行测量和计算,以确定厂区内各个设备、管道和建筑之间的高差关系,从而保证污水在处理过程中的正常流动和排放。
高程计算是污水处理工程设计的重要环节,其准确性和合理性直接关系到工程的稳定运行和效果。
高程计算主要包括以下几个方面的内容:1.地形测量和高程测量:通过地形测量和高程测量,获取厂区内地表的高程数据和厂房、设备的高程数据。
地形测量一般使用全站仪或者GPS进行,通过测量厂区内各个点的坐标值,并结合地形图,绘制出高程等值线图。
高程测量通常使用水准仪进行,通过测量设备的仪表高与基准高之差,确定其高程。
2.管道管线的高差计算:在污水处理厂中,存在着许多污水管道和污水处理设备之间需要建立联通的管线系统。
通过高程测量和地形测量,确定管道系统中各个点的高程值,再通过计算,确定各个管段之间的高差和坡度。
在计算过程中,还需考虑到管道的阻力和摩擦系数等因素,以确保污水在管道中正常流动。
3.设备的安装高度计算:污水处理厂中的各个污水处理设备,如格栅、沉砂池、曝气池等,其安装高度的确定需要根据实际情况来计算。
一般情况下,需要考虑池底水位、池内液位、设备底部与液位之间的高差等因素,以及设备在使用过程中的运行要求,综合考虑来确定设备的安装高度。
4.建筑物的高差计算:在污水处理厂中,还存在着许多建筑物,如办公楼、工艺房等。
建筑物的高差计算一般是根据设备的安装高度和功能需求来确定的,需要考虑到建筑物内部的设备布置和排水要求,以及建筑物周围的地势状况,综合考虑来确定建筑物的高差。
在进行高程计算时,需要注意以下几个问题:1.确定高程基准:在进行高程计算时,需要确定统一的高程基准。
一般来说,可以选取附近的高程基准点或者公共基准点作为参考,以确保各个测量点之间的高差计算准确。
2.考虑地形起伏:在进行高程计算时,需要考虑到地形的起伏情况。
在设计过程中,可以通过对地形的测量和分析,将地形信息与高程计算相结合,以确定各个设备、管道和建筑之间的高差关系。
污水处理厂高程设计计算

污水处理厂平面及高程设计平面布置及高程布置一、污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。
作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。
在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。
布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。
构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。
管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。
厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。
所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。
这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。
它们是污水处理厂设计不可缺少的组成部分。
其建筑面积大小应按具体情况与条件而定。
有可能时,可设立试验车间,以不断研究与改进污水处理方法。
辅助建筑物的位置应根据方便、安全等原则确定。
如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。
高程计算

高程计算污水处理厂的高程布置污水处理厂高程布置的任务是:确定各处理构筑物和泵房等的标高,选定各连接管渠的尺寸并决定其标高。
计算决定各部分的水面标高,以使污水能按处理流程在处理构筑物之间通畅地流动,保证污水处理厂的正常运行。
污水处理厂的水流常依靠重力流动,以减少运行费用。
为此,必须精确计算其水头损失(初步设计或扩初设计时,精度要求可较低)。
水头损失包括:(1)水流流过各处理构筑物的水头损失,包括从进池到出池的所有水头损失在内;在作初步设计时可按表1估算。
表1 处理构筑物的水头水损失构筑物名称水头损失(cm) 构筑物名称水头损失(cm)格栅 10~25 生物滤池(工作高度为2m时):沉砂池 10~25沉淀池:平流竖流辐流 20~40 1)装有旋转式布水器 270~28040~50 2)装有固定喷洒布水器 450~47550~60 混合池或接触池 10~30双层沉淀池 10~20 污泥干化场 200~350曝气池:污水潜流入池 25~50污水跌水入池 50~150(2)水流流过连接前后两构筑物的管道(包括配水设备)的水头损失,包括沿程与局部水头损失。
(3)水流流过量水设备的水头损失。
水力计算时,应选择一条距离最长、水头损失最大的流程进行计算,并应适当留有余地;以使实际运行时能有一定的灵活性。
计算水头损失时,一般应以近期最大流量(或泵的最大出水量)作为构筑物和管渠的设计流量,计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头。
设置终点泵站的污水处理厂,水力计算常以接受处理后污水水体的最高水位作为起点,逆污水处理流程向上倒推计算,以使处理后污水在洪水季节也能自流排出,而水泵需要的扬程则较小,运行费用也较低。
但同时应考虑到构筑物的挖土深度不宜过大,以免土建投资过大和增加施工上的困难。
还应考虑到因维修等原因需将池水放空而在高程上提出的要求。
在作高程布置时还应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。
污水处理厂高程设计计算

污水处理厂平面及高程设计平面布置及高程布置一、污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。
作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。
在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。
布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。
构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。
管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。
厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。
所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。
这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。
它们是污水处理厂设计不可缺少的组成部分。
其建筑面积大小应按具体情况与条件而定。
有可能时,可设立试验车间,以不断研究与改进污水处理方法。
辅助建筑物的位置应根据方便、安全等原则确定。
如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。
污水厂流程-高程计算变化系数

城市污水处理工程施工图流程计算2截流干管的管径为d=2000mm4接管点管底标高=-1.59m5截流干管的旱季最大流量为Q旱max=541.666667m3/h=150.462963L/s管道充满度(查表)h/d=0.48接管点管道的水位高h=-0.63m6截流干管的雨季最大流量为Q旱max=833.333333m3/h=231.481481L/s管道充满度(查表)h/d=0.63接管点管道的水位高h=-0.33m7截流干管至污水厂分配井距离L=109m分配井井底标高=-1.64m8分配井至水厂粗格栅采用明渠L=140m管道管径DN=2000mm坡度=i=0.00059明渠流量计旱季损失=0.21m雨季损失=0.21m10粗格栅进水管底标高=-1.92m11粗格栅进水渠底标高取-2.12m粗格栅内旱季最高水位=-0.96m二、粗格栅计算1旱季栅前水位=-0.96m雨季栅前水位=-0.66m2旱季过栅损失(根据粗格栅计算书)=0.20m雨季过栅损失(根据粗格栅计算书)=0.15m3旱季栅后水位=-1.16m三. 污水厂工艺排出管设计计算(一)出水总管计算1根据初步设计说明书1.4.2节可知,辽河营口城区段受潮汐控制,每日涨潮落潮各两次,历年最高潮位为3.2m,历年平均潮位为1.46m,因此本工程排出口的底标高定= 1.46m排出口的水面标高= 3.20m2根据建设单位5月10日接口文件,水厂至排出口之间地面标高均较低而且营口市区地面标高也很低,所以厂区出水采用压力管道,以免涨潮时市区3根据建设单位及协作单位提供的截流干管设计条件,计算总出水管变化系数n0= 1.40水量20000一期雨季最大出水量Q1=20000.00m3/d=833.33m3/h=231.48L/s当出水压力管管径:DN=500.00mm时(查水力计算表)v= 1.18m/s1000i= 3.684根据建设单位5月10日传真总出水口至厂区出水管与溢流管交点的距离L=95.00m5厂区出水管与溢流管交点的水压标高(管顶标高)计算沿程水头损失=0.35m局部水头损失=0.43m总水头损失=0.78m 取0.4m水压标高计算= 3.60m(二)厂区溢流管道计算1溢流水量Q=70000.00m3/d=2916.67m3/h=810.19L/s2当出水压力管管径:DN=1000.00mm时(查水力计算表)v= 1.03m/s1000i= 1.174出水管与溢流管交点至溢流井的距离L=298.00m5厂区出水管与溢流管交点的水压标高(管顶标高)计算沿程水头损失=0.35m局部水头损失=0.12m总水头损失=0.46m 取0.6m溢流井最低水面标高应满足= 1.00m(三)厂区工艺出水管道计算1最高日出水水量Q=130000.00m3/d=5416.67m3/h=1504.63L/s2当出水压力管管径:DN=1400.00mm时(查水力计算表)v=0.98m/s1000i=0.684出水管与溢流管交点至二沉池配水井的距离L=156.50m5二沉池配水井出水水面标高计算沿程水头损失=0.11m局部水头损失=0.12m总水头损失=0.23m 取0.25m四.二次沉淀池至配水井水井室的水头损失(一)二沉池出水管至配水井水头计算(按最大日最大时计算)1最高日出水水量Q=32500.00m3/d=1354.17m3/h=376.16L/s2当出水管管径:DN=900.00mm时(查水力计算表)v=0.59m/s1000i=0.484二沉池出水管至二沉池配水井的距离L=15.00m5二沉池出水水面标高计算沿程水头损失=0.01m局部水头损失=0.03m总水头损失=0.03m 取0.05m辐流二沉池出水标高= 3.90m辐流二沉池水头损失=0.60m(一般取0.5--0.6m)辐流二沉池进水标高= 4.50m(老手册5P410)(二)二沉池进水管至配水井水头计算(按最大日最大时加回流量计算)1最大进水水量Q=53125.00m3/d=2213.54m3/h=614.87L/s2当进水管管径:DN=900.00mm时(查水力计算表)v=0.97m/s1000i= 1.184二沉池进水管至二沉池配水井的距离L=15.00m5二沉池配水井面标高计算沿程水头损失=0.02m局部水头损失=0.07m总水头损失=0.09m 取0.1m配水井堰后进水面标高= 4.60m堰上水头=0.02m跌水高度=0.13m配水井堰后进水面标高= 4.75m五、生化池出水渠至二次沉淀池配水井的水头损失(一)干管损失计算1最大进水水量Q=212500.00m3/d=8854.17m3/h=2459.49L/s2当进水管管径:DN=1600.00mm时(查水力计算表)v= 1.22m/s1000i=0.874干管的长度L=60.00m5干管水头损失计算沿程水头损失=0.05m局部水头损失=0.11m总水头损失=0.17取0.2m(二)次干管损失计算1最大进水水量Q=106250.00m3/d=4427.08m3/h=1229.75L/s2当进水管管径:DN=1200.00mm时(查水力计算表)v= 1.09m/s1000i= 1.034次干管的长度L=24.70m5干管水头损失计算沿程水头损失=0.03m1最大进水水量Q=53125.00m/d=2213.54m3/h=614.87L/s2当进水管管径DN=900.00mm时(查水力计算表)v=0.97m/s1000i= 1.174支管的长度L=12.60m5干管水头损失计算沿程水头损失=0.01m六、生化池水头损失计算1生化池出水面标高= 5.20m2池内损失=0.50m(一般取0.25--0.5m)七、溢流井至曝气池水头损失(一)干管损失计算1最大进水水量Q=130000.00m3/d=5416.67m3/h=1504.63L/s2当进水管管径:DN=1400.00mm时(查水力计算表)v=0.98m/s1000i=0.684干管的长度L=12.00m5干管水头损失计算沿程水头损失=0.01m局部水头损失=0.07m干管水头损失=0.08取0.15m(二)支管损失计算1最大进水水量Q=106250.00m3/d=4427.08m3/h=1229.75L/s2当进水管管径:DN=1200.00mm时(查水力计算表)v= 1.09m/s1000i= 1.034支管的长度L=31.50m5支管水头损失计算沿程水头损失=0.03m局部水头损失=0.09m干管水头损失=0.12取0.15m (三)溢流井堰前水面标高1溢流井堰前水面标高= 6.00m1最大进水水量Q=100000.00m3/d=4166.67m3/h=1157.41L/s2当进水管管径DN=1200.00mm时(查水力计算表)v= 1.02m/s1000i=0.914长度L=20.00m5干管水头损失计算沿程水头损失=0.02m局部水头损失=0.08m总水头损失=0.10取0.15m6.15m6雨水贮池出水面标高=1最大进水水量Q=100000.00m/d=4166.67m3/h=1157.41L/s2当进水管管径DN=1200.00mm时(查水力计算表)v= 1.02m/s4管道长度L=11.00m 5干管水头损失计算沿程水头损失=0.01m 局部水头损失=0.08m 总水头损失=0.09取0.15m6配水井堰上水头=0.17m 堰后跌水=0.13m 1最大进水水量Q=200000.00m 3/d =8333.33m 3/h =2314.81L/s 2当进水管管径DN=1600.00mm 时(查水力计算表)v= 1.15m/s1000i=0.784长度L=80.39m 5干管水头损失计算沿程水头损失=0.06m 局部水头损失=0.17m 总水头损失=0.23取0.45m1渠道阀门损失=0.10m 2细格栅栅后水位=7.95m 3细格栅损失=0.20m 1细格栅栅前水位=9.5m 2有效水深= 1.80m 3最低水位= 4.00m 4水泵净水头= 5.50m 5泵房损失= 1.90m 泵房计算书6富裕水头= 1.00m (一)二沉池配泥井1二沉池进水水位= 4.50m 2二沉池平均水位= 4.20m 3保证污泥重力排出h= 1.20m 5二沉池至配泥井距离=15.00m6回流污泥量=110000.00m 3/d 二沉池剩余泥量=1890.00m 3/d 4单管最大泥量Q=27972.50m 3/d =1165.52m 3/h =323.76L/s 当进水管管径DN=500.00mm 时(查水力计算表)v=1.65m/s十五、污泥处理流程计算十一、雨水贮池(初沉池)配水井至曝气沉砂池水头损失十二、曝气沉砂池水头损失计算十三、细格栅水头损失计算十四、提升泵房扬程计算长度L=15.00m5水头损失计算沿程水头损失=0.06m局部水头损失=0.21m总水头损失=0.27取0.2配泥井泥面标高= 2.80m(二)配泥井至回流剩余泵房吸水井1单管最大泥量Q=111890.00m3/d=4662.08m3/h=1295.02L/s当进水管管径DN=1000.00mm时(查水力计算表)v= 1.65m/s1000i= 2.91长度L=180.00m水头损失计算沿程水头损失=0.52m局部水头损失=0.31m总水头损失=0.83取0.8吸水井泥面标高= 2.00m(三)浓缩池配泥井标高= 5.90m1单管最大泥量Q=1890.00m3/d=78.75m3/h=21.88L/s当进水管管径DN=150.00mm时(查水力计算表)v= 1.24m/s1000i=16.50m/dm3/d l/S平均流量30000347.222222KZ=2.7/Q^0.11变化系数 1.4187208142561.6242有效断面,湿周,水力半径:与流束或总流的速度相垂直的断面称为有效断面。
污水处理厂高程计算

污水处理厂高程计算(1)接纳水体广澳湾近岸海域??→巴式计量槽0WL 水位设计为3.50m出水管:DN1000,钢筋混凝土管道管底坡度:0.03i =管长:约50m流量:33max 2736m /h=0.76m /s Q =1L =排出管出口管底标高:3.00m2L =排出管进口管底标高:3.15m正常水深=0.65m,而临界水深=0.58,管中水为非满流,自由出流至广澳湾近岸海域。
管道进口水力损失为0.031WL =巴式计量出口槽标高2L +正常水深+管道进口水力损失3.150.650.03 3.83m =++=1WL ——巴式计量槽下游水面标高(2)巴式计量槽??→接触消毒池巴式喉管是由不锈钢制成,浇铸于巴式计量槽中;巴式计量槽水力高程2 3.15m L =,3 3.56m L =,4 3.41m L =,5 3.61m L =,6 3.20m L =计量设备的水头损失计算巴式计量槽在自由流的条件下,计量槽的流量按下式计算:10.0261.5690.372(3.28)b Q b H =式中 Q ——过堰流量,0.763m /s ;b ——喉宽,m ;1H ——上游水深,m 。
设计中取 1.00m b =,则11.5702.402Q H =,得10.73m H =对于巴式计量槽只考虑跌落水头。
淹没度151()/(3.83 3.61)/0.730.3WL L H =-=-=可以满足自由出流。
521 3.610.73 4.34m WL L H =+=+=2WL 为巴式计量槽上游水面标高[]3=(4.34 3.20) 1.680.39m/s v -?=0.75/3v 为巴式槽上游渠中流速320.05WL WL H =++?(渠道等约为0.1m)4.340.050.1 4.49m =++=式中 3WL ——接触池出水堰下游水面标高73L WL =+自由跌落到3=4.49+0.05=4.54m WL堰长为3m堰上水头约为h =0.3m74 4.540.3 4.84m h WL L +=+==4WL 为接触池水面标高(3)接触池??→ 配水池 DN800,L=10m管底坡度:0.003i =堰上水头约为h =0.3m254/290g WL WL ?+?+=出水(10)(0.98-0.50)弯头(0.40.98/2g )2+40.0007+500.00095+配水井配进水管道和弯头(0.50.98/2g )+h4.840.0140.00280.0060.00350.0470.0250.3=+++++++5.24m =配水井溢流堰顶标高58L WL =+自由出流至5WL 标高5.240.1 5.34m =+=68 5.340.3 5.64m h WL L +=+==h ——堰上水头约为0.3m(4)配水井??→SBR 反应池 760.010.01 5.66m WL WL +=+=7WL ——接触池进口处最大水位标高DN800,L=10m管底坡度:0.003i =,滗水器水力损失为0.05mSBR 反应池水位0.030.05 5.78m 87WL WL =++= (4) SBR 反应池??→配水井 DN800,L=10m管底坡度:0.003i =堰上水头约为h =0.3m298/290g WL WL ?+?+=出水(10)(0.98-0.50)弯头(0.40.98/2g )2+40.0007+500.00095+配水井配进水管道和弯头(0.50.98/2g )+h5.780.0140.00280.0060.00350.0470.0250.3=+++++++6.18m =配水井溢流堰顶标高99L WL =+自由出流至9WL 标高6.180.1 6.28m =+=109=6.280.3 6.58m h WL L ++==h ——堰上水头约为0.3m(5)配水井??→初沉池 11100.1 6.580.1 6.68m WL WL =+=+=1011L WL =+自由出流至10WL 标高=6.68+0.1=6.78m式中 10L ——平流沉淀池出水槽渠底标高1210 6.780.2 6.98m WL L h =+=+=式中 12WL ——平流沉淀池出水槽水面标高h ——平流沉淀池出水自由跌落(6)平流沉淀池??→钟式沉砂池1312WL WL =+自由跌落到10 6.980.097.07m WL =+=堰宽为3m式中 13WL ——平流沉淀池出水处水面标高14130.17.070.17.17m WL WL =+=+=14WL ——平流沉淀池进水处水面标高1114L WL =+自由出流至12WL 标高=7.17+0.09=7.26m式中 11L ——平流沉淀池第二格集水槽末端标高15117.260.17.36m WL L h =+=+=式中 15WL ——平流沉淀池第二格集水槽水面标高1615WL WL +=平流沉淀池底部隔墙孔损失1h7.360.027.38m =+=取1h 为0.02m式中 16WL ——平流沉淀池第一格集水槽水面标高平流沉淀池与钟式沉砂池之间的管道连接DN800砼管,L=50m20.5m A =0.2m R =0.76/0.20.38m/s v ==20.6670.38/()0.00078400.2I ??== 1716WL WL +=出水至平流沉淀池20.38500.00078?+?(1.1/2g)+转弯和从渠道进入管道2(0.50.38/2)g ?7.44=17WL ——钟式沉砂池出水渠堰末端水面标高1217L WL =+自由落水至13WL 标高7.440.1=+7.54m =式中 12L ——钟式沉砂池出溢流堰堰顶标高堰长2 2.55m =?=1.50.76 1.825Q h ==??则0.1910.2m h =≈12187.540.27.74m WL L h =+=+=式中 18WL ——钟式沉砂池最高水位(7)钟式沉砂池??→细格栅 1918WL WL =+2个钟式沉砂池闸板孔损失2个闸板孔面积22 1.0 1.0 2.0m =??= 0.76/2.00.38m/s v ==过闸板孔损失22.230.38/2g =?+水流减速转弯和格栅后涡流等大约0.02m0.036m =则19180.0367.740.0367.78m WL WL +=+==细格栅处渠道底标高12L =6.34m(1)格栅水头损失计算0f h kh =20sin 2v h g ξα=,43=S b ξβ?? ??? 式中 f h ——过栅水头损失,m ;0h ——计算水头损失,m ;k ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般3k =;ξ——阻力系数,与栅条断面形状有关,,k 为系数,格栅受污物堵塞时水头损失增大倍数,与栅条断面形状有关,可按《给排水设计书册(第5册)》提供的计算公式和相关系数计算。
污水处理厂高程计算

污水处理厂高程计算一、高程测量基本概念和方法1.高程概念:高程指的是一点相对于一些水平面的高低位置,通常使用基准面作为参照标准。
2.高程测量方法:常用的高程测量方法有水准测量法、网络大地测量法等。
在污水处理厂高程计算中,通常使用直接读表法、分水实测法等方法。
二、污水处理厂高程计算步骤1.制定高程控制点:根据具体情况,在污水处理厂的关键位置设置高程控制点,如进、出水口、隔油池底、曝气池底等。
2.进行高程测量:根据设定的高程控制点,使用合适的高程测量方法,进行实际的高程测量工作。
对于大面积的污水处理厂,需要建立高程网进行全面测量。
3.绘制高程图:根据测量结果,编制污水处理厂的高程图。
高程图可以直观地反映污水处理厂内各个位置的高低关系,并为后续的高程计算提供依据。
4.计算污水流向:在污水处理厂的高程计算中,首先需要确定污水的流向,即整个处理过程中各个设备的排布顺序和排水方向。
在此基础上,进行管道布置和高程计算。
5.确定设备高程:根据设备的功能和操作要求,确定各个设备的高程。
例如,在进、出水口处,需要保证水流的顺畅;在曝气池和沉淀池等位置,需要根据水流速度等参数,确定合适的设备高程。
6.管道高程计算:在设备高程确定后,按照污水流向和排列位置,逐一计算各个管道的高程。
通常包括进水管、排水管、曝气池进水管、固体液分离管等。
7.调整高程设计:在计算完成后,需要根据实际情况进行合理的调整。
如果发现存在高程不合理或超出范围的情况,需要对布置进行调整,确保整个污水处理系统的正常运行。
三、污水处理厂高程计算中的注意事项1.结构物高程计算:在计算过程中,需要考虑到结构物的高程,如墙体、屋面等。
这些结构物可能会影响到污水处理厂的高程设计。
2.高程范围限制:根据污水处理厂的具体要求和周围地形环境,需要确定高程的测量范围和限制条件。
同时,还需要考虑到未来的扩建和改造需求。
3.设备故障处理:在高程计算中,需要考虑到设备的故障情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章高程计算
一、水头损失计算
计算厂区内污水在处理流程中的水头损失,选最长的流程计算,结果见下表:
污水厂水头损失计算表
设计管径I V管长IL
Σξ v2
名称流量Σξ
(L/s )(mm)(‰)(m/s)( m)(m)2g
(m)
Σh (m)
出厂管231.5600 1.480.84800.118 1.000.0360.154接触池0.3
出水控0.2
制井
出水控
制井至115.8400 3.080.921000.308 6.180.2670.575二沉池
二沉池0.5
二沉池
至流量115.8400 3.080.92100.031 3.840.1660.197计井
流量计0.2
井
氧化沟0.5
氧化沟
至厌氧115.8400 3.080.92120.037 4.220.1820.219池
厌氧池0.3
厌氧池
至配水151450 2.820.95150.042 5.000.2300.272井
配水井0.2
配水井
至沉砂301600 2.41 1.07600.1457.260.4240.569池
沉砂池0.33
细格栅0.26
提升泵 2.0
房Σ= 6.776中格栅0.1
进水井0.2
ΣΣ= 7.076
二、高程确定
1.计算污水厂处神仙沟的设计水面标高
根据式设计资料,神仙沟自本镇西南方向流向东北方向,神仙沟沟底标高为-1.5m ,河床水位控制在 0.5 - 1.0m。
而污水厂厂址处的地坪标高基本上在 2.25m左右( 2.10 -2.40 ),大于神仙沟最高水位 1.0m(相对污水厂地面标高为-1.25)。
污水经提升泵后自流排出,由于不设污水厂终点泵站,从而布置高程时,确保接触池的水面标高大于0.8m 【即神仙沟最高水位 ( -1.25+0.154+0.3 )= -0.796 ≈ 0.8m】,同时考虑挖土埋深。
2.各处理构筑物的高程确定
设计氧化沟处的地坪标高为 2.25m(并作为相对标高± 0.00 ),按结构稳定的原则确定池底埋深-2.0m ,再计算出设计水面标高为3.5-2.0 =1.5m,然后根据各处理构筑物的之间的水头损失,推求其它构筑物的设计水面标高。
经过计算各污水处理构筑物的设计水面标高见下表。
再根据各处理构筑物的水面标高、结构稳定的原理推求各构筑物地面标高及池底标高。
具体结果见污水、污泥处理流程图。
各污水处理构筑物的设计水面标高及池底标高
构筑物名称水面标高池底标高构筑物名称水面标高池底标高
(m)(m)(m)(m)进水管-3.93-4.41沉砂池 3.26 2.10中格栅-4.23-4.70厌氧池 2.02-1.98
泵房吸水井-5.23-7.00氧化沟 1.5-2.00
细格栅前 3.65 3.18二沉池0.60-4.53
细格栅后 3.39 2.92接触池-0.67-2.97。