高中函数零点问题精选题型

合集下载

2025高考数学必刷题 第25讲、函数的零点问题(学生版)

2025高考数学必刷题  第25讲、函数的零点问题(学生版)

第25讲函数的零点问题知识梳理1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.2、函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.3、求函数的零点个数时,常用的方法有:一、直接根据零点存在定理判断;二、将()f x 整理变形成()()()f x g x h x =-的形式,通过()(),g x h x 两函数图象的交点确定函数的零点个数;三、结合导数,求函数的单调性,从而判断函数零点个数.4、利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图像;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题;(3)利用导数研究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数研究.必考题型全归纳题型一:零点问题之一个零点例1.(2024·江苏南京·南京市第十三中学校考模拟预测)已知函数()ln f x x =,()21212g x x x =-+.(1)求函数()()()3x g x f x ϕ=-的单调递减区间;(2)设()()()h x af x g x =-,a R ∈.①求证:函数()y h x =存在零点;②设0a <,若函数()y h x =的一个零点为m .问:是否存在a ,使得当()0,x m ∈时,函数()y h x =有且仅有一个零点,且总有()0h x ≥恒成立?如果存在,试确定a 的个数;如果不存在,请说明理由.例2.(2024·广东·高三校联考阶段练习)已知函数()e sin 1x f x a x =--,()()22cos sin 2e xx a g x a x x ++=-+-+,()f x 在()0,π上有且仅有一个零点0x .(1)求a 的取值范围;(2)证明:若12a <<,则()g x 在(),0π-上有且仅有一个零点1x ,且010x x +<.例3.(2024·全国·高三专题练习)已知函数()1ln e xx f x a x -=+.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0a ≥时,()f x 有且只有一个零点;(3)若()f x 在区间()()0,1,1,+∞各恰有一个零点,求a 的取值范围.变式1.(2024·广东茂名·高三统考阶段练习)已知0a >,函数()e xf x x a =-,()ln g x x x a =-.(1)证明:函数()f x ,()g x 都恰有一个零点;(2)设函数()f x 的零点为1x ,()g x 的零点为2x ,证明12x x a =.题型二:零点问题之二个零点例4.(2024·海南海口·统考模拟预测)已知函数2()e x f x x +=.(1)求()f x 的最小值;(2)设2()()(1)(0)F x f x a x a =++>.(ⅰ)证明:()F x 存在两个零点1x ,2x ;(ⅱ)证明:()F x 的两个零点1x ,2x 满足1220x x ++<.例5.(2024·甘肃天水·高三天水市第一中学校考阶段练习)已知函数2()ln (21)f x x ax a x =+++.(1)讨论函数()f x 的单调性;(2)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,两个零点互为倒数.例6.(2024·四川遂宁·高三射洪中学校考期中)已知函数2()ln (21)f x x ax a x =+++.(1)若函数()f x 在1x =处取得极值,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)讨论函数()f x 的单调性;(3)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,且两个零点互为倒数.变式2.(2024·全国·高三专题练习)已知函数()ln x f x e x a =--.(1)若3a =.证明函数()f x 有且仅有两个零点;(2)若函数()f x 存在两个零点12,x x ,证明:121222x x x x e e e a >++-.变式3.(2024·湖南长沙·高三长沙一中校考阶段练习)已知函数()ln ()f x x ax a R =-∈在其定义域内有两个不同的零点.(1)求a 的取值范围;(2)记两个零点为12,x x ,且12x x <,已知0λ>,若不等式()21ln 1ln 10λ-+->x x 恒成立,求λ的取值范围.变式4.(2024·江苏·高三专题练习)已知函数()4212f x ax x =-,,()0x ∈+∞,()()()g x f x f x '=-.(1)若0a >,求证:(ⅰ)()f x 在()f x '的单调减区间上也单调递减;(ⅱ)()g x 在(0,)+∞上恰有两个零点;(2)若1a >,记()g x 的两个零点为12,x x ,求证:1244x x a <+<+.题型三:零点问题之三个零点例7.(2024·山东·山东省实验中学校联考模拟预测)已知函数()21ln ln 1ex ax f x x a -=---有三个零点.(1)求a 的取值范围;(2)设函数()f x 的三个零点由小到大依次是123,,x x x .证明:13e e x x a >.例8.(2024·广东深圳·校考二模)已知函数1()ln 1x f x a x x -=-+.(1)当1a =时,求()f x 的单调区间;(2)①当102a <<时,试证明函数()f x 恰有三个零点;②记①中的三个零点分别为1x ,2x ,3x ,且123x x x <<,试证明22131(1)(1)x x a x >--.例9.(2024·广西柳州·统考三模)已知()3()1ln f x x ax x =-+.(1)若函数()f x 有三个不同的零点,求实数a 的取值范围;(2)在(1)的前提下,设三个零点分别为123,,x x x 且123x x x <<,当132x x +>时,求实数a 的取值范围.变式5.(2024·贵州遵义·遵义市南白中学校考模拟预测)已知函数()32113f x x ax bx =+++(a ,b ∈R ).(1)若0b =,且()f x 在()0+∞,内有且只有一个零点,求a 的值;(2)若20a b +=,且()f x 有三个不同零点,问是否存在实数a 使得这三个零点成等差数列?若存在,求出a 的值,若不存在,请说明理由.变式6.(2024·浙江·校联考二模)设e 2a <,已知函数()()()22e 22x f x x a x x =---+有3个不同零点.(1)当0a =时,求函数()f x 的最小值:(2)求实数a 的取值范围;(3)设函数()f x 的三个零点分别为1x 、2x 、3x ,且130x x ⋅<,证明:存在唯一的实数a ,使得1x 、2x 、3x 成等差数列.变式7.(2024·山东临沂·高三统考期中)已知函数ln ()xf x x=和()e x ax g x =有相同的最大值.(1)求a ,并说明函数()()()h x f x g x =-在(1,e )上有且仅有一个零点;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.题型四:零点问题之max ,min 问题例10.(2024·湖北黄冈·黄冈中学校考三模)已知函数()()2sin cos ,lnπxf x x x x axg x x =++=.(1)当0a =时,求函数()f x 在[]π,π-上的极值;(2)用{}max ,m n 表示,m n 中的最大值,记函数()()(){}max ,(0)h x f x g x x =>,讨论函数()h x 在()0,∞+上的零点个数.例11.(2024·四川南充·统考三模)已知函数21()sin cos 2f x x x x ax =++,()ln πxg x x =.(1)当0a =时,求函数()f x 在[,]-ππ上的极值;(2)用max{,}m n 表示m ,n 中的最大值,记函数()max{(),()}(0)h x f x g x x =>,讨论函数()h x 在(0,)+∞上的零点个数.例12.(2024·四川南充·统考三模)已知函数()2e 2x ax x f x x =+-,()ln g x x =其中e 为自然对数的底数.(1)当1a =时,求函数()f x 的极值;(2)用{}max ,m n 表示m ,n 中的最大值,记函数()()(){}max ,(0)h x f x g x x =>,当0a ≥时,讨论函数()h x 在()0,∞+上的零点个数.变式8.(2024·广东·高三专题练习)已知函数()ln f x x =-,31()4g x x ax =-+,R a ∈.(1)若函数()g x 存在极值点0x ,且()()10g x g x =,其中10x x ≠,求证:1020x x +=;(2)用min{,}m n 表示m ,n 中的最小值,记函数()min{()h x f x =,()}(0)g x x >,若函数()h x 有且仅有三个不同的零点,求实数a 的取值范围.变式9.(2024·全国·高三专题练习)已知函数2()e (R)x f x ax a =-∈,()1g x x =-.(1)若直线()y g x =与曲线()y f x =相切,求a 的值;(2)用{}min ,m n 表示m ,n 中的最小值,讨论函数()min{(),()}h x f x g x =的零点个数.变式10.(2024·山西朔州·高三怀仁市第一中学校校考期末)已知函数()()31,1ln 4f x x axg x x x =++=--.(1)若过点()1,0可作()f x 的两条切线,求a 的值.(2)用{}min ,m n 表示,m n 中的最小值,设函数()()(){}min ,(01)h x f x g x x =<<,讨论()h x 零点的个数.题型五:零点问题之同构法例13.已知函数1()()2(0)x axf x x ln ax a e -=+-->,若函数()f x 在区间(0,)+∞内存在零点,求实数a 的取值范围例14.已知2()12a f x xlnx x =++.(1)若函数()()cos sin 1g x f x x x x xlnx =+---在(0,]2π上有1个零点,求实数a 的取值范围.(2)若关于x 的方程2()12x a a xe f x x ax -=-+-有两个不同的实数解,求a 的取值范围.例15.已知函数()(1)1x f x ae ln x lna =-++-.(1)若1a =,求函数()f x 的极值;(2)若函数()f x 有且仅有两个零点,求a 的取值范围.题型六:零点问题之零点差问题例16.已知关于x 的函数()y f x =,()y g x =与()(h x kx b k =+,)b R ∈在区间D 上恒有()()()f x h x g x .(1)若2()2f x x x =+,2()2g x x x =-+,(,)D =-∞+∞,求()h x 的表达式;(2)若2()1f x x x =-+,()g x klnx =,()h x kx k =-,(0,)D =+∞,求k 的取值范围;(3)若42()2f x x x =-,2()48g x x =-,342()4()32(0||h x t t x t t t =--+<,[D m =,][n ⊂,,求证:n m-例17.已知函数32()(3)x f x x x ax b e -=+++.(1)如3a b ==-,求()f x 的单调区间;(2)若()f x 在(,)α-∞,(2,)β单调增加,在(,2)α,(,)β+∞单调减少,证明:6βα->.例18.已知函数221()2x f x ae x ax =--,a R ∈.(1)当1a =时,求函数2()()g x f x x =+的单调区间;(2)当4401a e <<-,时,函数()f x 有两个极值点1x ,212()x x x <,证明:212x x ->.题型七:零点问题之三角函数例19.(2024·山东·山东省实验中学校考一模)已知函数()()sin ln 1f x a x x =-+.(1)若对(]1,0x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln2n k k =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,试判断方程()1eln 10x m x +--+=实数根的个数,并说明理由.例20.(2024·全国·高三专题练习)设函数()πsin2x f x x =-.(1)证明:当[]0,1x ∈时,()0f x ≤;(2)记()()ln g x f x a x =-,若()g x 有且仅有2个零点,求a 的值.例21.(2024·广东深圳·红岭中学校考模拟预测)已知1()sin (1)1f x a x x x x =-+>-+,且0为()f x 的一个极值点.(1)求实数a 的值;(2)证明:①函数()f x 在区间(1,)-+∞上存在唯一零点;②22111sin 121n k n k =-<<+∑,其中*N n ∈且2n ≥.变式11.(2024·山东济南·济南市历城第二中学校考二模)已知()sin n f x x =,()ln e x g x x m =+(n 为正整数,m R ∈).(1)当1n =时,设函数()()212h x x f x =--,()0,πx ∈,证明:()h x 有且仅有1个零点;(2)当2n =时,证明:()()()e 12x f x g x x m '+<+-.题型八:零点问题之取点技巧例22.已知函数()[2(1)]2(x x f x e e a ax e =-++为自然对数的底数,且1)a .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.例23.已知函数2()(1)()x f x xe a x a R =++∈.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.例24.已知函数211()(()22x f x x e a x =-++.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.变式12.已知函数1()()(1)2x x f x e a e a x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围。

高一函数零点题型归纳

高一函数零点题型归纳

高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。

以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。

接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。

二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。

因此,令x - 3 = 1x−3=1,解得x = 4x=4。

三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。

如果端点函数值异号,则该区间内必存在零点。

四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。

解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。

由于售价的整数部分为10,则售价为30元。

再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。

五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。

word完整版数学必修一零点题型总结,文档

word完整版数学必修一零点题型总结,文档

第三章 第一节 函数与方程一、函数的零点1、实例:填表函数 f(x)图像 与 x 轴交点 零点 方程 f(x)=0 方程的根f(x)=2x-1f(x)=x 2-4x+5 f(x)= x2-4x+4 f(x)= x2-5x+62、函数零点的定义: ____________________________ 叫做函数的零点 (注意: ________________________ )题型一 求函数的零点1.y =x -2 的图象与 x 轴的交点坐标及其零点分别是 ()A .2;2B .(2,0); 2C .- 2;- 2D .(- 2,0);- 2.函数f(x) =x 2+4x + a 没有零点,则实数 a 的取值范围是 () 2A .a<4B . a>4C .a ≤4D . a ≥4 3.函数 f(x)2+2ax + c(a ≠ 0)的一个零点是- 3,则它的另一个零点是 ()=axA .- 1B .1C .- 2D .24.函数f(x) =x 2- ax -b 的两个零点是 2 和 3,求函数 g(x)=bx 2- ax -1 的零点.5、求以下函数的零点(1) f ( x) 27 x1( 2) f ( x) 2 log 3 ( x 1)9二、零点定理1、方程的根与函数零点的关系: 方程 f(x)=0 的根 函数 f(x) 的零点函数与 x 轴交点的横坐标2、零点定理:如 果 函 数 y f ( x) 在 区 间 [ a, b] 上 的 图 象 是 连 续 不 间 断 的 一 条 曲 线 , 并 且 有f (a) f (b) 0 那么函数 y f (x) 在区间 (a, b) 内有零点,即存在c (a,b) ,使得f ( c) 0 ,这个 c也就是方程 f ( x) 0 的实数根。

问题 1:去掉“连续不停”能够吗?问题 2 :假如函数yf (x) 在区间 [ a,b] 上的图象是连续不中断的一条曲线,而且有f (a) f (b) 0那么函数 yf ( x) 在区间 (a, b) 内有一个零点,对不对?问题 3 :假如函数y f (x) 在区间 [ a,b] 上的图象是连续不中断的一条曲线,而且有f (a) f (b)0那么函数 yf (x) 在区间 ( a,b) 上无零点,对不对?题型二、判断区间内有无零点1.函数 y = f(x)在区间 (- 2,2)上的图象是连续的, 且方程 f(x) =0 在 (- 2,2)上仅有一个实根 0, 则 f(- 1)· f(1)的值 () A .大于 0B .小于 0C .等于 0D .没法确立2. 函数 f ( x) ln x2)的零点所在的大概区间是(xA .( 1, 2)B .( 2, 3)C . (1,1) 和( 3, 4)D . (e,)e3.设函数 f(x)=2 x-x 2-2x ,则在以下区间中 不存在 零点的是()...A. ( -3 , 0)B.( 0, 3)C. ( 3, 6)D.( 6, 9)4、方程 2 x 1 x 5 在以下哪个区间内必定有根?( )A 、( 0, 1)B 、( 1, 2)C 、( 2, 3)D 、( 3, 4)5、依据表格中的数据,能够判断方程e xx 2 0 的一个根所在的区间为 ()x10 12 3e x1x2 123 45A . ( 1,0)B . (0,1)C . (1,2)D . (2,3)三、判断零点的个数方法①:转变为判断方程f(x)=0 的根的个数,解方程1例:函数 f(x)=xx的零点有 ______个方法②:从图像判断零点个数例 1:已知函数 f(x) 为 R 上奇函数,且在(0, +)上有 1003 个零点,则 f(x) 在 R 上的零点的总个数为 ______3 ,x 3例 2:已知函数 f ( x)xlog 3 x,0x 3(1)方程 f(x)=0 有几个根?(2)方程 f(x)=1 有几个根?(3)方程 f(x)=k 有几个根?(4)方程 f(x)=-x 有几个跟?总结:怎样利用图像判断 f(x)=g(x) 有几个根?题型三 判断零点个数(方程根的个数)1、函数 f (x )x 2 2x 3, x 0的零点有 _______个lnx x 0x 3,( x 1)e x的零点个数为(2、 f ( x)2x 3,( x, 则函数 g( x) f ( x))x 2 1)A . 1B . 2C .3D . 43、方程 lnx+2x-6=0 有几个根?334、若函数 f ( x), x,若方程 f(x)=k 有两个不一样实根,务实数 k 的取值范围 xlog 3 x,0 x 35、已知函数 x, xm 取值范围f ( x )2,若 g(x)=f(x)-m 有三个不一样零点,务实数x x, x 0四、二分法求零点的近似值二分法求函数f(x) 零点近似值的步骤:题型四二分法1、用二分法求方程x3-x-4=0 在区间[1,3]内的实根,应计算f(___),下一个有根的区间是____2、用二分法求f(x)= 3x -x-4=0 的一个零点,参照数据以下:据此数据,可得方程3x x 40 的一个近似解为_______3、综合练习1、已知函数 f(x)=ax 2-2x+1(a≥0)(1)议论 f(x) 在 [0,2] 上的单一性(2)若 a>1,求 f(x) 在[0,2] 上的最大最小值(3)若 f(x) 在区间( 0,2)上只有一个零点,求 a 的范围1 2、定义在 R 上的偶函数 y=f(x) 在 (-∞, 0]上递加,函数 f(x) 的一个零点为-2,1求知足 f(log 9x)≥0 的 x 的取值会合.。

函数零点的7种问题及解法

函数零点的7种问题及解法

函数零点的7种问题及解法1.若x0是方程lgx+x=2的解,则x0属于区间()a.(0,1) b.(1,1.25)c.(1.25,1.75) d.(1.75,2)解析:设f(x)=lg x +x-2,则f(1.75)=f74=lg 74-,f(2)=lg 20.答案:d2.函数f(x)=x2+2x-3,x0,-2+lnx,x0的零点个数为()a.0个 b.1个 c.2个 d.3个解析::x0时由x2+2x-3=0x=-3;x0时由-2+lnx=0x=e2.答案:c3.设函数f(x)=x2-x+a(a0),若f(m)0,则()a.f(m-1)0b.f(m-1)0c.f(m-1)=0d.f(m-1)与0的'大小不能确定解析:融合图象极易推论.答案:a4.函数f(x)=ex+x-2的零点所在的一个区间就是()a.(-2,-1) b. (-1,0)c. (0,1) d.(1,2)解析:因为f(0)=-10,f(1)=e-10,所以零点在区间(0,1)上,选c.答案:c5.函数f(x)=4x-2x+1-3的零点是________解析:由4x-2x+1-3=0(2x+1)(2x-3)=02x=3, x=log23.答案:log236.函数f(x)=(x-1)(x2-3x+1)的零点就是__________.解析:利用定义可求解.答案:1,7.若函数y=x2-ax+2有一个零点为1,则a等于__________.解析:由零点定义可以解.答案:38.未知函数f(x)=logax+x-b(a0且a1),当时,函数f(x)的零点为x0(n,n+1)(nn*),则n=________.解析:根据f(2)=loga2+2-blogaa+2-3=0,f(3)=loga3+3-blogaa+3-4=0,x0(2,3),故n=2.答案:29.证明:方程x2x=1至少有一个小于1的正根.证明:令f(x)=x2x-1,则f(x)在区间(-,+)上的图象是一条连续不断的曲线.当x=0时,f(x)=-10.当x=1时,f(x)=10.f(0)f(1)0,故在(0,1)内至少有一个x0,当x=x0时,f(x)=0.即至少有一个x0,满足01,且f(x0)=0,故方程x2x=1至少有一个小于1的正根.。

高中数学专题 微专题3 函数的零点问题

高中数学专题 微专题3 函数的零点问题
12345678
所以f(x+4)=f(x)+f(2)=f(x), 所以f(x)是以4为周期的周期函数. 根据周期性及奇函数的性质画出函数y= f(x)在[-4,4]上的图象,如图. 由图可知,函数y=f(x)在[-4,4]上的零点 有-4,-3.5,-3,-2,-1,-0.5,0,0.5,1,2,3,3.5,4,共13个零点.
-x),当x∈[0,1]时,f(x)=x3,则函数g(x)=|cos πx|-f(x)在区间-1,32上 零点的个数为
A.4
B.5
C.6
√D.7
由f(-x)=f(x),得f(x)的图象关于y轴对称,由f(x)=f(2-x),得f(x)的图 象关于直线x=1对称, 令g(x)=|cos πx|-f(x)=0,得|cos πx|=f(x), 函数y=|cos πx|是周期为1的偶函数,当x∈[0,1]时,f(x)=x3, 在同一坐标系内作出函数 y=f(x)在[-1,2]上的图象,函数 y=|cos πx|在 -1,32上的图象,如图,
因为函数h(x)=f(x)-g(x)在区间[-17,5]上恰有20个零点, 则函数f(x)的图象与函数g(x)的图象在区间[-17,5]上有20个交点, 由f(x+2)=f(x),知f(x)是周期为2的函数, 作出函数f(x)与函数g(x)的部分图象如图所示. 易知当x∈[-17,1]时,函数f(x)的 图象与函数g(x)的图象有17个交点, 故在(1,5]上有3个交点, 显然0<a<1不满足题意,
PART TWO
热点突破
1取.已值知范函围数是f(x)=elnx,x,x≤x>00,,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的
A.[-1,0)
√C.[-1,+∞)

数学-精品专题----七种零点问题

数学-精品专题----七种零点问题

题型一:零点存在定理法判断函数零点所在区间 (3)一、单选题 (3)二、多选题 (6)三、填空题 (9)四、解答题 (14)题型二:方程法判断零点个数 (16)一、单选题 (16)二、多选题 (18)三、填空题 (20)四、解答题 (22)题型三:数形结合法判段函数零点个数 (24)一、单选题 (24)二、多选题 (28)三、填空题 (31)四、解答题 (34)题型四:转化法判断函数零点个数 (39)一、单选题 (39)二、多选题 (42)三、填空题 (44)四、解答题 (46)题型五:零点存在定理与函数性质结合判断零点个数 (48)一、单选题 (48)二、多选题 (50)三、解答题 (53)题型六:利用函数零点(方程有根)求参数值或参数范围 (57)一、单选题 (57)二、多选题 (59)三、填空题 (61)四、解答题 (62)题型七:利用函数的交点(交点个数)求参数 (63)一、单选题 (63)二、多选题 (66)三、填空题 (68)四、解答题 (71)1.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.2.判断函数零点个数的常用方法(1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y=f(x)-g(x)的零点个数转化为函数y=f(x)与y=g(x)图象公共点的个数来判断.3.正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k的不等式组,从而可求相应的参数的取值范围.4.涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.5.函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.6.对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.题型一:零点存在定理法判断函数零点所在区间一、单选题【分析】结合对数函数、函数零点存在性定理等知识求得正确答案. 【详解】1133log 4log 10a =<=,3372,12b b =<<<,对于函数()()2ln 0f x x x x=->, ()f x 在()0,∞+上递增,()()22ln 210,e 10ef f =-<=->,所以()f x 存在唯一零点x c =,()2,e c ∈,使()0f c =,所以对于2ln c c=,有()2,e c ∈,所以a b c <<.故选:AA .3,4()B .4,5()C .5,6()D .8,9()【答案】B【分析】根据零点存在定理,先判断函数的单调性,再计算函数在端点处的函数值,即可得到答案.【详解】()12ln 3f x x x=-- ,由对数函数和幂函数的性质可知,函数在,()0x ∈+∞时为单调增函数,11(3)2ln332 1.0993033f =--≈⨯--<, 11(4)4ln2340.69330.478044f =--≈⨯--=-<,11(5)2ln532 1.60930.018055f =--≈⨯--=>,11(6)2ln632(ln 2ln3)2 1.7926630.4140f =--=+≈⨯--=>,因为()f x 在,()0x ∈+∞内是递增,故(8)0,(9)0f f >> ,函数是连续函数,由零点判断定理知,()f x 的零点在区间(4,5)内,故选:B .【分析】先根据题意解方程,解出5e 910k-=,在和端点值比较大小,由函数单调性和函数连续得到结果.【详解】将200,5,20A t L ===代入()()1e kt L t A -=-,解得:5e 910k-=,其中5e x y -=单调递减,而414e e --⎛⎫= ⎪⎝⎭,4910000e 106561-⎛⎫=< ⎪⎝⎭,而4y x -=在()0,∞+上单调递减,所以115204ee910-⨯-=<,结合单调性可知1113249<<e e 10e ---<,即1115551015209<0e e e 1-⨯-⨯-⨯<<,而050e 91e 10-⨯==>,其中5e xy -=为连续函数,故记忆率k 所在区间为1(0,)20. 故选:A【分析】根据零点存在性定理进行求解.【详解】易知()f x 在R 上单调递增且连续.由于()1440163f -=-<,()122043f -=-<,()111023f -=->,当0x >时,()0f x >,所以()02,1x ∈--.故选:B【分析】求出c 的值,利用零点存在定理得出31,2b ⎛⎫∈ ⎪⎝⎭,然后比较a 、b 、c 的大小关系,结合函数()f x 的单调性可得出结论.【详解】因为()f x 的定义域为()0,∞+,()1e 0xf x x'=+>,则函数()f x 在其定义域上为增函数,3e 16>,则32e 4>,则3233e ln 4022f ⎛⎫=+-> ⎪⎝⎭,因为()1e 40f =-<,由零点存在定理可知31,2b ⎛⎫∈ ⎪⎝⎭,由()2310g x x x '=--=可得1=x 2=x .当x <或x >时,()0g x '>x <<()0g x '<.所以,1c =<.因为2223log log 3log 422a =<=<=,所以,01cb a <<<<,故()()()f a f b fc >>.故选:A.6.(2022·安徽·安庆一中高三期末(理))函数2()log f x x x =+的零点所在的区间为( )【分析】依据函数零点存在定理去判断2()log f x x x =+的零点所在的区间即可. 【详解】2()log f x x x =+为(0,)+∞上的递增函数, 222111112log log 3log 03333332f ⎛⎫=+=-<-< ⎪⎝⎭=-,21111log 02222f ⎛⎫=+=-< ⎪⎝⎭,()22222251log log 353log 333333f ⎛⎫=+=-=- ⎪⎝⎭()221log 32log 2703=->()()22222333511log log 354log 3log log 04444443281f ⎛⎫=+=-+=-+=-+> ⎪⎝⎭,则函数2()log f x x x =+的零点所在的区间为12,23⎛⎫⎪⎝⎭故选:B二、多选题【分析】由题可得4()e x f x a x π-'=-,由()14f π=-可知,()04f π'=,进而可求1a =,然后再证明即得;再利用数形结合可得()'f x 在,2ππ⎛⎫⎪⎝⎭上存在唯一的零点,利用零点存在定理及三角函数的性质即得.【详解】∵4()e 1x f x a x π-⎛⎫=- ⎪⎝⎭,∵4()e x f x a x π-'=-+,又函数4()e 1x f x a x π-⎛⎫=-- ⎪⎝⎭在区间0,2π⎛⎫ ⎪⎝⎭的最小值为1-,∵函数在区间0,2π⎛⎫⎪⎝⎭上不单调,又44()e 1144f a ππππ-⎛⎫=-=- ⎪⎝⎭,∵4x π=时,函数在区间0,2π⎛⎫⎪⎝⎭上取得最小值,可得原条件的一个必要条件()04f π'=,∵44()e 1044f a a ππππ-'=-=-+=,即1a =,下面证明充分性:当1a =时,4()e 1xf x x π-=-,4()e xf x x π-'=-,令()4e xg x x π-=-,则()4os exx g x π-'=>,∵函数()'f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,又44(0)e 0,()e 02f f πππ-''=-<=->,∵函数()'f x 在0,2π⎛⎫⎪⎝⎭上存在唯一的零点4x π=,且在0,4π⎛⎫ ⎪⎝⎭上()0f x '<,在,42ππ⎛⎫ ⎪⎝⎭上()0f x '>,∵函数()f x 在区间0,2π⎛⎫⎪⎝⎭的最小值为()14f π=-,综上,1a =故A 正确;∵4()e xf x x π-'=-+,令4()e 0x f x x=π-'=-,得4e x x π-,由函数图象可知4e x ,y y x π-==在区间,2ππ⎛⎫⎪⎝⎭上只有一个交点,即存在唯一0,2x ππ⎛⎫∈ ⎪⎝⎭,使得040e x x π-,又3243()e 10,()e 04f >f ππππ--''=-+=-<,故03,4x ππ⎛⎫∈ ⎪⎝⎭,且当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x '>,当()0,x x π∈时,()0f x '<,∵在区间,2ππ⎛⎫⎪⎝⎭上,()f x 唯一的极大值点0x ,040000()e 11x f x x x x π-⎛⎫=-=- ⎪⎝⎭02sin 14x π⎛⎫=-- ⎪⎝⎭,∵03,4x ππ⎛⎫∈ ⎪⎝⎭,03,424x πππ⎛⎫-∈ ⎪⎝⎭,∵00()2sin 12114f x x π⎛⎫=--<-= ⎪⎝⎭.故CD 正确.故选:ACD.8.(2022·全国·高三专题练习)设函数()y f x =的定义域为R ,如果存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,则称函数()y f x =是“类周期函数”,T 为函数()y f x =的“类周期”.现有下面四个命题,正确的是( )A .函数()x f x -=3是“类周期函数”B .函数()3f x x =是“类周期函数”C .如果函数()cos f x x ω=是“类周期函数”,那么“k ωπ=,Z k ∈”D .如果“类周期函数”()y f x =的“类周期”为1-,那么它是周期为2的周期函数 【答案】ACD【分析】根据类周期函数的定义,分别进行判断即可.【详解】解:对于A ,若函数()xf x -=3是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即33x T x T ---=⋅,即(3)30T x T ---⋅=,即30T T --=,令()3Tg T T -=-,因为()()1200110,11033g g =-=-<=-=>,且函数()g T 在0,1上连续,所以函数()3Tg T T -=-在0,1上存在零点,即方程30T T --=在0,1上有解,即存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,所以函数()x f x -=3是“类周期函数”,故A 正确;对于B ,若函数()3f x x =是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即()33x T T x+=⋅,则()33x T T x+=,即1x T Tx x+=+对任意的x 恒成立,则0T =,矛盾,所以不存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,所以函数()3f x x =不是“类周期函数”,故B 错误.对于C ,若函数()cos f x x ω=是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即cos()cos x T T x ωωω+=;故1T =或1T =-, 当1T =时,cos()cos x x ωωω+=,由诱导公式得2k ωπ=,k Z ∈;当1T =-时,cos()cos x x ωωω+=-,由诱导公式得()21k ωπ=+,k Z ∈;故“k ωπ=,k Z ∈”,故C 正确;对于D ,如果“类周期函数”()y f x =的“类周期”为1-, 则(1)()f x f x -=-,即(1)()((1))(1)f x f x f x f x -=-=--+=+;故它是周期为2的周期函数;故D 正确.9.(2021·江西·模拟预测)已知实数1m n <<,设方程()()()(1)()(1)0x m x n x m x x n x --+--+--=的两个实数根分别为1212,()x x x x <,则下列结论正确的是( )A .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集为12(,)x xB .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集可能为空集C .121x m x n <<<<D .121m x n x <<<< 【答案】AD【分析】构造二次函数()()()(1)()()()1x m x n x m x x n x x f --+--+--=,分析函数()f x 的图象特征即可判断作答.【详解】令()()()(1)()()()1x m x n x m x x n x x f --+--+--=,R x ∈, 因1m n <<,则函数()f x 的图象对称轴1(,1)3m n x m ++=∈,且()f x 在1(,)3m n ++-∞上递减,在1(,)3m n +++∞上递增,又()(1)()0m n f m m --=>,()(1)()0n m f n n --=<,(1)(0()1)1m f n -->=,于是得函数()f x 有两个零点1212,()x x x x <,且满足121m x n x <<<<,不等式()0f x <的解集为12(,)x x ,所以A 正确,B 不正确,C 不正确,D 正确.故选:AD三、填空题在ABC 中,函数y x =+若命题“x ∃∈若函数()f x 【答案】∵∵∵【分析】∵利用大边对大角和正弦定理可证;∵变形后利用基本不等式进行求解最大值;∵先把命题否定,得到对x R ∀∈,2(3)10ax a x +-+>恒成立,分0a =与0a ≠两种情况求出a的取值范围;∵先根据(1)2af =-得到32a b c =--,得到(2)f a c =-,接下来分0c >与0c ≤,利用零点存在性定理得到答案.【详解】在ABC 中,因为A B >,所以a b >,由正弦定理得:sin sin a bA B=,所以sin sin A B >,同理可证,当sin sin A B >时,A B >,故在ABC 中,A B >是sin sin A B >的充要条件,∵正确;因为1x <,所以10x -<,201x ,所以()221111111y x x x x ⎡⎤=-++=--++≤-⎢⎥--⎣⎦,当且仅当()211x x -=-,即1x =等号成立,所以函数2(1)1y x x x =+<-的最大值是1-∵错误;命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则对x R ∀∈,2(3)10ax a x +-+>恒成立,当0a =时,310x -+>不恒成立,当0a ≠时,只需0Δ0a >⎧⎨<⎩,解得:19a <<,综上:若命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则19a <<;∵正确;(1)2a b c a f ++==-,所以32ab c =--,因为(0)f c =,3(2)42422a f a b c a c c a c ⎛⎫=++=+--+=- ⎪⎝⎭,当0c >时,(0)0f c =>,因为0a >,所以(1)02af =-<,故()(0)10f f <,由零点存在性定理得:在区间()0,1上,至少存在一个零点,当0c ≤,(2)0f a c =->,()(2)10f f <,由零点存在性定理得:在区间()1,2上至少存在一个零点,综上:函数()f x 在区间(0,2)内必有零点,∵正确. 故答案为:∵∵∵11.(2022·全国·高三专题练习)已知函数()()2e x f x ax x =+-,且2a >-,()f x '为()f x 的导函数,下列命题:∵存在实数a ,使得导函数()f x '为增函数; ∵当0a >时,函数()f x 不单调;∵当21a -<≤-时,函数()f x 在R 上单调递减; ∵当1a =时,函数()f x 有极值.在以上命题中,正确的命题序号是______. 【答案】∵∵∵∵【分析】求()f x ',令0a =可判断∵;根据零点存性定理可判断022,0x a ⎛⎫∃∈-- ⎪⎝⎭使得()00f x '=,可判断∵;令()()g x f x '=,求()g x ',由()g x '的符号判断()g x 的单调性,可求得()0g x ≤恒成立即()0f x '<恒成立可判断∵;求()f x '的单调性,根据零点存在性定理可知()00,1x ∃∈,使得()00f x '=可判断∵,进而可得正确答案.【详解】由()()2e xf x ax x =+-可得()()2e 1x f x ax a '=++-,对于∵,若0a =时,()2e 1xf x '=-为增函数,故∵对;对于∵,若0a >时,2222e 10af a a --⎛⎫'--=--< ⎪⎝⎭,()010f a '=+>,022,0x a ⎛⎫∃∈-- ⎪⎝⎭,使得()00f x '=,所以函数()f x 不单调,故∵对;对于∵,令()()2e 1x g x ax a =++-,则()()22e xg x ax a '=++,当21a -<≤-时,由()0g x '>得22x a ⎛⎫<-+ ⎪⎝⎭,由()0g x '<得22x a ⎛⎫>-+ ⎪⎝⎭所以()g x 在2,2a ⎛⎫-∞-- ⎪⎝⎭上单调递增,在22,a ⎛⎫--+∞ ⎪⎝⎭上单调递减,从而()22max e1a g x a ⎛⎫-+ ⎪⎝⎭=--,要使220e 1a a ⎛⎫-+ ⎪⎝⎭-≤-,则令22t a ⎛⎫=-+ ⎪⎝⎭,则112t a =--,所以e 12t t ≤+,令()()e 1102t t m t t =---≤≤,()1e 2t m t '=-,则()m t 在11,ln 2⎛⎫- ⎪⎝⎭单调递减,在1ln ,02⎛⎫ ⎪⎝⎭单调递增,而()11110e 2m -=+-<,()00e 010m =--=所以()0m t ≤恒成立,从而()22max e10a g x a ⎛⎫-+ ⎪⎝⎭=--≤,即()0f x '≤恒成立,即()f x 在R 上单调减.故∵正确;对于∵,当1a =时,()()3e 1x f x x '=+-,()()4e x f x x ''=+,可知()()3e 1xf x x '=+-在(),4-∞-单调递减,在()4,-+∞单调递增,因为()020f '=>,()2110ef '-=-<,()00,1x ∃∈,使得()00f x '=,所以函数()f x 有极值,故∵对.综上所述:∵∵∵∵都正确,故答案为:∵∵∵∵. 12.(2021·福建·三明一中高三学业考试)已知函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则k =__________.【答案】-3或2【分析】对函数()f x 求导,借助导数探讨其单调性,再用零点存在性定理分析计算即得.【详解】对函数()23x f x x =--求导得:()2ln 21x f x '=-,由()0f x '=得22log xe =,解得22log (log )x e =,当22log (log )x e <时,()0f x '<,当22log (log )x e >时,()0f x '>,于是得()f x 在22(,log (log ))e -∞上递减,在22(log (log ),)e +∞上递增,显然,13(3)0,(2)084f f -=>-=-<,则函数()f x 在区间(3,2)--上存在一个零点,又(2)10,(3)20f f =-<=>,即函数()f x 在区间(2,3)上存在一个零点,因函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则3k =-或2k =,所以3k =-或2k =.故答案为:-3或2【分析】令21()()log 2x f x x =-,利用零点存在性定理可得a ∈,1(0,)2b ∈,从而可得12a b <- 【详解】令21()()log 2x f x x =-,则()f x 在(0,)+∞上单调递减,因为f (1)110022=-=>,111()log ()0222f =-=-<,21()log 2a a =,所以a ∈.122log b b =,0b >,21b ∴>,1(0,)2b ∴∈,∴12a b <- ∵:ln()a b -可能小于等于0,∴∵错误,∵:0b a -<,0221b a -∴<=,∴∵正确, ∵:0a b >>,∴11a b <,11a b∴->-,∴∵正确,∵:(1,2)a ∈,2log 0a ∴>, 1(0,)2b ∈,2log 0b ∴<,22log 0log a b ∴>>.∴∵正确,故答案为:∵∵∵.【分析】对于选项∵∵∵,直接代入求解即可判断;对于选项∵∵,先根据条件构造函数,判断函数的单调性,利用零点存在性定理判断即可.【详解】∵()224f x x x x =+-=,得240x x x +-=⇒=x =满足条件,故∵满足题意;∵()22,132,1x x f x x x ⎧≤⎪=⎨->⎪⎩,当1x ≤时,220x x x =⇒=或12x =;当1x >时,()2232321x x x x x -=⇒-=⇒=或3x =,即3x =;满足条件,故∵满足题意;∵()()21x f x e x x =+-=,令()2xg x e x =+-,易知()g x 为R 上的增函数,又()()010020,1120g e g e =+-<=+->,由零点存在性定理得()g x 在区间()0,1存在唯一的零点.故∵满足题意;∵()ln f x ax x a =--(01a <<),()ln ln 10ax x a x x a x a --=⇒+-+=, 令()()ln 1h x x a x a =+-+,又01a <<,则10a ->,易知()h x 为()0,∞+上的增函数, 又()()11131ln 12ln 20,1ln111044444h a a a h a a ⎛⎫=+-+=-++<=+-+=> ⎪⎝⎭,由零点存在性定理得()h x 在区间1,14⎛⎫⎪⎝⎭存在唯一的零点.故∵满足题意;∵()220f x x x x x=+=⇒=无实数解, 故∵满足题意;故答案为:∵∵∵∵.【点睛】本题主要考查了对布劳威尔不动点定理的理解,考查了零点存在性定理;考查学生的逻辑推理能力,运算求解能力.属于中档题.【分析】分别求出f (x )、g (x )零点所在区间,即可得到f (x +3)、g (x -4)的零点所在区间,结合题意,即可得到b -a 的最小值.【详解】∵f (x )=1+x -22x +33x ,∵'2()1f x x x =-+,∵'2213()1()024f x x x x =-+=-+>恒成立,∵f (x )=1+x -22x +33x 在R 上是单调递增函数.∵f (0)=1>0,f (-1)=506-<,∵f (x )在区间[-1,0]上存在唯一零点,∵f (x +3)在区间[-4,-3]上存在唯一零点;又∵g (x )=1-x +22x -33x ,∵'2()1g x x x =-+-,∵'2213()1()024g x x x x =-+-=---<恒成立,∵g (x )=1-x +22x -33x 在R 上是单调递减函数,∵g (2)=503-<,g (1)=106>,∵g (x )在区间[1,2]上存在唯一零点,∵g (x -4)在区间[5,6]上存在唯一零点,由F (x )=f (x +3)g (x -4)=0,得f (x +3)=0或g (x -4)=0,故函数F (x )的零点均在[-4,6]内,则b -a 的最小值为10.故答案为:10.【点睛】本题考查利用导数判断函数的单调性、函数零点与方程,考查分析理解,求值计算的能力,属中档题.四、解答题16.(2022·陕西西安·高三阶段练习(文))已知函数22()e x f x ax -=-(e 为自然对数的底数,R a ∈).(1)若1a =-,求证:()'f x 在区间()0,1内有唯一零点; (2)若()f x 在其定义域上单调递减,求a 的取值范围. 【答案】(1)证明见解析;(2)[0,2e].【分析】(1)把1a =-代入,求出()'f x 并探讨其单调性,再结合零点存在性定理判断作答. (2)利用给定单调性建立不等式,再分类分离参数,构造函数,讨论求解作答.(1)当1a =-时,()22e xf x x -=+,求导得:2()2e 2x f x x -'=-+,令2()2e 2x x x ϕ-=-+,则2()4e 20x x ϕ-'=+>,则函数()ϕx 在R 上单调递增,即函数()'f x 在R 上单调递增,而(0)20f '=-<,221(1)2e 22(1)0e f -'=-+=->,由函数零点存在性定理知,存在唯一0(0,1)x ∈,有0()0f x '=,所以()'f x 在区间()0,1内有唯一零点.(2)函数22()e x f x ax -=-的定义域是R ,依题意,R x ∀∈,2()2e 20x f x ax -'=--≤成立, 当0x =时,20-≤成立,R a ∈,当0x >时,2e x a x -≥-,令2e ()xg x x -=-,0x >,2221()0e x x g x x +'=>,即函数()g x 在(0,)+∞上单调递增,又当0x >时,()0g x <恒成立,于是得0a ≥,当0x <时,2e x a x -≤-,令2e ()xh x x -=-,0x <,2221()e x x h x x +'=,当12x <-时,()0h x '<,当102x -<<时,()0h x '>, 因此,()h x 在1(,)2-∞-上单调递减,在1(,0)2-上单调递增,当12x =-时,min 1()()2e 2h x h =-=,于是得2e a ≤,综上得:02e a ≤≤,所以a 的取值范围是[0,2e].【点睛】思路点睛:涉及函数不等式恒成立问题,可以探讨函数的最值,借助函数最值转化解决问题.f x 零点的个数;,求a 的取值范围答案见解析;(2)6a ≤【分析】(1)对()f x 求导有()()(1)e (0)xf x x x a x '=-->,再研究()e (0)xg x a x x -=>的单调性,结合()01f '=及零点存在性定理,讨论a 的范围判断f x 零点的个数.(2)讨论0a ≤、0e a <<、e a =、e a >,结合fx 的符号研究()f x 的单调性并结合(1)ef =求参数a 的范围.(1)()()()2e (1)(1)e (0)x xf x x x a x x x a x '=---=-->,令()e (0)x g x a x x -=>,则()(1)e 0x g x x '=+>,故()g x 在(0,)+∞上单调递增,而()01f '=, 当0a ≤时,e x x a =无解;当0e a <<时,由(0)0g a =-<,(1)e 0g a =->,故e x x a =有一个在(0,1)上的解;当e a =时,由(1)0g =,故e x x a =的解为1;当e a >时,由(1)e 0g a =-<,()(e 1)0a g a a -=>,故e x x a =有一个在(1,)+∞上的解; 综上,当0a ≤或e a =时,导函数f x 只有一个零点.当0e a <<或e a >时,导函数f x 有两个零点.(2)当0a ≤时,e 0x x a ->,则函数()f x 在1x =处取得最小值(1)e f =.当0a >时,由(1)知:()g x 在(0,)+∞上单调递增,则必存在正数0x 使得00e 0xx a -=.若e a >则01x >,在(0,1)上00e 0x x a -<,则()0f x '>,在0(1,)x 上00e 0x x a -<,则()0f x '>,在()0,x +∞上00e 0x x a ->,则()0f x '<,所以()f x 在(0,1)和()0,x +∞上单调递增,在()01,x 上单调递减,又(1)e f =,不合题意.若e a =则01x =,在(0,)+∞上0f x ,则()f x 在(0,)+∞上单调递增,又(1)e f =,不合题意.若0e a <<则001x <<,在0(0,)x 上00e 0x x a -<,则()0f x '>,在0(),1x 上00e 0x x a ->,则()0f x '<,在()1,+∞上00e 0x x a ->,则()0f x '>,所以()f x 在()00,x 和(1,)+∞上单调递增,在()0,1x 上单调递减,则(0)3(1)e 2a f f =-≥=,解得62e a ≤-,即062e a <≤-.综上,62e a ≤-.题型二:方程法判断零点个数一、单选题【分析】由奇偶性定义可判断出A 正确;令()0f x =可确定B 正确;根据()f x 定义域为R ,()112f =-,可知若最小值为12-,则1x =是()f x 的一个极小值点,根据()10f '≠可知C 错误;由0x =时,cos x π取得最大值,21x +取得最小值可确定D 正确. 【详解】对于A ,()f x 定义域为R ,()()()()22cos cos 11x xf x f x x x ππ--===+-+, ()f x ∴为偶函数,A 正确;对于B ,令()0f x =,即cos π0x ,()2x k k πππ∴=+∈Z ,解得:()12x k k =+∈Z , ()f x ∴有无数个零点,B 正确;对于C ,()112f =-,∴若()f x 的最小值为12-,则1x =是()f x 的一个极小值点,则()10f '=; ()()()222sin 2cos 1xx x xf x xππππ++'=-+,()2sin 2cos 11042f πππ+'∴==-≠,1x ∴=不是()f x 的极小值点,C 错误;对于D ,1cos 1x π-≤≤,211x +≥;则当cos 1x π=,211x +=,即0x =时,()f x 取得最大值1,D 正确.故选:C. 2.(2022·北京·模拟预测)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个C .3个D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3故选:C【分析】利用()()f x a f a x +=-知()f x 关于直线x a =对称的性质验证A ;求得3102f π⎛⎫=-≠ ⎪⎝⎭可判断B ;化简()sin (1cos )f x x x =+,令()0f x =,得()x k k Z π=∈,进而判断C ;利用导数研究函数的单调性可判断D.【详解】对于A ,由已知得11()sin()sin 2()sin sin 222f x x x x x πππ-=-+-=-,即()()π-≠f x f x ,故()f x 不关于2x π=对称,故A 错误;对于B ,331sin sin 310222f πππ⎛⎫=+=-≠ ⎪⎝⎭,故B 错误; 对于C ,利用二倍角公式知()sin (1cos )f x x x =+,令()0f x =得sin 0x =或cos 1x =-,即()x k k Z π=∈,所以该函数在区间[]0,10内有4个零点,故C 错误;对于D ,求导2()cos cos22cos cos 1f x x x x x '=+=+-,令cos x t =,由57,33x ππ⎡⎤∈⎢⎥⎣⎦,知1,12t ⎡⎤∈⎢⎥⎣⎦,即2()21g t t t =+-,利用二次函数性质知()0g t ≥,即()0f x '≥,可知()f x 在区间57,33x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,故D 正确;故选:D.4.(2022·全国·高三专题练习)已知函数f(x)={|x |+2,x <1,x +2x ,x ≥1.,则函数()||y f x x =-零点个数为( ) A .0 B .1C .2D .3【答案】A【分析】当1x <时和1≥x 时,分别化简函数()||y f x x =-的解析式可直接判断零点的个数.【详解】当1x <时,22y x x =+-=,所以不存在零点;当1≥x 时,220t x x x x=+-=>,也不存在零点,所以函数()||y f x x =-的零点个数为0.故选:A.二、多选题【分析】根据函数解析式,结合函数性质,对每个选项进行逐一分析,即可判断和选择. 【详解】对A :()f x 的定义域为{}0x x ≠,A 错误; 对B :()()11x x f x f x x x-++-==-=--,且定义域关于原点对称,故()f x 是奇函数,B 正确;对C :当0x >时,()111x f x x x+==+,单调递减,C 正确; 对D :因为0x ≠,10x +>,所以()0f x =无解,即()f x 没有零点,D 错误.故选:BC .【分析】写出()f x 的分段函数形式,A 应用正余弦函数的性质判断()f x 的周期性,B 由已知可得12cos 2cos 21x x ==,则112x k π=,222x k π=(12,k k Z ∈),即可判断正误;根据解析式,应用特殊值法判断C 、D 的正误.【详解】将函数()f x 化作分段函数,即cos 2,sin cos ()cos 2,sin cos x x x f x x x x -≥⎧=⎨<⎩,A ,(2)[sin(2)cos(2)]sin(2)cos(2)()f x x x x x f x πππππ+=+++⋅+-+=,()f x 是周期为2π的函数,对;B ,由12()()2f x f x +=得12|()||()|1f x f x ==,则12cos 2cos 21x x ==, 此时112x k π=,222x k π=(12,k k Z ∈),可得1212()2k k x x π++=,对; C ,由解析式得(0)()12f f π==,()f x 在[,]22ππ-上不单调,错;D ,由解析式知3()()12f f ππ==-,即()()1g x f x =+在[0,2]π上至少有两个零点,错.故选:AB.7.(2022·全国·高三专题练习)若()f x 和()g x 都是定义在R 上的函数,且方程()f g x x =⎡⎤⎣⎦有实数解,则下列式子中可以为()g f x ⎡⎤⎣⎦的是( ) A .22x x + B .1x + C .cos x e D .ln(||1)x +【答案】ACD【分析】由方程()f g x x =⎡⎤⎣⎦有实数解可得(){}()g f g x g x =⎡⎤⎣⎦,再用x 替代()g x ,即 []()x g f x =有解,逐个判断选项即可得出答案.【详解】由方程()f g x x =⎡⎤⎣⎦有实数解可得(){}()g f g x g x =⎡⎤⎣⎦,再用x 替代()g x ,即 []()x g f x =有解.对于A ,22x x x =+,即20x x +=,方程有解,故A 正确; 对于B ,1x x =+,即01=,方程无解,故B 错误;对于C ,当cos ,x e x =令cos ()x h x e x =-,因为(0)0f e =>,1022f ππ⎛⎫=-< ⎪⎝⎭,由零点的存在性定理可知,()h x 在0,2π⎛⎫⎪⎝⎭上存在零点,所以方程有解,故选项C 正确;对于D ,当ln(||1)x x +=时,0x =为方程的解,所以方程有解,故选项D 正确.故选:ACD.【分析】对A :根据偶函数的定义即可作出判断;对B :由有界性0|cos |1x ≤≤,1sin ||1x -≤≤,且32x π=时sin |||cos |1x x +=-即可作出判断;对C :当[]0,2x π∈时,sin cos ,023()sin cos ,223sin cos ,22x x x f x x x x x x x πππππ⎧+≤⎪⎪⎪=-<⎨⎪⎪+<⎪⎩,可得函数()f x 有两个零点,根据偶函数的对称性即可作出判断;对D :当,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,利用三角函数的图象与性质即可作出判断.【详解】解:对A :因为()sin |||cos()|sin |||cos |()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,故选项A 正确;对B :因为0|cos |1x ≤≤,1sin ||1x -≤≤,所以sin |||cos |1x x +≥-,而32x π=时sin |||cos |1x x +=-,所以()f x 的最小值为1-,故选项B 正确;对C :当[]0,2x π∈时,sin cos ,023()sin cos ,223sin cos ,22x x x f x x x x x x x πππππ⎧+≤⎪⎪⎪=-<⎨⎪⎪+<⎪⎩,令()0f x =,可得54=x π,74π,又由A 知函数()f x 为偶函数,所以函数()f x 在区间[]2,0π-上也有两个零点54π-,74π-,所以函数()f x 在区间[]2,2ππ-上有4个零点,故选项C 正确;对D :当,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,因为2x ππ<<,所以3444x πππ<-<,而sin y x =在,42ππ⎛⎫ ⎪⎝⎭上单调递增,在3,24ππ⎛⎫⎪⎝⎭上单调递减,故选项D 错误.故选:ABC.三、填空题【答案】42ω<<或22ω<≤.【分析】先求出零点的一般形式,再根据()f x 在区间(4π,23π)上恰有2个零点可得关于整数k 的不等式组,从而可求ω的取值范围.【详解】令()0f x =,则1sin 62x πω⎛⎫-= ⎪⎝⎭,故()1,66k x k k Z ππωπ-=+-∈,故()166kk x πππω+-+=,因为()f x 在区间(4π,23π)上恰有2个零点,所以存在整数k ,使得: ()()()()()()()123421116666213166663k k k k k k k k ππππππωωππππππππωω+++⎧+-+++-+⎪≤⎪⎪⎨⎪++-+++-+⎪<⎩<≤⎪,若k 为偶数,则()()()13233423k k k k πππωωπππωππω⎧+⎪+≤⎪⎪⎨⎪+++⎪<⎩<≤⎪, 整理得到:()444433733232k k k k ωω⎧+≤<+⎪⎪⎨⎛⎫⎪+<≤+ ⎪⎪⎝⎭⎩∵,因为0>ω,故0k ≥, 当2k ≥时,4394322k k +>+,故∵无解,当0k =时,有4437922ωω⎧≤<⎪⎪⎨⎪<≤⎪⎩即742ω<<.若k 为奇数,则()()()42313323k k k k πππππωωπππωω⎧++⎪≤<≤⎪⎪⎨⎪+++⎪<⎪⎩,整理得到:()444333102223k k k k ωω⎧⎛⎫≤<+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+<≤+ ⎪⎪⎝⎭⎩∵,因为0>ω,故1k ≥-,当3k ≥时,3452k k >+,故∵无解,当1k =-时,有4433722ωω⎧-≤<⎪⎪⎨⎪<≤⎪⎩,无解.当1k =时,有284391322ωω⎧≤<⎪⎪⎨⎪<≤⎪⎩,故91322ω<≤.综上,742ω<<或91322ω<≤.故答案为:742ω<<或91322ω<≤. 【点睛】思路点睛:对于正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k 的不等式组,从而可求相应的参数的取值范围.【分析】根据m 的范围分类讨论f (x )的零点即可.【详解】∵m =0时,f (x )={x 2+3x,x ≤0,x −1,x >0,令f (x )=0,则x =0或x =-3或x =1,即f (x )有三个零点,满足题意;∵m ≠0时,令f (x )=0,则x >0时,101mx x +-=+,则21x m =-(*), x≤0时,230x x m ++=(**),显然x ≤0时的方程(**)最多有两个负根,而x >0时的方程(*)最多只有一正根,为了满足题意,则x >0时必有1根,则1-m >0,且根为x ∵m <1;x ≤0时方程必然有两个负根,则Δ094090004m m m m ⎧>->⎧⇒⇒<<⎨⎨>>⎩⎩, ∵0<m <1;综上所述,m ∵[)0,1.故答案为:[)0,1.四、解答题【分析】(1)求得11e f x ax a x =+-+,分0a =、0a <、0a >三种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由()0f x =可得出20ax x a -+=,由102a <<结合判别式可判断出方程20ax x a -+=的根的个数,由此可证得结论成立.(1)解:函数()f x 的定义域为R ,()()()()2211e 11e x x f x ax a x a ax a x '⎡⎤=+-+-=+-+⎣⎦.当0a =时,则()()1e xf x x '=-+,由()0f x '<可得1x >-,由()0f x '>可得1x <-,此时函数()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,-+∞; 当0a ≠时,由()0f x '=可得11=-x a或1x =-. ∵当0a <时,111a-<-,由()0f x '<可得11x a <-或1x >-,由()0f x '>可得111x a -<<-,此时函数()f x 的单调递减区间为1,1a ⎛⎫-∞- ⎪⎝⎭、()1,-+∞,单调递增区间为11,1a ⎛⎫-- ⎪⎝⎭;∵当0a >时,111a ->-,由()0f x '<可得111x a -<<-,由()0f x '>可得1x <-或11x a >-,此时函数()f x 的单调递增区间为(),1-∞-、11,a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为11,1a ⎛⎫-- ⎪⎝⎭.综上所述,当0a <时,函数()f x 的单调递减区间为1,1a ⎛⎫-∞- ⎪⎝⎭、()1,-+∞,单调递增区间为11,1a ⎛⎫-- ⎪⎝⎭; 当0a =时,函数()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,-+∞;当0a >时,函数()f x 的单调递增区间为(),1-∞-、11,a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为11,1a ⎛⎫-- ⎪⎝⎭.(2)解:由()0f x =可得20ax x a -+=,因为102a <<,则()()21412120a a a ∆=-=-+>,即关于x 的方程20ax x a -+=有两个不等的实根, 所以,当102a <<时,()f x 在R 上有且仅有两个零点.【点睛】思路点睛:讨论含参函数的单调性,通常注意以下几个方面: (1)求导后看最高次项系数是否为0,须需分类讨论;(2)若最高次项系数不为0,通常是二次函数,若二次函数开口方向确定时,再根据判别式讨论无根或两根相等的情况;(3)再根据判别式讨论两根不等时,注意两根大小比较,或与定义域比较.【答案】(1)2个(2)存在,且a 的取值范围是0,7⎡⎤⎢⎥⎣⎦.【分析】(1)解方程()0f x =,即可得解;(2)由()00f =,分析可知当2x <且0x ≠时,由()0f x ≤可得()2310ax a +-≤,分0a =、0a <、0a >三种情况分析,结合一次函数的基本性质可得出关于实数a 的不等式,综合可求得实数a 的取值范围.(1)解:当3a =时,()()3221f x x x x x =+=+,令()0f x =,可得0x =或1x =-,此时函数()f x 有2个零点.(2)解:当(),2x ∈-∞时,由()()32111032f x ax a x =+-≤.当0x =时,对任意的R a ∈,()00f =,满足题意; 当2x <且0x ≠时,由()0f x ≤可得()2310ax a +-≤, 若0a =,则有30-≤,合乎题意; 若0a <,当3302ax a-<<时,()2310ax a +->, 则()2310ax a +-≤对任意的()(),00,2x ∈-∞⋃不可能恒成立,舍去; 若0a >,则有()4310a a +-≤,解得37a ≤,此时307a <≤.综上所述,当307a ≤≤时,当(),2x ∈-∞时,()0f x ≤恒成立. 题型三:数形结合法判段函数零点个数一、单选题1.(2022·安徽淮南·二模(文))已知函数,则下列关于函数的描述中,其中正确的是( ). ①当时,函数没有零点;②当时,函数有两不同零点,它们互为倒数; ③当时,函数有两个不同零点;④当时,函数有四个不同零点,且这四个零点之积为1. A .①② B .②③C .②④D .③④【答案】C【分析】画出函数图象即可判断①,令解方程即可判断③,将零点问题转化成函数图象交点的问题,利用数形结合即可判断②和④.【详解】当时,,函数图象如下图所示, ()1,0ln ,0x a x f x x x a x ⎧++<⎪=⎨⎪->⎩()f x 0a =()f x 02a <<()f x 2a =()f x 2a >()f x ()0f x =0a =()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩由此可知该函数只有一个零点,故①不正确; 当时,则函数的零点为和, ∵函数有两个不同零点,∴由函数的图象可知,解得, 当时,则函数的零点为和,此情况不存在有两不同零点,则函数有两不同零点时的取值范围是,设对应的两个零点为,,即或,解得,, 则,所以它们互为倒数,故②正确;当时,函数解析式为,令,解得,令,解得或,由此可知函数有三个零点,故③不正确; 当时,则函数的零点为和, ∵函数有四个不同零点,∴由函数的图象可知,解得, 当时,则函数的零点为和,此情况不存在有两不同零点;0a >()f x ()10x a x x+=-<()ln 0x a x =>()f x ()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩20a -<-<02a <<0a <()f x ()10x a x x+=-<()ln 0x a x =>()f x ()f x a 02a <<1x 2x 1ln x a =2ln x a =-1e a x =21e e aax -==121x x ⋅=2a =()12,0ln 2,0x x f x x x x ⎧++<⎪=⎨⎪->⎩()1200x x x++=<1x =-()ln 200x x -=>2e x =21e x =0a >()f x ()10x a x x+=-<()ln 0x a x =>()f x ()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩2a -<-2a >0a <()f x ()10x a x x+=-<()ln 0x a x =>()f x设对应的两个零点为,,,,即或,解得,, 当时,整理得,当时,, 则该方程存在两个不等的实数根和,由韦达定理得,所以,则故④正确; 故选:.2.(2022·河南安阳·模拟预测(文))已知函数,则关于的方程有个不同实数解,则实数满足( ) A .且 B .且 C .且 D .且【答案】C【分析】令,利用换元法可得,由一元二次方程的定义知该方程至多有两个实根、,作出函数的图象,结合题意和图象可得、,进而得出结果.【详解】令,作出函数的图象如下图所示:由于方程至多两个实根,设为和,由图象可知,直线与函数图象的交点个数可能为0、2、3、4,由于关于x 的方程有7个不同实数解,则关于u 的二次方程的一根为,则, 则方程的另一根为,直线与函数图象的交点个数必为4,则,解得. 所以且. 故选:C.1x 2x 3x 4x 1ln x a =2ln x a =-1e a x =21e e aax -==10x a x++=210x ax ++=2a >0∆>3x 4x 341x x ⋅=12341e 11e aax x x x =⋅⋅=C ()221xf x =--x ()()20f x mf x n ++=7,m n 0m >0n >0m <0n >01m <<0n =10m -<<0n =()u f x =20u mu n ++=1u 2u ()f x 10u =2u m =-()u f x =()u f x=20u mu n ++=1u u =2u u =1u u =()u f x =()()20f x mf x n ++=20u mu n ++=10u =0n =20u mu +=2u m =-2u u =()u f x =10m -<-<01m <<01m <<0n =3.(2022·安徽·模拟预测(文))已知函数,若有4个零点,则实数a 的取值范围是( ) A . B .C .D .【答案】A【分析】在同一坐标系中作出的图象,根据有4个零点求解. 【详解】解:令,得, 在同一坐标系中作出的图象,如图所示:由图象知:若有4个零点, 则实数a 的取值范围是, 故选:A4.(2022·河南河南·三模(理))函数的所有零点之和为( ) A .0 B .2 C .4 D .6【答案】B【分析】结合函数的对称性求得正确答案.【详解】令,得, 图象关于对称,在上递减. ,令,所以是奇函数,图象关于原点对称,所以图象关于对称,,在上递增, 所以与有两个交点,()2ln ,02,0x x f x x x x ⎧>=⎨--≤⎩()()g x f x a =-()0,1(]0,1[]0,1[)1,+∞(),y f x y a ==()()g x f x a =-()()0g x f x a =-=()f x a =(),y f x y a ==()()g x f x a =-()0,1()112e e 1x xf x x --=---()112e e 01x xf x x --=--=-112e e 1x x x ---=-()21g x x =-()1,0()(),1,1,-∞+∞()11e e ,x x h x --=-()()()()1e e ,e e x x x x H x h x H x H x --=+=--=-=-()H x ()h x ()1,0()10h =()1ee e x xh x -=-R ()h x ()g x两个交点关于对称,所以函数的所有零点之和为. 故选:B二、多选题5.(2022·广东·普宁市华侨中学二模)对于函数,下列结论中正确的是( )A .任取,都有B .,其中;C .对一切恒成立;D .函数有个零点; 【答案】ACD【分析】作出函数的图象.对于A :利用图象求出,即可判断;对于B :直接求出,即可判断;对于C :由,求得,即可判断; 对于D :作出和的图象,判断出函数有3个零点.【详解】作出函数的图象如图所示.所以.()1,0()112e e 1x xf x x --=---2sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩12,[1,)x x ∈+∞123()()2f x f x -≤11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭k ∈N ()2(2)()k f x f x k k N *=+∈[0,)x ∈+∞()ln(1)y f x x =--3sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩max min (),()f x f x 1511222222k f f f k ⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1()(2)2f x f x =-()2(2)k f x f x k =+()y f x =ln(1)y x =-()ln(1)y f x x =--sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩max min ()1,()1f x f x ==-对于A :任取,都有.故A 正确; 对于B :因为,所以.故B 错误;对于C :由,得到,即.故C 正确;对于D :函数的定义域为.作出和的图象如图所示:当时,;当时,函数与函数的图象有一个交点; 当时,因为,,所以函数与函数的图象有一个交点,所以函数有3个零点.故D 正确. 故选:ACD6.(2022·江苏·南京市宁海中学模拟预测)已知是定义在R 上的偶函数,且对任意,有,当时,,则( )A .是以2为周期的周期函数B .点是函数的一个对称中心12,[1,)x x ∈+∞()12max min 13()()()()122f x f x f x f x -≤-=--=1151111,,222222k f f f k +⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1112215112121222212kkf f f k ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-1()(2)2f x f x =-1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭()2(2)kf x f x k =+()ln(1)y f x x =--()1,+∞()y f x =ln(1)y x =-2x =sin2ln10y π=-=12x <<()y f x =()ln 1y x =-2x >2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭971ln 1ln 1224⎪->⎛⎫⎝>=⎭()y f x =()ln 1y x =-()ln(1)y f x x =--()f x x ∈R ()()11f x f x -=-+[]0,1x ∈()22f x x x =+-()f x ()3,0-()f x。

高中数学零点试题及答案

高中数学零点试题及答案

高中数学零点试题及答案一、选择题1. 若函数f(x)=x^2-4x+3在区间[1,3]上有零点,则下列说法正确的是()。

A. 函数f(x)在区间[1,3]上单调递增B. 函数f(x)在区间[1,3]上单调递减C. 函数f(x)在区间[1,3]上先减后增D. 函数f(x)在区间[1,3]上先增后减2. 函数y=x^3-3x+1的零点个数是()。

A. 0个B. 1个C. 2个D. 3个二、填空题3. 函数f(x)=x^2-2x-3的零点是_______。

4. 若函数f(x)=x^2-6x+8在区间[2,4]上恰好有一个零点,则该零点为_______。

三、解答题5. 已知函数f(x)=x^3-3x^2+4,求证:函数在区间[1,2]上存在零点。

6. 已知函数f(x)=x^2-2ax+a^2-1,其中a为实数,求证:当a>1时,函数在区间(-∞,a)上不存在零点。

答案:一、选择题1. C2. B二、填空题3. 3或-14. 3三、解答题5. 证明:首先求出函数f(x)的导数f'(x)=3x^2-6x。

令f'(x)=0,解得x=0或x=2。

在区间[1,2]上,f'(x)>0,说明函数f(x)在该区间上单调递增。

又因为f(1)=2>0,f(2)=-1<0,所以根据零点存在定理,函数在区间[1,2]上存在零点。

6. 证明:首先求出函数f(x)的导数f'(x)=2x-2a。

令f'(x)=0,解得x=a。

在区间(-∞,a)上,f'(x)<0,说明函数f(x)在该区间上单调递减。

又因为f(a)=a^2-1>0,所以函数在区间(-∞,a)上不存在零点。

函数的零点专题含答案

函数的零点专题含答案

函数的零点专题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知函数f (x )=x 3−2x +2,在下列区间中,一定包含f (x )零点的区间是( )A.(−2,−1)B.(−1,0)C.(0,1)D.(1,2)2. 下列函数中,既是偶函数又存在零点的是( )A.y =ln xB.y =x 2+1C.y =cos xD.y =sin x3. 函数f (x )={x +1,x ≤0,lg x,x >0的零点是( ) A.(−1,0),(1,0)B.−1,1C.(−1,0)D.−14. 函数f (x )=√x −x 的零点的个数是( )A.3个B.2个C.1个D.0个5. 我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日—尺,大鼠日自倍,小鼠日自半,问何日相逢”( )A.第2天B.第3天C.第4天D.第5天6. 函数y =x 2−1的零点是( )A.1B.±1C.(1,0)D.(±1,0)7. 函数f(x)=2x −2x −a 的一个零点在区间(1, 2)内,则实数a 的取值范围是( ) A.(1, 3)B.(1, 2)C.(0, 3)D.(0, 2)8. 已知实数a ,b 满足2a =3,3b =2,则f(x)=a x +x −b 的零点所在的区间是( )A.(−2, −1)B.(−1, 0)C.(0, 1)D.(1, 2)9. 函数y =(2x −2−x )sin x 在[−π,π]的图象大致为( )A.B.C.D.10. 已知三次函数f (x )=13x 3−(4m −1)x 2+(15m 2−2m −7)x +2在定义域R 上无极值点,则m 的取值范围是( )A.m <2或m >4B.m ≥2或m ≤4C.2≤m ≤4D.2<m <411. 已知函数f(x)={e x ,x ≤0,ln x,x >0,g(x)=f(x)+x +a ,若g(x)存在2个零点,则a 的取值范围是( )A.[−1, 0)B.[0, +∞)C.[−1, +∞)D.[1, +∞)12. 已知函数f (x )=2x +ln x ,下列判断正确的是( ) A.函数f (x )的单调递减区间为(−∞,2]B.x =2是函数f (x )的极大值点C.函数g (x )=f (x )−x 有且只有一个零点D.函数g (x )=f (x )−x 在其定义域内单调递增13. 已知函数f (x )={x +1x ,x >2,ln (x +a ),x ≤2的图象上存在关于直线x =2对称的不同两点,则实数a 的取值范围是( )A.(e,+∞)B.(e 52−2,+∞)C.(−∞,2e −1)D.(−∞,e 52)14. 函数f (x )=|x −2|−2−x 的零点的个数为( )A.0B.1C.2D.315. 已知函数f (x )=xe x ,要使函数g (x )=m [f (x )]2−2f (x )+1恰有一个零点,则实数m 的取值范围是( )A.[−e 2−2e,0]B.[−e 2+2e,0]C.(−e 2−2e,0]∪{1}D.(−e 2+2e,0]∪{1}16. 已知定义在R 上的函数y =f (x ),对任意x 都满足f (x +2)=f (x ),且当−1≤x ≤1时f (x )=2x 2,则函数g (x )=f (x )−ln |x|的零点个数为( )A.12B.14C.15D.1617. 函数f (x )=(3x −1)ln x 的零点个数是________.18. 若函数f(x)=log 2(x +a)的零点为2,则a =________.19. 函数f(x)=(x+1)ln x x−3的零点是________.20. 已知函数f(x)={2x +3,x ≤−32,x 2,−32<x <1,4x,x ≥1.若f(x)=2,则x =________.21. 设函数y =a x −4,(a >0, a ≠1),若其零点为2,则a =________.22. 已知λ∈R ,函数f (x )={x −4,x ≥λ,x 2−4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________.23. 已知函数y =f (x )在R 上连续且可导, y =f (x +1)为偶函数且f (2)=0,其导函数满足(x −1)f ′(x )>0,则函数g (x )=(x −1)f (x )的零点个数为________.24. 给出一个满足以下条件的函数f (x )=________.①f (x )的定义域是R ,且其图象是一条连续不断的曲线;②f (x )是偶函数;③f (x )在(0,+∞)不是单调函数;④f (x )有无数个零点.25. 已知函数f (x )={2x −3,x ≥1x 2−x −1,x <1,则y =f [f (x )]−5的所有零点之和为________.26. 已知函数g(x),ℎ(x)分别是定义在R 上的偶函数和奇函数,且满足g(x)+ℎ(x)=e x +sin x −x ,则函数g(x)的解析式为________;若函数f(x)=3|x−2020|−λg(x −2020)−2λ2有唯一零点,则实数λ的值为________.27. 已知函数f (x )={e ln x x (x >1),x 2−1(x ≤1),若函数g (x )=f(f (x ))−af (x )+a +1恰有5个不同的零点,则实数a 的取值范围是________.28. 已知函数 f (x )={1−12|1−x|,x ≤2,12f (x −2),2<x ≤6, 则函数g (x )=xf (x )−1的零点个数为________.29. 定义在R 上的函数f (x )满足f (−x )=−f (x ),f (x +4)=f (x ),当x ∈[0,2)时,f (x )={x 2,0≤x <1,2−x ,1≤x <2,则函数y =f (x )−log 5|x|的零点个数为________.30. (10分) 已知函数f(x)=log a (5−2x),其中a >0,且a ≠1.(Ⅰ)求f(x)的定义域;(Ⅲ)比较f(−1)与f(1)的大小.参考答案与试题解析函数的零点专题含答案一、 选择题 (本题共计 16 小题 ,每题 3 分 ,共计48分 )1.【答案】A【考点】函数的零点【解析】无【解答】解:f (−2)=−2,f (−1)=3,根据零点存在性定理可知答案.故选A .2.【答案】C【考点】函数的零点函数奇偶性的判断【解析】利用函数奇偶性的判断一件零点的定义分别分析解答.【解答】解:对于A ,y =ln x 的定义域为(0, +∞),则函数不是偶函数;对于B ,由y =x 2+1≥1,得函数y =x 2+1没有零点,不满足条件;对于C ,cos (−x)=cos x ,即函数y =cos x 是偶函数且函数存在零点,满足条件. 对于D ,sin (−x)=−sin x ,即函数y =sin x 为奇函数.故选C .3.【答案】B【考点】函数的零点【解析】根据函数解析式,对x 的取值范围所对应的直线进行求解即可,属于基础题.【解答】解:已知函数f(x)={x +1,x ≤0,lg x,x >0,当x ≤0时,设函数g(x)=x +1,令g(x)=0,解得x =−1,则函数g(x)=x +1的零点为−1,当x >0时,设函数ℎ(x)=lg x ,令ℎ(x)=0,解得x =1,综上可得,函数f(x)={x +1,x ≤0,lg x,x >0的零点是−1,1. 故选B .4.【答案】B【考点】函数的零点【解析】根据方程√x −x =0根的个数判断,利用函数零点和方程根之间的关系,求解即可.【解答】解:由题意知函数f(x)=√x −x 的定义域为[0,+∞),令f(x)=0,则√x −x =0,即√x =x ,解得x 1=0,x 2=1,故函数f(x)=√x −x 的零点的个数是2个.故选B .5.【答案】B【考点】数列的求和函数的零点【解析】此题暂无解析【解答】解:设需要n 天时间才能打穿,则2n −12−1+1−(12)n 1−12≥5,化为:2n −22n −4≥0,令f(n)=2n −22n −4, 则f(3)=8−14−4>0,f(2)=4−12−4<0,∴ f(x)在(2, 3)内存在一个零点.又函数f(x)在x ≥1时单调递增,因此f(x)在(2, 3)内存在唯一一个零点,∴ 需要3天时间才能打穿.故选B .6.【答案】B函数的零点与方程根的关系【解析】首先使得函数等于0,解出关于x的一元二次方程的解,即可得到函数的零点. 【解答】解:令y=x2−1=0,解得x=1或−1,∴函数y=x2−1的零点为±1.故选B.7.【答案】C【考点】函数的零点【解析】由题意可得f(1)f(2)=(0−a)(3−a)<0,解不等式求得实数a的取值范围.【解答】解:由题意可得f(1)f(2)=(0−a)(3−a)<0,解得0<a<3,故实数a的取值范围是(0, 3).故选C.8.【答案】B【考点】函数的零点指数式与对数式的互化【解析】根据对数,指数的转化得出f(x)=(log23)x+x−log32单调递增,根据函数的零点判定定理得出f(0)=1−log32>0,f(−1)=log32−1−log32=−1<0,判定即可.【解答】解:∵实数a,b满足2a=3,3b=2,∴a=log23>1,0<b=log32<1,∵函数f(x)=a x+x−b,∴f(x)=(log23)x+x−log32单调递增,∵f(0)=1−log32>0,f(−1)=log32−1−log32=−1<0,∴根据函数的零点判定定理得出:函数f(x)=a x+x−b的零点所在的区间是(−1, 0). 故选B.9.【答案】B【考点】函数奇偶性的判断【解析】本题主要考查了函数的奇偶性和零点以及函数的图象,属于基础题,根据奇偶性的定义可得f(x)为偶函数,排队B;再令f(x)=0可得函数的零点为−π,0,π,排队CD,从而得到结论.【解答】解:函数定义域[−π,π]关于原点对称,且f(−x)=(2−x−2x)sin(−x)=−(2x−2−x)(−sin x)=(2x−2−x)sin x=f(x),∴ f(x)是偶函数,故排除A;令f(x)=0,即(2x−2−x)sin x=0,∴2x−2−x=0或sin x=0,又x∈[−π,π],∴解得x=−π,0,π,排除C,D.故选B.10.【答案】C【考点】利用导数研究函数的极值函数的零点【解析】由题意,对函数进行求导,由其导函数无变号零点,根据根的判别式可求得m的取值范围.【解答】x3−(4m−1)x2+(15m2−2m−7)x+2,定义域为R,解:已知函数f(x)=13则f′(x)=x2−2(4m−1)x+15m2−2m−7,因为函数f(x)在定义域上无极值点,则f′(x)=x2−2(4m−1)x+15m2−2m−7无变号零点,所以x2−2(4m−1)x+15m2−2m−7≥0恒成立,而Δ=4(4m−1)2−4(15m2−2m−7)=64m2−32m+4−60m2+8m+28=4(m2−6m+8)≤0,解得2≤m≤4.故选C.11.【答案】C【考点】函数的零点【解析】由g(x)=0得f(x)=−x−a,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可.解:由g(x)=0得f(x)=−x−a,作出函数f(x)和y=−x−a的图象如图:当直线y=−x−a的截距−a≤1,即a≥−1时,f(x)和y=−x−a的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[−1, +∞).故选C.12.【答案】C【考点】利用导数研究函数的单调性利用导数研究函数的极值函数的零点【解析】利用导数判断函数的单调性即可逐项判定.【解答】解:由题意得,函数的的定义域为(0,+∞),函数的导数f′(x)=−2x2+1x=x−2x2,当x∈(0,2)时,f′(x)<0,函数f(x)单调递减,当x∈(2,+∞),f′(x)>0,函数f(x)单调递增,∴x=2时,f(x)取得极小值,故A错误,B错误.∵g(x)=f(x)−x=2x+ln x−x,x>0,则g′(x)=−x2+x−2x2<0,∴函数g(x)=f(x)−x=2x+ln x−x在(0,+∞)上单调递减,∵f(1)−1=2+ln1−1=1>0,f(2)−2=1+ln2−2=ln2−1<0,∴函数g(x)=f(x)−x有且只有1个零点,故C正确,D错误. 故选C.13.B【考点】函数的零点分段函数的应用利用导数研究函数的单调性【解析】此题暂无解析【解答】解:依题意,函数f(x)的图象上存在关于x=2对称的不同两点,则存在x1>2,x2≤2,且x1+x2=4,使得x1+1x1=ln(x2+a),则e x1+1x1=x2+a,因此a=e x1+1x1−x2=e x1+1x1+x1−4,设g(x)=e x+1x+x−4,x>2.故问题转化为存在x∈(2,+∞),使得函数g(x)=e x+1x+x−4与y=a有交点,又g′(x)=e x+1x⋅(1−1x2)+1>0在x∈(2,+∞)上恒成立,所以函数g(x)在x∈(2,+∞)上单调递增,故g(x)>g(2)=e 52−2,因此,为使函数g(x)=e x+1x+x−4与y=a有交点,只需a>e 52−2.故选B.14.【答案】D【考点】函数的零点【解析】此题暂无解析【解答】解:如图所示,在同一平面直角坐标系中作出函数y=|x−2|,y=2−x的图象.由图可知函数f(x)在定义域内的零点个数为3.故选D.15.【答案】C【考点】利用导数研究函数的单调性函数的零点函数的零点与方程根的关系根的存在性及根的个数判断【解析】本题考查了根据函数零点个数求解参数范围.由导数求f(x)的最值.可得草图.借助图象将问题转化为二次函数的根的分布问题.分情况求解.【解答】解:∵ f(x)=xe x.∴f′(x)=(x+1)e x,易知f(x)在(−∞,−1)单调递减,(−1,+∞)单调递增,∴ f(x)min=f(−1)=−1e,且当x<0时,f(x)<0;当x>0时,f(x)>0,故f(x)大致图象如下:令f(x)=t,若g(x)有且只有一个零点,则方程mt2−2t+1=0只有一个实根t满足t≥−1e,当m=0时,显然t=12满足,当m≠0时,Δ=4−4m≥0,∴ m≤1,当m=1时,方程只有一个根t=1满足,当m<1且m≠0时,若m>0,则方程两根t1+t2=2m >0,t1t2=1m>0,∴t1>0,t2>0,不满足题意,∴ m<0,则t1=2+√4−4m2m ,t2=2−√4−4m2m,∵t1t2=1m<0,∴t1,t2异号,只需2+√4−4m2m =1+√1−mm<−1e,解得m>−e2−2e,∴−e2−2e<m<0,综上所述.m的范围为(−e2−2e,0]∪{1}.故选C.16.【答案】B【考点】函数的零点函数的图象【解析】本题考查函数图象交点问题.【解答】解:∵ f(x+2)=f(x),∴ T=2,∵当−1≤x≤1时,f(x)=2x2,即可平移获得f(x)图象,函数g(x)=f(x)−ln(x)零点个数即f(x)与ln|x|交点个数,可知f(x)与ln|x|均为偶函数,故只零考虑x>0部分,当x>0时,f(x)与ln|x|的图象如图所示,当x>0,ln|x|=2时,x=e2,∵7<e2<9,∴当x>0,共7个交点,故x<0部分也有7个交点,∴7+7=14(个).故选B.二、填空题(本题共计 13 小题,每题 3 分,共计39分)17.【答案】1【考点】函数的零点【解析】先得出方程,求出方程的根,再判断零点的个数.【解答】解:函数f(x)=(3x −1)ln x 定义域为(0,+∞),令f (x )=(3x −1)ln x =0,解得x =1,则零点个数为1个.故答案为:1.18.【答案】−1【考点】函数的零点【解析】函数f(x)=log 3(ax 2−x +a)有零点可化为方程ax 2−x +a =1有解,从而解得.【解答】解:根据题意,若函数 f(x)=log 2(x +a) 的零点为2,则f(2)=log 2(a +2)=0 ,即 a +2=1,解得 a =−1.故答案为:−1.19.【答案】1【考点】函数的零点【解析】令f(x)=0,求出方程的根即函数的零点即可.【解答】函数f(x)的定义域是(0, 3)∪(3, +∞),显然x +1>0,x −3≠0,令f(x)=0,即(x+1)ln x x−3=0,即ln x =0,解得:x =1,20.【答案】 −√2【考点】函数的零点【解析】根据题意,在每个段上求值,检验,求出x 即可.【解答】当x ≤−32时,f(x)=2x +3=2,得x =−12,不成立;当−32<x <1时,x 2=2,x =±√2,所以x =−√2;当x ≥1时,4x =2,x =12,不合题意;综上x =−√2,21.【答案】2【考点】函数的零点【解析】此题暂无解析【解答】此题暂无解答22.【答案】(1,4),(1,3]∪(4,+∞)【考点】函数零点的判定定理函数的零点【解析】此题暂无解析【解答】当λ=2时,由f (x )<0得{x −4<0x ≥2’或{x 2−4x +3<0x <2,’解得2≤x <4或1<x <2,所以f (x )<0的解集为(1,4).由x −4=0得x =4,由x 2−4x +3=0得x =1或x =3,因为函数f(x )恰有2个零点,所以{4>λ1<λ3≥λ,或{4<λ1<λ3<λ,解得1<λ≤3或λ>4.本题考查分段函数的性质.求解分段函数问题,要根据自变量的值分别讨论函数在每一段上的性质.23.【答案】3【考点】利用导数研究函数的单调性函数的零点函数奇偶性的性质【解析】由题意得到函数关于x =1对称,且当x >1时,函数单调递增,x <1时函数单调递减,进而得到函数的零点个数.【解答】解:∵ y =f(x +1)为偶函数,∴ y =f(x)关于x =1对称,∵ f(2)=0,∴ f(0)=0.又(x −1)f′(x)>0,∴ 当x >1时,函数单调递增,x <1时函数单调递减,∴ f(x)有两个零点,分别为0和2,又当x =1时,g(x)=(x −1)f(x)=0,∴ 函数g(x)=(x −1)f(x)的零点有0,1,2,共有三个零点.故答案为:3.24.【答案】x sin x (答案不唯一)【考点】函数的零点奇偶性与单调性的综合【解析】根据题意,分析可得则f (x )可以由三角函数变换得到,由此可得答案.【解答】解:根据题意,要求函数f (x )满足4个条件,则f (x )可以由三角函数函数变换得到,比如f (x )=x sin x .故答案为:x sin x (答案不唯一).25.【答案】4−√212【考点】函数的零点【解析】此题暂无解析【解答】解:根据题意,令t =f (x ),则易得f (t )=5的解为: t 1=4, t 2=−2, 当f (x )=4时,结合f (x )={2x −3,x ≥1x 2−x −1,x <1,得: x 1=72,x 2=1−√212, 当f (x )=−2时,结合f (x )={2x −3,x ≥1x 2−x −1,x <1,可知方程f (x )=−2无解. 故y =f [f (x )]−5的所有零点之和为: x 1+x 2=72+1−√212=8−√212=4−√214. 故答案为:4−√212. 26.【答案】g (x )=e x +e −x 2,−1或12 【考点】函数的零点函数奇偶性的性质【解析】此题暂无解析【解答】解:因为函数g (x ),ℎ(x )分别是定义在R 上的偶函数和奇函数,所以g (−x )=g (x ),ℎ(−x )=−ℎ(x ).因为g (x )+ℎ(x )=e x +sin x −x ①,所以g(−x)+ℎ(−x)=e−x−sin x+x,即g(x)−ℎ(x)=e−x−sin x+x②,①②联立,可解得g(x)=e x+e−x2.令F(x)=3|x|−λg(x)−2λ2,则F(−x)=F(x),所以F(x)为偶函数,所以f(x)=F(x−2020)=3|x−2020|−λg(x−2020)−2λ2关于x=2020对称,因为f(x)有唯一的零点,所以f(x)的零点只能为x=2020.即f(2020)=1−λ−2λ2=0,解得λ=−1或λ=12.故答案为:g(x)=e x+e−x2;−1或12.27.【答案】−12<a<0【考点】利用导数研究与函数零点有关的问题分段函数的应用由函数零点求参数取值范围问题函数的零点【解析】无【解答】解:分析f(x)的图像以便于作图,当x>1时,f′(x)=e(1−ln x)x2,f′(x)>0⇒1<x<e,f′(x)<0⇒x>e,所以f(x)在(1,e)上单调递增,在(e,+∞)上单调递减,f(e)=e ln ee=1,且当x→+∞时f(x)>0且f(x)→0,所以x轴为曲线f(x)的水平渐近线;当x≤1时,f(x)=x2−1,所以f(x)在(−∞,0)上单调递减,在(0,1)上单调递增,且f(0)=−1.由此作图,图像如图,设f(x)=t,则由g(x)=f(f(x))−af(x)+a+1=0得f(t)−at+a+1=0⇒f(t)=at−a−1=a(t−1)−1,若函数g(x)=f(f(x))−af(x)+a+1恰有5个不同的零点,则关于x的方程g(x)=f(f(x))−af(x)+a+1=0恰有5个不同的实根,则结合函数y=f(x)的图像及直线y=a(x−1)−1得f(t)=a(t−1)−1恰有2个不等的实根,得t=t1=f(x)∈(−1,0),t=t2=f(x)∈(0,1),t1=t=f(x)∈(−1,0)有2个不等的实根,t=t2=f(x)∈(0,1)有3个不等的实根,∴−12<a<0.故答案为:−12<a<0.28.【答案】7【考点】函数的零点与方程根的关系函数的零点分段函数的应用【解析】无【解答】解:令g(x)=0可得:f(x)=1x ,画出y=f(x)和y=1x的图象可以,共有7个交点.故答案为:7.29.【答案】5【考点】函数的周期性函数的零点函数奇偶性的判断函数的图象【解析】由题可知f (x )为奇函数,且周期为4,在同一直角坐标系中作出函数f (x )与y =log 5|x|在R 上的图象,根据函数图形的交点个数即可得到函数y =f (x )−log 5|x|的零点个数.【解答】解:∵ f (−x )=−f (x ),∴ f (x )为奇函数.又∵ f (x +4)=f (x ),∴ f (x )的周期为4.根据x ∈[0,2)时,f (x )={x 2,0≤x <1,2−x ,1≤x <2,在同一直角坐标系中作出函数f (x )与y =log 5|x|在R 上的图象,如图所示,由图可知,共有5个交点,故函数y =f (x )−log 5|x|的零点个数为5个.故答案为:5.三、 解答题 (本题共计 1 小题 ,共计10分 )30.【答案】(1)因为函数f(x)=log a (5−2x),所以令7−2x >0,所以函数f(x)的定义域为;(2)令f(x)=0,即log a (5−4x)=0,即5−4x =1,所以f(x)的零点为2; (Ⅲ)f(−6)=log a 7,f(1)=log a 3,当a >8时,函数y =log a x 为增函数,所以log a 7>log a 3,即f(−7)>f(1); 当0<a <1时,函数y =log a x 为减函数,所以log a 6<log a 3,即f(−1)<f(1).【考点】函数的零点【解析】此题暂无解析【解答】此题暂无解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

零点问题与数形结合题型一、直接做图1 函数 ()1|1|f x x =--‖ 的图像与直线 y k = 有且仅有四个不同的交点, 则实数 k 的取值范围是_________2 已知函数 ()22x f x =- 与 y b = 有两个交点, 则实数 b 的取值范围是_________3 已知函数 ||()2||,x f x x =+ 若关于 x 的方程 ()f x k = 有两个不同的实根, 则实数k 的取值范围是_________.已知函数 ()|lg |,f x x = 若 0a b << 且 ()(),f a f b = 则 2a b + 的范围是_________4 设函 21,0(),1,0x x f x x x ⎧-=⎨+<⎩ 若函数 ()a f x = 有两个实根 ()1212,,x x x x < 则 12x x + 的取值范围是_________5 若关于 x 的不等式 23344a x xb -+ 的解集恰好是 [a, b],则 a b +=_________6 关于 x 的不等式 201x px q ++ 的解集为 [3,4], 则 p q +=_________7 已知函数 22,||3(),6,||3x x f x x x ⎧-⎪=⎨->⎪⎩ 若 0,m n << 且 ()(),f m f n = 则 2n m +的取值范围是_________题型二、变形后做图1 直线 1y = 与曲线 2||y x x a =-+ 有 4 个交点, 则 a 的取值范围 是_________2 若关于 x 的方程 2||2x kx x =+ 有 4 个不同的实数解, 则实数 k 的范围为_________3 已知函数 21(),()32f x x h x =+= 解关于 x 的方程 433log (1)24f x ⎡⎤--=⎢⎥⎣⎦22log ()log (4)h a x h x ---。

4 若关于x的方程||x x a a-=有三个不同的实数根, 则a的取值范围为_________5 已知函数32,(),,x x af xx x a⎧=⎨>⎩若存在实数b使得()()g x f x b=-两个不同的零点, 则实数a的取值范围是_________6 已知函数24,1(),ln1,1x x a xf xx x⎧-+<=⎨+≥⎩若方程()2f x=有两个解, 则实数a的取值范围是_________7 函数3()||,f x x ax=--若方程()2f x=有且只有三个不实数解, 则实数a的取值范围是_________8 已知关于x的方程112042x xa⎛⎫⎛⎫-+=⎪ ⎪⎝⎭⎝⎭在区间 [-1,0] 上有实数根, 则实数a取范围为_________题型三旋转的动直线1 已知函数()|2|1,(),f x xg x kx=-+=若()()f xg x=有两个不相等的实根, 则实数k的取值范围是_________2 已知函数 22,0(),ln(1),0x x x f x x x ⎧-+=⎨+>⎩ 若 |()|,f x ax 则 a 的取值范围是_________3 己知 221,20(),1,0x x x f x x x ⎧--+-<=⎨+⎩ 若函数 ()()g x f x ax a =-+ 存在零点, 则实数 a 的取值范围为_________4 已知函数 2221,0(),22,0xx f x x x x ⎧-+>⎪=⎨++⎪⎩ 若方程()2f x kx k =+ 有 4 个不同的解, 则实数 k 的取值范围为_________5 定义 (){}({}f x x x = 表示不小于 x 的最小整数, 即上取整函数 ), 例如 {2.2}3,= {3}3,= 则下列性质描述正确的是(1)(2)2();f x f x = (2)若 ()()12,f x f x = 则 121;x x -< (3)任意 12,,x x ∈ 都有 ()12f x x +()()12;f x f x + ( 4) 1()(2)2f x f x f x ⎛⎫++= ⎪⎝⎭6 求方程 1[31]22x x +=- 的所有根之和。

7 []x 表示不大于 x 的最大整数, 则对任意实数 x 有 () A. [][]x x -=-B. 1[]2x x ⎡⎤+=⎢⎥⎣⎦C. [2]2[]x x =D. 1[][2]2x x x ⎡⎤++=⎢⎥⎣⎦8 设 ,[]x x ∈ 表示不超过 x 的最大整数。

若存在实数 t, 使得 2[]1,2,,nt t t n ⎡⎤⎡⎤===⎣⎦⎣⎦ 同时成立, 则正整数 n 的最大值是_________9 已知方程 3[]x x a -= 在 [0,3]x ∈ 时有两个根, 求 a 的取值范围。

10 已知函数 [],2(),(1),2x x x f x f x x -⎧=⎨+<⎩ 其中 [x]表示不超过 x 的最大整数, 若直线(0)y kx k k =+> 与函数 ()y f x = 的图像恰有三个不同的交点, 则 k 的取值范围为 _________11 定义在上的函数 ()f x 满足 (2)(),f x f x += 且 (1,1]x ∈- 时 2,(),f x x = 若函数()y f x = 的图像与函数 y kx = 的图像恰有 3 个交点, 则实数 k 的取值范围是_________12 设 [x]表示不小于实数 x 的最小整数, 如 [2.6]3,[ 3.5]3,=-=- 已知函数 2()[]2[],f x x x =- 若函数 ()()(2)2F x f x k x =--+ 在 (-1,4] 上有两个零点, 则 k 的取值范围 是_________13 已知函数 ()f x 满足周期为 2, 且 ()f x 是偶函数, 当 [0,1]x ∈ 时, (),f x x = 若在 区间 [-1,3] 内, 函数 ()()g x f x kx k =-- 有 4 个零点, 则实数 k 的取值范围是_________14 若关于 x 的不等式 22||x x a ->- 至少有一个负数解, 则 a 的取值范围是_________15 已知函数e,0(),ln,0x xf xx x⎧=⎨>⎩若()()g x f x x a=++存在两个零点, 则a的取值范围是_________16 设函数e,0(),ln,0x xf xx x⎧=⎨>⎩若函数()g x=()2f x x a︒+-若()g x存在两个零点, 则a的取值范围为_________17 已知函数01(),1,1xf xxx⎧⎪=⎨>⎪⎩若关于x的方程()f x=14x a-+恰有两个互异的实数解,则a的取值范围为题型四、曲线动1 关于x的方程230(0)x a x x--+=>有两个不相等的实数根, 则a的取值范围为_________2 已知函数2(43)3,0()(0log(1)1{,0ax a x a xf x ax x+-+<=>++且).1a≠在上单调递减, 关于x的方程|()|2f x x=-恰有两个不相等的实数解, 则a的取值范围是_________3 已知,a ∈函数2222,0(),22,0x x a xf xx x a x⎧++-=⎨-+->⎩对于任意[3,),()||x f x x∈-+∞恒成立, 则a的取值范围是_________题型五 复合方程1 求方程 42320x x -+= 的解个数。

2 (I) 已知 2()4,f x x x =- 求方程 2()3()20f x f x -+= 的实数根的个数。

(II) 已知 2()4,f x x x =- 求方程 22()3()20f x af x a -+= 的实数根的个数。

3 函数 2()(0)f x ax bx c a =++≠ 的图像关于直线 2bx a=-对称。

据此可推测, 对任 意的非零实数 a, b, c, m, n, p, 关于 x 的方程 2[()]()0m f x nf x p ++= 的解集都不可能是 () 。

A. {1,2} B. {1,4} C. {1,2,3,4} D. {1,4,16,64}4 设函数 22,0(),21,0x x f x x x x ⎧=⎨-+>⎩ 若关于 x 的方程 2()()0f x af x -= 恰有4 个不同的实数解, 则实数 a 的取值范围为_________5 已知 ()e 11,x f x =-+ 若函数 2()[()](2)()2g x f x a f x a =+-- 有三个零点, 则实数 a 的取值范围是_________6 已知函数 2e ,0(),(1),0x x f x x x ⎧=⎨->⎩ 又函数 ()g x =2()()1f x tf x ++ 有 4 个不同的零点, 则实数 t 的取值范围是_________7 已知函数 21,0(),log ,0x x f x x x -⎧=⎨>⎩ 若关于 x 的方程(())f f x m = 有两个不同的实根 12,,x x 则12x x + 的取值范围为_________8 ()f x 和 ()g x 都是定义在实数集上的函数, 且方程 [()]0x f g x -= 有实数解, 则[()]g f x 不可能是_________A. 215x x +-B. 215x x ++C. 215x -D. 215x +题型六 曲线与曲线1 已知函数 ()f x 满足 ()(2),f x f x =+ 当 [1,1]x ∈- 时, 2()f x x = 那么函数 ()y f x = 的图像与函数 |lg |y x = 的图像的交点共有_________2 设函数 ()f x 的定义域为 , 满足 (1)2(),f x f x += 且当 (0,1]x ∈时, ()(1).f x x x =- 若对任意 (,],x m ∈-∞ 都有 8(),0f x - 则 m 的范围是_________3 已知定义域为 (0,)+∞ 的函数 ()f x 满足 (1) 对任意 (0,),x ∈+∞ 恒有 (2)2()f x f x = 成立; (2) 当 (1,2]x ∈ 时, ()2f x x =- 给出结论如下: (1对任意 ,m ∈ 有 ()20m f = (2函数 ()f x 的值域为 [0,)+∞ (3存在 ,n ∈ 使得 ()219;n f +=(4函数 ()f x 在区间 (,)a b 上单调递减的充要条件是存在 ,k ∈ 使得 ()1(,)2,2k k a b +⊆ 。

相关文档
最新文档