信号与系统的重点、难点与疑点
信息与通信工程(信号与系统)复习重难点及学习方法指导

信息与通信工程(信号与系统)复习重难点及学习方法指导信息与通信工程是现代高新技术的一个重要组成局部,信息与通信工程专业一直以来都是考研中比拟热门的专业。
但是,由于信息与通信工程专业不是国家规定的统考专业,故考生在复习的时候,有时候会找不到方向,如何才能对症下药,到达事半功倍的效果呢,我们万学海文教研中心经过悉心的研究,发现,信息与通信工程专业的考卷也是有一定的规律可循。
信息与通信工程专业由各高校自主命题,参考书参差不齐,统计分析发现:主要考的科目有通信原理和信号与系统,而主要的参考书为:通信原理以樊昌信的《通信原理》和周炯磐的《通信原理》为主,信号与系统主要以郑君里的《信号与系统》和吴大正的《信号与线性系统分析》为主。
下面分析一下通信原理的重难点:通信原理:1.希尔伯特变换、解析信号、频带信号与带通系统、随机信号的功率谱分析、窄带平稳高斯过程。
2.模拟调制: DSB-SC、AM、SSB、VSB、FM的根本原理、频谱分析、抗噪声性能分析。
3.数字基带传输:数字基带基带信号,PAM信号的功率谱密度分析;数字基带信号的接收,匹配滤波器,误码率分析;码间干扰的概念,奈奎斯特准那么,升余弦滚降,最正确基带系统,眼图,均衡的根本原理,线路码型的作用和编码规那么,局部响应系统,符号同步算法的根本原理4.数字信号的频带传输:信号空间及最正确接收理论,各类数字调制(包括OOK、2FSK、PSK、2DPSK,QPSK、DQPSK、OQPSK、MASK、MPSK、MQAM)的根本原理、频谱分析、误码性能分析,载波同步的根本原理。
5.信源及信源编码:信息熵、互信息;哈夫曼编码;量化(量化的概念、量化信噪比、均匀量化),对数压扩,A率13折线编码、TDM;6.信道及信道容量:信道容量(二元无记忆对称信道、AWGN 信道)的分析计算,多径衰落方面的概念(平衰落和频率选择性衰落、时延扩展、相干带宽、多普勒扩展、相干时间)7.信道编码:信道编码的根本概念,纠错检错、汉明距,线性分组码,循环码、CRC,卷积码的编码和Viterbi译码;8.扩频通信及多址通信:沃尔什码及其性质,m序列的产生及其性质,m序列的自相关特性,扩频通信、DS-CDMA及多址技术、扰码现在到了最关键的时刻了,之前不管你浪费了多少时间,眼下的时间不容你有一丁点的虚度。
信号与系统川大考研重点难点

信号与系统川大考研重点难点信号与系统重点与难点第一章信号与系统1.重点:单位冲激信号和单位脉冲信号、阶跃信号的特性;信号的自变量变换;系统的性质。
2.难点:单位冲激信号、单位脉冲信号的特性,系统性质的判断。
第二章线性时不变系统1.重点:连续信号与离散信号的时域分析,任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲信号的线性组合;线性非时变连续时间系统与离散时间系统的数学描述及特性;用卷积法计算连续时间系统与离散时间系统的零状态响应;卷积积分特性。
2.难点:任意信号分解为基本信号的线性组合;卷积积分、卷积和计算。
第三章周期信号的傅里叶级数表示1.重点:周期信号的频域分析,大多数周期信号可分解为正弦(或虚指数)信号的线性组合;从数学概念、物理角度理解连续时间周期信号和离散时间周期信号的傅里叶级数。
连续时间周期信号和离散时间周期信号的傅里叶级数的异同。
周期信号通过系统后的输出。
特征函数定义及意义;虚指数信号通过系统响应的特点。
2.难点:傅里叶级数定义、物理意义及计算。
周期信号通过系统响应的频域分析,第四章连续时间傅里叶变换1.重点:连续时间非周期信号的频域分析,从数学概念、物理概念理解频谱概念,以及信号时域与频域的关系;常用信号的傅里叶变换;连续时间信号傅里叶变换的基本性质、物理意义及应用,连续时间非周期信号频谱的计算;深刻理解卷积性质是LTI系统频域分析方法的理论基础,相乘性质是通信和信号传输领域调制解调技术的理论基础。
连续和离散时间系统特性的频率响应表示,系统的频域分析;理想低通滤波器的时域与频域特性。
2.难点:连续时间非周期信号的频谱概念及应用;信号通过系统响应的频域分析。
第五章离散时间傅里叶变换1.重点:离散时间非周期信号的频域分析,从数学概念、物理概念及工程概念理解频谱概念,以及信号时域与频域的关系;离散时间信号傅里叶变换的基本性质、物理含义及应用,离散时间非周期信号频谱的计算;离散时间系统特性的频域表示(频率响应),任意信号通过系统响应的频域分析。
信号与系统第1章要点内容和重点难点

第1章要点内容和重点难点要点内容●信号的描述和分类◆信号的描述方法-——解析表达式、波形;◆信号的分类确定信号与随机信号;连续信号与离散信号;周期信号与非周期信号;能量信号与功率信号;●信号的基本特性时间特性、频率特性、能量特性、信息特性;●信号的基本运算信号的相加和相乘;信号的翻转、平移和展缩;信号的微分和积分;信号的差分和迭分;●阶跃信号和冲激信号◆连续时间阶跃信号和冲激信号◇单位阶跃信号()t ε——波形、特点;◇单位冲激信号()t δ——几种定义方法、性质;◇()t ε与()t δ的关系——()()d t t dtεδ=,()()t t d εδττ-∞=⎰ ◇()t ε和()t δ的重要性体现:(1)描述一类特殊的物理现象阶跃信号——描述突变的物理现象;冲激信号——描述持续时间很短、强度很大的物理现象;(2)求解系统零状态响应时,任意激励信号可分解为无穷多个冲激函数之和或无穷多个阶跃函数之和;(3)具有单边特性、抽样性质等重要特性。
◆阶跃序列和脉冲序列波形、特点、相互关系;●系统的描述◆系统的输入输出描述连续系统——微分方程;离散系统——差分方程;◆系统的框图表示●系统的特性和分类◆系统的特性线性特性;时不变特性;因果性;稳定性;◆系统的分类确定性系统与随机性系统;连续系统与离散系统;单输入输出系统与多输入输出系统;瞬时系统与动态系统;线性系统与非线性系统;时变系统与时不变系统;因果系统与非因果系统;稳定系统与不稳定系统。
●信号与系统的分析方法◆时域分析◆变换域分析包括频域和复频域。
重点内容●信号的基本运算;●阶跃信号和冲激信号;●系统的特性;难点内容●系统的特性分析;。
858信号与系统考研大纲

858信号与系统考研大纲(原创版)目录一、信号与系统课程的难点二、信号与系统在考研中的重要性三、信号与系统的基础知识四、如何学习信号与系统五、推荐教材正文一、信号与系统课程的难点信号与系统课程是通信专业和电子信息专业的重要基础课程,但同时也是很多学生感到难以掌握的课程。
其难点主要体现在以下几个方面:1.信号与系统需要足够的高等数学基础,如常系数微分方程的求解,微积分运算等。
2.信号与系统需要一定的复变函数基础,如复数运算,积分变换等。
3.信号与系统课程比较抽象,与以往学生学过的模拟电路和数字电路等课程相比,更难以理解。
4.信号与系统的物理意义难以把握,容易让学生产生这是数学在工科上的分支的错觉。
5.信号与系统的自身运算又有不同于数学的地方,例如微分方程带0-值算待定系数等。
二、信号与系统在考研中的重要性信号与系统课程在考研中占据重要地位,是通信方面专业课的基础。
无论你是信号处理还是通信系统,这门课都是一切课程的基础。
原因在于这门课反应了两个很重要的理论,一个是信号的频域分析,一个是系统函数。
这两个理论对应到数学上就是积分变换,信号的频域分析是信号处理的基础。
因为信号的时域复杂多变,但是频域非常清晰,利于处理。
三、信号与系统的基础知识要学好信号与系统,需要掌握以下几个基础知识:1.高等数学的微分方程部分,特别是线性常微分方程。
2.高等数学的微积分,如分部积分法,求导等。
3.复变函数的复数模与相位运算,以及留数定理。
4.常见的信号与系统基本概念,如信号的采样与恢复,系统的稳定性等。
四、如何学习信号与系统学习信号与系统,除了掌握以上提到的基础知识外,还需要多做练习,加深对概念的理解。
同时,可以参考一些优秀的教材和课程,如吴大正的《信号与线性系统分析》和奥本海姆的《信号与系统》等。
通信工程考研备考攻略信号与系统复习重点解析

通信工程考研备考攻略信号与系统复习重点解析信息的传输在现代社会中起着至关重要的作用,而通信工程作为信息传输的核心领域之一,备受瞩目。
通信工程的考研备考是学子们晋升的重要一步,其中信号与系统是备考中的重点内容。
本文将对信号与系统的复习重点进行解析,为考生们提供备考指导。
一、信号与系统的基本概念在进入具体的复习内容之前,首先需要了解信号与系统的基本概念。
信号是信息的一种表现形式,可以是连续的或离散的,可以是时域的或频域的。
而系统是对信号进行加工或转换的过程,可以是线性的或非线性的,可以是时不变的或时变的。
二、时域信号分析时域信号分析是信号与系统中的重要内容之一。
在复习时,需要对时域信号的表示方法、性质及其运算进行深入了解。
其中包括连续时间信号和离散时间信号的表示方法,如冲激函数、阶跃函数、指数信号等;时域信号的基本性质,如奇偶性、对称性等;时域信号的运算,如加法、乘法及卷积运算等。
三、频域信号分析频域信号分析是对信号与系统进行频谱分析的关键内容。
在备考中,需要对连续时间信号的傅里叶变换、傅里叶级数展开以及离散时间信号的离散时间傅里叶变换等进行熟悉与掌握。
此外,还需要了解频域信号的性质,如线性性、时移性、频移性等。
四、系统分析与系统函数系统分析是对系统进行研究与评估的重要步骤。
在备考中,需要对系统的特性进行分析,如稳定性、因果性、线性性等;同时还需要掌握系统的冲激响应与单位阶跃响应的计算方法。
此外,掌握系统函数的概念与性质也是备考的重点,包括冲激响应与系统函数的关系、系统函数的稳定性等。
五、信号与系统的卷积卷积是信号与系统中的重要运算方法之一,也是备考的难点。
在复习时,需要掌握卷积的定义与性质,熟悉连续时间信号与离散时间信号的卷积计算方法。
此外,还需要理解卷积的物理意义与应用。
在解答复习题时,多进行卷积相关题目的练习,加深理解。
六、系统的频域特性系统的频域特性是对系统频率响应进行分析的关键内容。
在备考中,需要掌握系统的幅频特性与相频特性的计算方法,熟悉系统频率响应曲线的绘制。
电子信息工程信号与系统复习重难点解析

电子信息工程信号与系统复习重难点解析一、引言信号与系统作为电子信息工程的核心课程之一,在学习和应用过程中常常遇到一些重难点。
本篇文章将围绕信号与系统的复习重难点展开解析与讨论。
二、信号与系统的基本概念1. 信号的定义与分类信号是一种随时间或空间变化的物理量,按照不同的分类标准,信号可以分为连续信号和离散信号、周期信号和非周期信号等。
在复习时,要明确各类信号的定义和特点。
2. 系统的定义与分类系统是对信号进行处理或转换的过程,可以分为线性系统和非线性系统、时不变系统和时变系统等。
理解系统的特性对于信号的分析和处理非常重要。
三、时域分析1. 倒谱分析倒谱分析是指对信号进行时域反变换后,再进行傅里叶变换分析的方法。
倒谱分析在信号的谱估计和声音信号识别等领域有着广泛的应用。
2. 自相关函数自相关函数描述了信号与其自身之间的相关性,通过计算信号的自相关函数可以得到信号的周期性和频谱特性等信息。
四、频域分析1. 傅里叶变换傅里叶变换是信号在频域进行分析的重要工具,通过傅里叶变换可以将信号从时域转换到频域。
掌握傅里叶变换的基本概念、性质和计算方法对于信号分析和系统设计至关重要。
2. 拉普拉斯变换拉普拉斯变换是对连续信号进行频域分析的工具,它在控制系统和通信系统等领域有着广泛的应用。
了解拉普拉斯变换的定义和性质,能够灵活运用拉普拉斯变换对信号进行分析和处理。
五、系统的时域与频域特性1. 冲激响应与单位脉冲响应冲激响应与单位脉冲响应是描述系统时域特性的关键。
掌握计算、理解和应用冲激响应与单位脉冲响应对于系统的分析与设计具有重要意义。
2. 频率响应频率响应描述了系统对不同频率信号的传递特性,常用的频率响应包括幅频响应和相频响应。
了解频率响应的计算方法和特性,对于系统的频率特性分析和滤波器设计十分重要。
六、采样与重构1. 采样定理采样定理是数字信号处理中的重要理论基础,它规定了采样频率与信号最高频率之间的关系。
了解采样定理可以帮助我们选择合适的采样频率,避免采样失真问题。
信号与系统期末重点总结

信号与系统期末重点总结一、信号与系统的基本概念1. 信号的定义:信号是表示信息的物理量或变量,可以是连续或离散的。
2. 基本信号:单位阶跃函数、冲激函数、正弦函数、复指数函数等。
3. 常见信号类型:连续时间信号、离散时间信号、周期信号、非周期信号。
4. 系统的定义:系统是将输入信号转换为输出信号的过程。
5. 系统的分类:线性系统、非线性系统、时不变系统、时变系统。
二、连续时间信号与系统1. 连续时间信号的表示与运算(1)复指数信号:具有指数项的连续时间信号。
(2)幅度谱与相位谱:复指数信号的频谱特性。
(3)周期信号:特点是在一个周期内重复。
(4)连续时间系统的线性时不变性(LTI):线性组合和时延等。
2. 连续时间系统的时域分析(1)冲激响应:单位冲激函数作为输入的响应。
(2)冲击响应与系统特性:系统的特性通过冲击响应得到。
(3)卷积积分:输入信号与系统冲激响应的积分运算。
3. 连续时间系统的频域分析(1)频率响应:输入信号频谱与输出信号频谱之间的关系。
(2)Fourier变换:将时域信号转换为频域信号。
(3)Laplace变换:用于解决微分方程。
三、离散时间信号与系统1. 离散时间信号的表示与运算(1)离散时间复指数信号:具有复指数项的离散时间信号。
(2)离散频谱:离散时间信号的频域特性。
(3)周期信号:在离散时间中周期性重复的信号。
(4)离散时间系统的线性时不变性:线性组合和时延等。
2. 离散时间系统的时域分析(1)单位冲激响应:单位冲激序列作为输入的响应。
(2)单位冲击响应与系统特性:通过单位冲激响应获取系统特性。
(3)线性卷积:输入信号和系统单位冲激响应的卷积运算。
3. 离散时间系统的频域分析(1)离散时间Fourier变换(DTFT):将离散时间信号转换为频域信号。
(2)离散时间Fourier级数(DTFS):将离散时间周期信号展开。
(3)Z变换:傅立叶变换在离散时间中的推广。
四、采样与重构1. 采样理论(1)奈奎斯特采样定理:采样频率必须大于信号频率的两倍。
《信号与系统》复习重点

《信号与系统》期末复习重点一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,高等教育出版社,2007年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章 周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章 非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier 变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如何获得系统的数学模型?
数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。
不同的系统,其数学模型可能具有不同的形式和特点。对于线性时不变系统,其数学模型通常由两种形式:建立输入-输出信号之间关系的一个方程或建立系统状态转换的若干个方程组成的方程组(状态方程)。
初始状态:通常又称 状态,它是指系统在激励信号加入之后的状态。
起始状态是系统中储能元件储能情况的反映。一般用电容器上的电压 和电感中的电流 来表示电路的储能情况。若电路的输入信号中没有冲激电流或阶跃电压,则0时刻状态转换时有:
和
3、已知的系统微分方程,对于零输入响应, 是否等于 ?
对于零输入响应,由于激励为零,则必有 。
根据等效原理,系统的起始储能也可以等效为输入信号,根据系统的线性性质,系统的响应就是零输入响应与零状态响应之和。
6、什么是自由响应和强迫响应?
系统微分方程所对应的齐次方程的通解为自由响应,非齐次方程的特解对应强迫响应。
7、稳态响应一定是强迫响应,强迫响应不一定是稳态响应。这句话如何理解?
强迫响应就是微分方程的特解,其变化规律与外加激励的变化规律相同。稳态响应是指全响应中,随着 ,而不会趋于0的剩余稳定分量。
,其中a和b是任意常数时,
输出信号 是 和 的线性叠加,即: ;
且当输入信号 出现延时,即输入信号是 时, 输出信号也产生同样的延时,即输出信号是 。
其中,如果当 时, ,则称系统具有叠加性;
如果当 时, 则称系统具有均匀性。
9、线性时不变系统的意义与应用?
答:线性时不变系统是我们本课程分析和研究的主要对象,对线性时不变性进行推广,可以得到线性时不变系统具有微分与积分性质,假设系统的输入与输出信号分别为 和 ,则
对于本课程研究较多的电类系统而言,建立系统数学模型主要依据两个约束特性:元件特性约束和网络拓扑约束。一般地,对于线性时不变连续时间系统,其输入-输出方程是一个高阶线性常系数微分方程,而状态方程则是一阶常系数微分方程组。
2、系统的起始状态和初始状态的关系?
起始状态:通常又称 状态,它是指系统在激励信号加入之前的状态,包含了全部“过去”的信息(一般地,我们认为激励信号都是在零时刻加入系统的)。
当输入信号为 时,输出信号则为 ;
或者当输入信号为 时,输出信号则为 。
另外,线性时不变系统对信号的处理作用可以用冲激响应(或单位脉冲响应)、系统函数或频率响应进行描述。而且多个系统可以以不同的方式进行连接,基本的连接方式为:级联和并联。
假设两个线性时不变系统的冲激响应分别为: 和 ,
当两个系统级联后,整个系统的冲激响应为: ;
因此,首先,强迫响应与稳态响应从概念上是截然不同的。但由于自由响应分量随着 ,必然会趋于0,因此自由响应必然是瞬态响应,则有稳态响应一定是强迫响应。其次,如外加激励全部是稳定分量,则此时强迫响应等于稳态响应;但如外加激励中含有瞬态分量,而强迫响应的变化规律取决于外加激励的变化规律,强迫响应中也就会含有瞬态分量,此时,强迫响应不等于稳态响应,因此有强迫响应不一定是稳态响应。
答:单位阶跃信号也是一类奇异信号,定义为:
它可以表示单边信号,持续时间有限信号,在信号处理中起着重要的作用。
在郑君里这本书中单位阶跃信号在 处没有定义。
5、单位冲激信号的物理意义是什么?
答:冲激信号:它是一种奇异函数,它表达的是一类幅度很强,但作用时间很短的物理现象。其重要特性是筛选性,即:
6、为什么要对信号进行分解?常用的分解方法有哪些?
答:为了便于研究信号的传输和处理问题,往往将信号分解为一些简单的信号之和。分解角度不同,可以分解为不同的分量。常用的分解方法有:直流分量与交流分量;偶分量与奇分量;无穷多个时刻具有不同幅度的阶跃函数的和;无穷多个时刻具有不同强度的冲激函数的和;实部分量与虚部分量;正交函数分量。
7、如何判断系统是因果系统还是非因果系统?
答:若系统的输出只与该时刻及以后的激励有关,而与该时刻的激励信号无关,则该系统为因果系统。
8、什么样的系统是线性时不变系统?
答:同时满足线性(包括叠加性和均匀性)以及时不变特性的系统,称为线性时不变系统。
即:如果一个系统,当输入信号分别为 和 时,输出信号分别是 和 。 当输入信号 是 和 的线性叠加,即:
4、已知的系统微分方程和激励信号,对于全响应, 是否等于 ?
当微分方程的右端含有冲激函数(及其各阶导数)时,响应 及其各阶导数中,有些在t=0处将发生跃变。但如微分方程的右端不含冲激函数(及其各阶导数)时,则不会有跃变,必有 。
5、零输入响应和零状态响应的含义?
零输入响应和零状态响应是根据系统的输入信号和起始状态的性质划分的。如果系统无外加输入信号(即输入信号为零)时,由起始状态所产生的响应(也可以看作为由起始状态等效的电压源或电流源----等效输入信号所产生的响应),称为零输入响应,一般用 表示;如果系统起始无储能,系统的响应只由外加信号所产生,称为零状态响应,一般用 表示。
信号与系统的重点、难点及疑点
第一章 信号与系统的基本概念
1、信号、信息与消息的差别?
答:消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等;
信号:随时间变ห้องสมุดไป่ตู้的与消息一一对应的物理量;
信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2、在绘制信号波形时应注意哪些方面内容?
当两个系统并联后,整个系统的冲激响应为: ;
当 时,若 , 则此系统为因果系统;
若 ,则此系统为稳定系统。
10、系统的数学模型有哪些?
答:常用的系统数学模型有:微分方程或差分方程;模拟图或框图;信号流图;系统函数;系统的零,极矢图;系统的频率特性;系统的根轨迹图。
11、线性系统分析的方法有哪些?
答:有两种方法:(1)输入输出方法与状态变量法;(2)时域法与变域法(傅立叶变换法,拉普拉斯变换法,Z变换法)。
答:应注意信号的基本特征,标出信号的初值,终值及一些关键值,如极大值和极小值等,同时注意阶跃信号,冲激信号的特点等。
3、什么是奇异信号?
答:函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。
较为重要的两种奇异信号是单位冲激信号(t)和单位阶跃信号u(t)。
4、什么是单位阶跃信号?单位阶跃信号在 处的值是多少?