传热学 辐射换热计算
工程热力学与传热学-§11-4 辐射换热的计算方法

X 1, 2
12
A1Eb1
1
A1
A1
A2
cos1 cos2 r2
dA1dA2
1
A2
A1
A2
cos1 cos2 r2
dA1dA2
可以看出,在上述假设条件下,角系数是几何量,只取
决于两个物体表面的几何形状、大小和相对位置。
(2)角系数的性质
1)相对性(互换性)
2)完整性:
2)代数法: 利用角系数的定义及性质, 通过
代数运算确定角系数。
图(a)、(b): X1,2 1
A1 X1,2 A2 X 2,1
X 2,1
图(c)
: X1,2
X1,2a
A2a A1
A1 A2
图(d) :X1,2 X 2,1 1
三个非凹表面构成的封闭空腔
6
§11-4 辐射换热的计算方法
对于黑体表面,=1,表面辐射热阻
为零, J Eb 。
表面辐射热阻网络单元
(2)两个漫灰表面构成的封闭空腔中的辐射换热
若两个漫灰表面1、2构成封闭空腔,
T1>T2,则表面1净损失、表面2净获得的
热量分别为
1
Eb1 J1
1 1
2
J2 Eb2
12
A11
A2 2
11
§11-4 辐射换热的计算方法
A11 A1 X1,2 A2 2
两表面封闭空腔的 辐射网络 :
12
§11-4 辐射换热的计算方法
对于两块平行壁面构成的封闭空腔:
A1 A2 A
X1,2 X 2,1 1
12
《传热学》第9章-辐射换热的计算

J = E + ρG = εEb + (1 − α )G
漫灰表面之间的辐射换热
单位面积的辐射换热量=?
应该等于有效辐射与投入辐射之差
Φ= A
也等于自身辐射力与吸收的投入辐射能之差
J− Φ A
G = εEb
α =ε
− αG
Φ
=
Aε 1−ε
X
1,
2
1 ε1
− 1
+1+
X
2.1
1 ε2
− 1
= ε s A1 X1,2 (Eb1 − Eb2 )
εs
=
X
1,
2
1 ε1
−1 + 1 +
X
2.1
1 ε2
− 1 −1
系统黑度
6
两个漫灰表面构成的封闭空腔中的辐射换热
两块平行壁面构成的封闭空腔
角系数的曲线图
(a)平行的等面积矩形
(c)垂直的两个矩形
2 角系数的性质
(1) 相对性 (2) 完整性
A1 X 1,2 = A2 X 2,1
-互换性
封闭空腔的所有表面的角系数之和等于1
n
∑ X i , j = X i ,1 + X i ,2 +L+ X i ,i +L + X i ,n = 1
j =1
黑体辐射
Lb
=
Eb π
角系数的定义式
∫ ∫ Φ1→2 =
A1
A2
Eb1
cosθ1 cosθ 2 πr 2
传热学 第九章 辐射换热的计算

9-2 两表面之间的辐射换热过程
1. 黑体表面之间的辐射换热
任意位置的两个黑体表面1、2,从表面1发出并直接投射
到表面2上的辐射能为
1 2 A1 X 1,2 E b1
从表面2发出并直接投射到表面1上的辐射能为
21 A2 X 2 ,1 E b 2
两个表面之间的直接辐射换热量为
X 1,2 X 2 ,1 1
A2 a
A1
9-1 角系数
4. 角系数的计算方法
(2) 代数法
由三个垂直于纸面方向无限长的非凹表面构成的封闭空腔,
三个表面的面积分别为A1、A2、A3 。
X i ,i 0
根据角系数的完整性
角系数的相对性
A1 X 1, 2 A1 X 1, 3 A1
A1 X 1,2 A2 X 2 ,1
Eb1 cos 1 cos 2 dA1dA2
1d 1
dd11
2
2 Lb1 dA1 cos
2
r
Eb1
dA2 cos 2
Lb1
d1
r2
9-1 角系数
2. 角系数的定义式
12
cos 1 cos 2
cos 1 cos 2
dA1dA2
E b1
dA1dA2 E b1
2
2
A1 A2
A1 A2
r
r
表面1对表面2的角系数为
X 1,2
12
A1 Eb1
1
A1
cos 1 cos 2
A1 A2 r 2 dA1dA2
1
A2
cos 1 cos 2
辐射传热的计算

Q12
A(Eb1Eb2)A T14T24
1112 1
21
在两块平壁之间加一块大小一样、表面发射率相同的遮热板 (忽略导热热阻)
辐射换热量减少为原来的 1/2,即:
112
1 2
12
A 3X 3,1A 3X 3,2A 3
根据角系数的相对性有:
A1X1,2A2X2,1
A1X1,3A3X3,1 A2X2,3A3X3,2
三个非凹表面组成的封闭辐射系统
X1
2
A1
A2 A3 2A1
X1,3
A1
A3 A2 2A1
X2,3
A2
A3 A1 2A2
黑体间的辐射换热及角系数例题讲解:
[例] 试用代数法确定如图所示
的辐射和吸收是在整个气体容积中进行的,属 于体积辐射。
(4) 气体的反射率为零
气体辐射的特点1:
在工业上常见的温度范围内,单原子气体 及空气、H2、O2、N2等结构对称的双原 子气体,无发射和吸收辐射的能力可认为 是透明体。 CO2、H2O、SO2、CH4和CO等气体都具 有辐射的本领。
例:煤和天然气的燃烧产物中常有一定浓度的CO2和
例:大气中的臭氧层能保护人类免受紫外线的伤害
气体辐射的特点3:
热射线穿过气体层时,辐射能沿途被气体 分子吸收而逐渐减弱。其减弱程度取决于 沿途碰到的气体分子数目,碰到的分子数 目越多,被吸收的辐射能也越多。因此气 体的吸收能力αg与热射线经历的行程长 度L,气体分压力p和气体温度Tg等因素有 关。
9.5 辐射传热的控制(强化与削弱)
遮热板的应用:
在现代隔热保温技术中,遮热板的应用 比较广泛。例如:
传热学重点、题型讲解第九章 辐射换热计算(完整资料).doc

【最新整理,下载后即可编辑】第九章辐射换热计算第一节黑表面间的辐射换热一、任意位置两非凹黑表面间的辐射换热1.黑表面间的辐射换热图9-1 任意位置两非凹黑表面的辐射换热122dA dA b1111d d cos dΦI Aθω-=Eb1=πI b1;2221cosddrAθω=12212dA dA b1122cos cosd d dπΦE A Arθθ-=21212dA dA b2122cos cosd d dπΦE A Arθθ-=12122122212dA,dA dA dA dA dA b1b2122cos cosd d d()d dπΦΦΦE E A Arθθ--=-=-1212122121,2dA,dA b1b2122cos cosd()d dπA A A AΦΦE E A Arθθ==-⎰⎰⎰⎰(9-1)2.角系数12121122b1122dA dA12dA,dA22dA b11cos cosd dd cos cosπdd dπE A AΦrX AΦE A rθθθθ-===12122121122dA dA2dA A12dA,A22dA dAdd cos cosdd dπAAΦΦX AΦΦrθθ--===⎰⎰12121211122dA dAA A121,2122A A1dcos cos1d dπA AA AΦΦX A AΦΦA rθθ--===⎰⎰⎰⎰(9-2a)212212AAA1,2ddπcoscos121212AArAΦΦXAA⎰⎰==-θθ(9-2b)21,212,1AXAX=(9-3)3.辐射空间热阻图9-2 辐射空间热阻21,2b2b112,1b2b12,1)()(AXEEAXEEΦ-=-=(9-4)b1b21,21,211E EΦX A-=Φ1,2=(E b1-E b2)A = σb(T14- T24)A 二、封闭空腔诸黑表面间的辐射换热图9-3 多个黑表面组成的空腔图9-4 三个黑表面组成空腔的辐射网络图9-5 例9-1附图:,1,2,,1ni i i i n i jj ΦΦΦΦΦ==++⋅⋅⋅⋅⋅⋅=∑ 将上式除以i Φ,按角系数定义,可得,1,2,n ,11ni i i i jj X X X X ==++⋅⋅⋅⋅⋅⋅=∑(9-5)∑∑∑∑====-=-==nj nj i j i nj i j i i j i nj j i i A X E A X E A X E E ΦΦ11,bj 1,bi ,bj bi 1,)(∑=-=nj j i j i i A X E A E Φ1,bj bi(9-6)【例9-1】∑=-=311,b 1b11j j j j A X E A E Φ(a )∑=-=312,b 2b22j jj j A X E A E Φ (b ) 0313,b 3b33=-=∑=j j j j A X E A E Φ(c )02,21,22,11,1====X X X X13,23,1==X X31,313,1A X A X =32,323,2A X A X =213,11,33,223/210.252A r X X X A r ππ==⨯==13,32,31,3=++X X X5.03,3=X 033,3b323,2b213,1b13b3=---A X E A X E A X E A E4b b T E σ=2424143T T T +=T 3=415.6K 或者142.6℃1b11b11,11b22,12b33,1344b11b31,3111344311b 244()()()100100473415.61 5.67()()1801.0W 2100100b ΦE A E X A E X A E X A E A E X A A T T T TA C σπ=---=-=-⎡⎤=-⎢⎥⎣⎦⎡⎤=⨯⨯⨯-=⎢⎥⎣⎦【讨论】π411212121=+=+=∑A A A A A AR4444b1b2121,2()π5.67 4.73 3.13)1801.0W 4/π4b E E T T ΦRσ--===⨯⨯-=∑(第二节 灰表面间的辐射换热一、有效辐射图9-6 有效辐射示意图图9-7 辐射表面热阻1.有效辐射J1=ε1E b1+ρ1G1=ε1E b1+(1-α1)G1W/m2(a)2. 辐射表面热阻11b111111GEGJAΦαε-=-=W/m2(b)1111b11b111111)(1AJEJEAΦεεεε--=--=W(9-7)二、组成封闭腔的两灰表面间的辐射换热图9-8 两个灰表面组成封闭腔的辐射换热网络图9-9 空腔与内包壁面间的辐射换热22212,1111b2b12,1111AAXAEEΦεεεε-++--=W(9-8a))11(1)11()(2212,112b 1b 12,1-++--=εεA A X E E A Φ1,2112()W s b b X A E E ε=-(9-8b ))11()11(1121,212,1s -+-+=εεεX X1.无限大平行灰平壁的辐射换热A 1=A 2=A ,且X 1,2=X 2,1=1,)(111)(4241b s 212b b12,1T T A E E A Φ-=-+-=σεεε W (9-9)111121s -+=εεε2.其中一个表面为平面或凸表面的辐射换热)11(1)(22112b 1b 12,1-+-=εεA A E E A Φ W (9-10)A 2 >>A 1,且ε2的数值较大Φ1,2=ε1 A 1(E b1-E b2)W(9-11)三、封闭空腔中诸灰表面间的辐射换热1.网络法求解图9-10三个灰表面组成封闭腔辐射换热网络图9-11 例9-4附图图9-12 例题9-5附图节点1 011113,11312,1121111b1=-+-+--AXJJAXJJAJEεε(a)节点2 011123,22321,2212222b2=-+-+--AXJJAXJJAJEεε(b)节点3 011132,33231,3313333b3=-+-+--AXJJAXJJAJEεε(c)【例9-4】X 1,2= X 2,1=0.38X 1,3=X 2,3=1-X 1,2=1-0.38=0.62计算网络中的各热阻值:A 1=A 2=π⨯0.32=0.283m 21.14283.02.02.011111=⨯-=-A εε m -23.5283.04.04.011222=⨯=--A εε m -23.9283.038.01112,1=⨯=A X m -27.5283.062.011123,213,1=⨯==A X A Xm -2流入每个节点的电流总和等于零07.53.91.141b3121b1=-+-+-J E J J J E 07.53.93.52b3212b2=-+-+-J E J J J E 202447731067.5484b1=⨯⨯==-T E b σW/m 235445001067.5484b2=⨯⨯==-T E b σW/m 2 4593001067.5484b3=⨯⨯==-T E b σW/m 2J 1=5129 W/m 2 J 2=2760W/m 2b1111112024451291072W 114.1E J ΦA εε--===-b22222235442760148W 1 5.3E J ΦA εε--===- 312()(1072148)1220W ΦΦΦ=-+=-+=-【例9-5】1.1411111=-=A R εεm -23.512222=-=A R εεm -23.9112,12,1==A X R m -2 7.5113,13,23,1===A X R R m-2E b1=20244W/m 2 E b2=3544W/m 2∑++++=23,23,12,11111R R R R RR =14.1+5.243.57.57.513.911=+++m -2b1b21,2202443544682W 24.5E E ΦR --===∑J 1=E b1-Φ1,2⨯R 1=20244-682⨯14.1=10627.8 W/m 2J 2=E b2+Φ1,2⨯R 2=3544+682⨯5.3=7185.6 W/m 2J 3=(J 1+J 2)/2=8893.2 W/m 2J 3=G 3=E b3=σ b T 341/41/4b3388893.2629K5.6710b E T σ-⎛⎫⎛⎫=== ⎪⎪⨯⎝⎭⎝⎭2. 值解法图9-13 例9-6(a )(b )附图及其辐射换热网络∑==ni i j i i j j A X J G A 1,j j εα=∑=-+=n i ij i i j j j j j j A X J A E A J 1,b )1(εε(9-12)∑∑===ni i j i j ni ij i i X J A A X J 1,1,b ,1(1)nj j j j i j i i J E J X εε==+-∑(9-13)4b 1,11j j j jjn i i j i T J X J σεεε⎥⎥⎦⎤⎢⎢⎣⎡-=--∑=(9-14)4111,121,231,31,b 1114212,122,232,32,b 2221,12,231()()111()()11n n n n n n n J X J X J X J X T J X J X J X J X T J X J X J X εσεεεσεε-+++⋅⋅⋅+=--+-++⋅⋅⋅+=--⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅++4,3,b 1()()11n n n n n n n J X T εσεε⎫⎪⎪⎪⎪⎬⎪⎪⎪+⋅⋅⋅+-=⎪--⎭(9-15)i i i i ii A J E Φεε--=1b i =1,2,…n (9-16)【例9-6】1,11,21,31,400.150.540.31X X X X ====、、、; 2,12,22,32,40.2500.500.25X X X X ====、、、;3,13,23,33,40.270.140.320.27X X X X ====、、、; 4,14,24,34,40.310.150.540X X X X ====、、、;4432198.267.5931.054.015.010⨯⨯=---J J J J 4432183.267.5425.05.0525.0⨯⨯=--+-J J J J4432186.267.5427.068.414.027.0⨯⨯=-+--J J J J 4432184.267.55.15.254.015.031.0⨯⨯=+---J J J JJ 1=440.45 W/m 2; J 2=370.28 W/m 2; J 3=382.69 W/m 2 ; J 4=380.80 W/m 2。
传热学第八章辐射换热的计算

02
辐射换热的计算方法
辐射换热的基本公式
斯蒂芬-玻尔兹曼方程
描述了物体在任意温度下的辐射功率,是辐射换热的基本公式。
辐射力方程
表示物体发射和吸收的辐射能与物体表面温度和周围环境温度之间 的关系。
辐射传递方程
表示在给定温度和光谱发射率下,物体表面发射和吸收的辐射能与 物体表面温度之间的关系。
辐射换热的角系数法
表面传热系数的计算方法
通过实验测定或经验公式计算表面传热系数, 需要考虑表面粗糙度和涂层的影响。
表面传热系数的应用
适用于简化模型或近似计算中的辐射换热计算。
辐射换热的积分方程法
积分方程的建立
根据斯蒂芬-玻尔兹曼方程和边界条件建立积分方程。
积分方程的求解方法
采用数值方法求解积分方程,如有限元法、有限差分 法等。
太阳能利用
通过优化太阳能集热器的设计,提高太阳能辐射的吸收和 转换效率,降低太阳能利用成本,有助于减少化石能源的 消耗和碳排放。
05
辐射换热的发展趋势与展 望
新型材料的辐射换热特性研究
总结词
随着科技的发展,新型材料不断涌现,对新型材料的辐射换热特性研究成为当 前热点。
详细描述
新型材料如碳纳米管、石墨烯等具有独特的物理和化学性质,其辐射换热特性 与传统材料有所不同。研究这些新型材料的辐射换热特性有助于发现新的传热 机制,提高传热效率。
感谢观看
THANKS
传热学第八章辐射 换热的计算
目 录
• 辐射换热的基本概念 • 辐射换热的计算方法 • 辐射换热的实际应用 • 辐射换热的优化与控制 • 辐射换热的发展趋势与展望
01
辐射换热的基本概念
定义与特性
定义
传热学V4-第九章-辐射传热的计算1

传热学 Heat Transfer
Shanghai Jiao Tong University
9-1 角系数的定义、性质与计算 角系数的性质 相对性
1
完整性
可加性
角系数的相对性:
两个表面间的角系数 X1,2和X2,1 不是独立存在的。
(推导基于立体角概念和兰贝特定律)
两个有限大小表面
A1 X 1, 2 A2 X 2,1
2
代数分析法
几何分析法、蒙特卡罗法…
代数分析法: 利用角系数的性质,通过求解代数方程组获得角系数的方法。
X1,2
A1 A2 A3 2 A1
以线段长度表示
X1,2
三个非凹表面组成的封闭系统
l1 l2 l3 2l1
SJTU-OYH
(忽略垂直方向两端辐射能的逸出)
传热学 Heat Transfer
三个漫灰面组成的封闭空腔
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
9-3 多表面系统辐射换热的计算 网络法求解辐射换热的步骤: 3. 根据等效网络图,利用电路基尔霍夫定律(所有流向节点J的热流量代数和=0),
列出节点的电流(热流量)方程;
X1, 2 X1, 2 A X1, 2 B
X 2,1 A2 A A X 2 A,1 2 B X 2 B ,1 A2 A2
角系数的直接相加仅适合角系数符号第二角码
SJTU-OYH
表面2到表面1
注意:
X 2,1 X 2 A,1 X 2 B,1
传热学 Heat Transfer
Shanghai Jiao Tong University
传热学课件第六章辐射换热计算

X 1,3
A1 A3 A2 2 A1
X 2,1
A2
A1 A3 2 A2
X 2,3
A2
A3 A1 2 A2
X 3,1
A3 A1 A2 2 A3
X 3,2
A3
A2 2 A3
A1
3.查曲线图法
利用已知几何关系的角系数,确定
其它几何关系的角系数。 例:如图,确定X1,2 由相互垂直且具有公共边的长方形表面
• 若A2和A3的温度相等,则有
J2A2X2,1+J2A3X3,1 =J2 A2+3X(2+3),1 角系数的可加性
即 A2+3X(2+3),1=A2X2,1+A3X3,1
利用角系数的可加性,应注意只有对角系数
符号中第二个角码是可加的。
• 三、角系数的确定方法
角系数的确定方法很多,从角系数的定义直 接求解法、查曲线图法、代数分析法和几何图形 法,这里主要介绍定义直求法和代数分析法。
一、表面辐射热阻
对于任一表面A,其本身辐射为E=ε Eb, 投射辐射为G,吸收的辐射能为α G。向外 界发出的辐射能为
J E G Eb 1 G (a)
因此,表面A的净热流密度为
q = J-G
(b)
对于灰体表面α =ε ,联解(a)和(b),
消去G得
q
Eb J
1
第六章 辐射换热计算
例内 重 基 题容 点 本 赏精 难 要 析粹 点 求
基本要求
1.掌握角系数的意义、性质及确定方法。 2.掌握有效辐射的确定方法。 3.熟练掌握简单几何条件下透热介质漫灰
面间辐射换热的计算方法。 4.掌握遮热板的原理及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A2
表面1对表面2的角系数,
记为X1,2。
1. 与物体温度无关,对于表面性 质均匀的漫射表面,它是一个 纯几何因子。
A1
角系数定义
② 两黑体表面的辐射换热:(不存在重复反射)
1,2E b1A 1X 1,2E b2A 2X 2,1
3
热平衡时: T 1 T 2 1 ,2 0 A 1 X 1 ,2 A 2 X 2 ,1
1 X 1 , 2 A 1
1 2 2 A 2
辐射换热量:
1,211Eb1 1Eb2 11 2 A111Eb1 1 EbA 2112
A AX A X A 1 1
1 1,2 X 21 , 2 2A 1 1
1,2 2 2
1 A 11 s Eb1Eb2 1 A 1 1
1 2
12 A 2
解:由几何关系:cos1 cos2 s / l
l2 s2 r2
dA2 2 r dr 根据角系数定义式:
Xd1,2
Ld1Acosd
A2 d1AE1
(E1/)cosd
A2
E1
A2cosdA 2lc2osA2co2l2sdA 2
代入几何关系整理得:
dA 1
s
l
r
R0 A2
X R0 d1,2 0
2.角系数有哪些特性?这些特性的物理背景是什么?
答:角系数有相对性,完整性和可加性。相对性是在两物体处于 热平衡时,净辐射换热量为零的条件下导得的;完整性反映了一 个由几个表面组成的封闭系统中,任一表面所发生的辐射能必全 部落到封闭系统的各个表面上;可加性是说明从表面1发出而落 到表面2上的总能量等于落到表面2上各部份的辐射能之和。
能力,而在光带之外为热辐射的透明体,如图927。(气体不是灰体 ) ② 在整个容积中进行。
22
概念汇总:
1.角系数:表面1发出的辐射能落到表面2上的份额
称为表面1对表面2的角系数。记为:X1,2。
2.空间辐射热阻:
1 A1 X 1,2
3.对于性质均匀且服从兰贝特定律的表面,其角系
数是纯几何因子。
4.角系数的相对性: A1X1,2=A2X2,1
7
3)角系数的性质
① 相对性: AiXi,j AjXj,i
② 完整性:对封闭系统的n个表面,
n
X i,j 1
j 1
注:对于凹形辐射面,Xi,i≠0 ③ 可加性 :
X1,23 X1,2X1,3
8
4)代数分析法求角系数示例 ① 对于三个非凹面组成的封闭空间,在垂直纸面方向足
够长,可忽略端部辐射,角系数之间存在如下关系:
s22 sr222rd rs2R 0 2R0 2
28
3.试用简捷方法确定右图中的角系数X1,2。
解:(1) 因为: X 2,1 1
X 1 ,2A 2/A 12 R /2 (R 3/4 )0 .4244
(2) 因为: X 2,1 1 X1,2 A2/A1R2/2R2
0.5
(3)参考(2),具有对称性:
10
2、灰体间的辐射换热
灰体表面净换热计算 灰体辐射换热网络
11
2、灰体间的辐射换热
1)灰体表面净换热计算 投入辐射:单位时间投射到表面 单位面积上的辐射能,记为G。
有效辐射:单位时间、单位面积
离开表面的辐射能,记为J,其值
为本身辐射和反射辐射之和 。
J1E111G1 1Eb111G1
灰体表面的辐射热流
辐射换热等效网络的特点:表面辐射热阻是各表面同温 度下黑体辐射力与有效辐射间的热阻,反映物体表面特 性对传热的影响,空间辐射热阻是各有效辐射之间的热 阻,反映各表面间空间关系对传热的影响。
14
① 两个灰体间的辐射换热(不存在第三个表面): 等效网络:
E b 1 J 1
J 2
E b 2
1 1 1 A 1
12
由灰体表面特性可得投入辐射表达式:
11G1J1111 Eb1
灰体表面净换热:
A1J1
G1
Eb1 J1
11
1A1
表面辐射热阻
13
2)灰体辐射换热网络
以上分析表明:物体间的辐射换热量与辐射力之差成正比, 与辐射热阻成反比。辐射热阻分为两大类:一类是辐射角 系数起主要作用的空间辐射热阻,一类是表面黑度起主要 作用的表面辐射热阻。因此,各种形式的辐射换热都可以 用类似于电路网络的相应辐射换热网络描述和计算。
结果只与几何因素有关,所以对于非黑体和非热 平衡也是适用的。
1,2
Eb1Eb2
A1X1,2
Eb1Eb2 1
空间辐射热阻
A1X1,2
黑体间辐射换热计算关键参数——角系数
4
2)角系数的一般表达式和线算图 假设:物体为漫射(漫辐射,漫反射)表面——服从兰 贝特定律;表面性质(温度、黑度、吸收比)均匀 。
31
(2)由角系数性质可列出下列关系: A1X1,2=A2X2,1=A2(X2,1+A-X2,A) X1,2=(A2/A1)(X2,1+A-X2,A) 由图中尺寸查参考文献[1]图8-8得:
8.什么是遮热板?试根据自己的切身经历举出几个应用遮热板 的例子。 答:所谓遮热板是指插入两个辐射表面之间以削弱换热的薄板。 如屋顶隔热板、遮阳伞都是我们生活中应用遮热板的例子。
27
2.已知一微元圆盘dA1与有限大圆盘A2(半径为R0)相平行,两圆 盘中心的连线垂直与两圆盘,且长度为s。试计算Xd1,2。
30
由图中尺寸查参考文献[1]图8-8得:
X1+A,2+B
X1+A,B
XA,2+B
Z/X
1.67
1.0
1.67
Y/X
1.33
1.33
0.667
角系数 0.19
0.165
0.275
XA,B 1.0 0.667 0.255
代入原式: X1,2=(3/1.5)(0.19-0.165)-(1.5/1.5)(0.275-0.255)=0.03
X 1,2 X 1,3 1
X 2 ,1
X 2,3 1
,
X 3 ,1 A 1 X 1,2
X
3 ,2
A2
X
1
2 ,1
A1X
1,3
A 3 X 3 ,1
A 2 X 2 , 3 A 3 X 3 , 2
X1,2
A1A2 A3 2A1
其它类推
三个非凹面组成的封闭空间
9
② 两个不相交的凸面ab和cd之间的角系数
X1,2 0.5/40.125
(4)假设在球的顶面有 另一块无限大平板存
在,由对称性:X1,2 0.5
29
4.试确定图中几何结构的角系数X1,2 解:(1)由角系数性质可列出下列关系: A1X1,2=A2X2,1
=A2(X2,1+A-X2,A) =A1+AX1+A,2-AAXA,2 X1,2=(A1+A/A1)(X1+A,2+B-X1+A,B) -(AA/A1)(XA,2+B-XA,B)
第十章 辐射换热的计算
1、黑体间的辐射换热及角系数 2、灰体间的辐射换热 3、气体辐射简介
1
1、黑体间的辐射换热及角系数
任意放置的两黑体间的辐射换热 角系数的一般表达式和线算图 角系数的性质 代数分析法求角系数示例
2
1)任意放置的两黑体间的辐射换热
① 角系数:表面1发出的辐射
能落到表面2上的份额称为
25
5.什么是一个表面的自身辐射、投入辐射及有效辐射?有效辐 射的引入对于灰体表面系统辐射换热的计算有什么作用? 答:由物体内能转变成的辐射能叫做自身辐射,投向辐射表面 的辐射叫做投入辐射,离开辐射表面的辐射叫做有效辐射,有 效辐射概念的引入可以避免计算辐射换热计算时出现多次吸收 和反射的复杂性。
6
表面1发出的辐射能落到表面2上的能量为:
A 1 ,A 2E b 1A 1A 2co1 rc 2 so2d s1d A2A
角系数:
X 1 ,2 E b A 1 1 ,A A 1 2A 1 1A 1A 2co1 rc 2 so2d s1d A2A
这就是角系数计算的一般表达式,对于规则形状和位置,可 借助于线算图(教材图9-7,8,9)进行计算。部分二维和三 维结构角系数计算式见教材表9-1,2。
6.对于温度已知的多表面系统,试总结求解每一表面净辐射换 热量的基本步骤。
答:(1)画出辐射网络图,写出端点辐射力,表面热阻和空间 热阻。(2)写出由中间节点方程组成的方程组。(3)解方程 组得到各点有效辐射。(4)由端点辐射力,有效辐射和表面热 阻计算各表面净辐射换热量。
26
7.什么是辐射表面热阻、什么是辐射空间热阻?网络法的实际 作用你是怎样认识的? 答:由辐射表面特性引起的热阻称为辐射表面热阻,由辐射表 面形状和空间位置引起的热阻称为辐射空间热阻,网络法的实 际作用是为实际物体表面之间的辐射换热描述了清晰的物理概 念和提供了简洁的解题方法。
1 X 1,3 A1
12 1 2 A2 X 2,3 A2
J3
13 3 A3
Eb3
其它类推。
19
④ 具有重辐射面的封闭腔辐射换热(与串并联电路 解法类似)
Eb1
1 1 1 A1
J1
1 X1,3 A1
1
X1,2 A1
J2
Eb2
1 X2,3 A2
12 2 A2
J3 Eb3
20
思考:某办公室由中央空调系统维持室内恒温,人 们注意到尽管冬夏两季室内都是20℃,但感觉却 不同。(东南大学2000年考研题)
对于假想的abc空间,应用上述 角系数公式:
Xab,acab2aacbbc