小学奥数公式汇总(1)

合集下载

小学奥数解题口诀(1)

小学奥数解题口诀(1)

小学奥数解题口诀一、和差问题已知两数的和与差,求这两个数。

口诀:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。

例:已知两数和是10,差是2,求这两个数。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。

二、鸡兔同笼问题口诀:假设全是鸡,假设全是兔。

多了几只脚,少了几只足?除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36 ,有脚120,求鸡兔数。

求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12 三、浓度问题(1)加水稀释口诀:加水先求糖,糖完求糖水。

糖水减糖水,便是加糖量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化口诀:加糖先求水,水完求糖水。

糖水减糖水,求出便解题。

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)四、路程问题(1)相遇问题口诀:相遇那一刻,路程全走过。

除以速度和,就把时间得。

例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?相遇那一刻,路程全走过。

即甲乙走过的路程和恰好是两地的距离120千米。

除以速度和,就把时间得。

即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)(2)追及问题口诀:慢鸟要先飞,快的随后追。

小学奥数公式大全

小学奥数公式大全

小学奥数公式大全一、基本运算符号:1.加法公式:a+b=b+a2.减法公式:a-b≠b-a3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a二、数的性质:1.奇数与奇数相加等于偶数:奇数+奇数=偶数2.奇数与偶数相加等于奇数:奇数+偶数=奇数3.偶数与偶数相加等于偶数:偶数+偶数=偶数4.0与任何数相乘等于0:0×a=05.1与任何数相乘等于原数:1×a=a6. 除零是不存在的:a ÷ 0 = undefined三、算术运算公式:1.两个数相加:a+b=c2.两个数相减:a-b=c3.两个数相乘:a×b=c4.两个数相除:a÷b=c四、公约数与最大公约数:1.求两个数的公约数:a、b的公约数有d2.求两个数的最大公约数:a、b的最大公约数为d五、倍数与最小公倍数:1.求一个数的倍数:a的倍数有b2.求两个数的最小公倍数:a、b的最小公倍数为c六、平方与平方根:1.一个数的平方:a的平方是b,即a²=b2.开平方:一个数的平方根:√a=b,b²=a七、百分数与比例:1.百分数转换为小数:百分数÷100=小数2.小数转换为百分数:小数×100=百分数3.比例换算:a:b=c:d八、平均数:1.n个数的平均数:(a₁+a₂+...+aₙ)÷n=平均数九、等差数列:1.等差数列的通项公式:第n个数aₙ=a₁+(n-1)×d2.求等差数列前n项和:前n项和Sn=(a₁+aₙ)×n÷2十、等比数列:1.等比数列的通项公式:第n个数aₙ=a₁×q^(n-1)2.求等比数列前n项和:前n项和Sn=a₁(1-q^n)÷(1-q),(q≠1)十一、三角形:1.三角形的周长:周长=边1+边2+边32.直角三角形勾股定理:c²=a²+b²(c为斜边,a、b为直角边)3. 正弦定理:a/sinA = b/sinB = c/sinC4. 余弦定理:a² = b² + c² - 2bc × cosA。

小奥数公式定理大全

小奥数公式定理大全

小奥数公式定理大全
小学奥数公式定理如下:
1. 每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。

2. 1倍数×倍数=几倍数,几倍数÷1倍数=倍数,几倍数÷倍数=1倍数。

3. 速度×时间=路程,路程÷速度=时间,路程÷时间=速度。

4. 单价×数量=总价,总价÷单价=数量,总价÷数量=单价。

5. 工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率。

6. 加数+加数=和,和-一个加数=另一个加数。

7. 被减数-减数=差,被减数-差=减数,差+减数=被减数。

8. 因数×因数=积,积÷一个因数=另一个因数。

9. 被除数÷除数=商,被除数÷商=除数,商×除数=被除数。

以上是小奥数的公式定理,仅供参考,可以查阅奥数书籍获取更多公式定理。

小学奥数常用公式

小学奥数常用公式

§1等差数列公式:1、末项=首项+(项数-1)×公差an=a1+(n-1) ×d2、项数=(末项-首项)÷公差+1n=(an-a1) ÷d+13、中项定理:和=中间数×项数S =中间数×n(仅奇数列可用)注意:连续的奇数(或偶数)肯定是等差数列,公差一定是2.平方差公式:a2-b2=(a+b) ×(a-b)(a+b)(a-b)=a2-b2§2统筹与最优化时间统筹:单列和多列排队排序:快的在前,慢的在后(注意:每列不同位置的等待人数)。

过河问题(画图)快去快回,慢者结伴(5人以下常用,7人以上可尝试)。

地点统筹:1、点无大小奇数点选中间点,偶数点选中间段。

2、点有大小(一段法)轻往重移,小往大移§3整除特征:四大金刚:变形金刚:2×5=100.2×5=14×25=1004×2.5=10 8×125=10008×1.25=10 16×625=10000㈠末尾系:1、末1位:2、52、末2位:4、253、末3位:8、125㈡和系:1、数字和(弃9 法):3、92、两位一截求和:33、99(重点)㈢差系:11奇数位数字和-偶数位数字和㈣截位系(三位一截)7、11、13奇段和-偶段和。

㈤试除法(适用于末尾未知)二部曲1、用最大数试;992、检验。

综合就用:⑴拆数(拆成学过的数)⑵先考虑末尾系,再考虑其它。

§4加乘原理:1、加法原理:分类相加(类类独立)2、乘法原理:分步相乘,步步相关。

常规题型:1、排数字:⑴注意有无重复;⑵特殊位置优先处理;⑶“0”的出现①0不能放在首位②0和偶数同时出现必分类2、插旗子:按顺序分类讨论。

染色问题:1、排序:从邻圈最多开始排;2、染色:颜色数量。

§5流水行船:1、基本公式:①V顺=V船+V水②V逆=V船-V水③V船=(V顺+V逆)÷2④V水=(V顺-V逆)÷2静水速度=船速V静= V船顺水速度=船速+水速V顺=V船+V水逆水速度=船速-水速V逆=V船-V水相遇追击:相遇:S和=V和×t相遇追击:S差=V差×t追击水面上:速度和、速度差与水速无关。

小学生奥数经典数学公式大全,值得收藏!

小学生奥数经典数学公式大全,值得收藏!

小学生奥数经典数学公式大全,值得收藏!【导语】数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。

是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。

以下是整理的小学生奥数经典数学公式大全,希望对您有所帮助!数量关系式:1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2,1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3,速度×时间=路程路程÷速度=时间路程÷时间=速度4,单价×数量=总价总价÷单价=数量总价÷数量=单价5,工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6,加数+加数=和和-一个加数=另一个加数7,被减数-减数=差被减数-差=减数差+减数=被减数8,因数×因数=积积÷一个因数=另一个因数9,被除数÷除数=商被除数÷商=除数商×除数=被除数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数+1)=大数小数×倍数=大数(或小数+差=大数)平均数问题公式总数量÷总份数=平均数。

植树问题:1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题公式(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

小学奥数常用公式

小学奥数常用公式

小学奥数常用公式小学奥数是指小学生参加的奥数活动,其内容主要包括数学知识的应用和推理能力的培养。

虽然在小学阶段,学生不需要特别深入学习公式,但了解一些常用的小学奥数公式,可以帮助学生更好地解决奥数题目。

下面是一些小学奥数常用公式的介绍:1.直角三角形勾股定理:直角三角形的斜边平方等于两直角边平方之和。

设直角三角形的斜边为c,两直角边分别为a和b,则有:c²=a²+b²。

2.等腰三角形底边中线定理:等腰三角形底边中线的长度等于底边一半。

设等腰三角形的底边为2a,底边中线的长度为m,则有:m=a。

3.平行四边形面积公式:平行四边形的面积等于底边长度乘以高。

设平行四边形的底边长度为a,高为h,则有:面积=a×h。

4.矩形的面积和周长公式:矩形的面积等于长乘以宽,周长等于长加上宽的两倍。

设矩形的长度为a,宽度为b,则有:面积=a×b,周长=2(a+b)。

5.圆的面积和周长公式:圆的面积等于半径的平方乘以π,周长等于直径乘以π。

设圆的半径为r,直径为d,则有:面积=πr²,周长=πd。

6.顺序计数公式:顺序计数公式是计算一定范围内整数的和。

设需要计算的整数范围为a到b,计算的整数个数为n,则有:总和=(a+b)×n÷27.阶乘公式:阶乘是指从一些正整数开始连乘到1,例如5的阶乘(表示为5!)等于5×4×3×2×1、设需要计算阶乘的整数为n,则有:n!=n×(n-1)×(n-2)×...×2×18.比例公式:比例是指两个量之间的关系。

设两个比例为a:b和c:d,则有:a/b=c/d。

9.百分数转换公式:百分数是指以100为基数的百分比,可以将百分数转换为小数或分数。

设百分数为p%,则有:小数形式=p÷100,分数形式=p/100。

34个小学奥数必考公式

34个小学奥数必考公式

34个小学奥数必考公式1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

奥数常用公式大全

奥数常用公式大全

奥数常用公式大全在奥数学习中,熟悉和掌握常用公式是至关重要的。

本文将为大家整理一份奥数常用公式大全,帮助大家更好地应对各种奥数题目。

1. 圆的常用公式- 圆的周长公式:C=2πr- 圆的面积公式:A=πr²- 弧长公式:S=θr(θ为圆心角的弧度值)2. 三角形的常用公式- 三角形的周长公式:C=a+b+c(a、b、c为三边的长度)- 海伦公式(用于计算三角形面积):A=√[s(s-a)(s-b)(s-c)](s为半周长,s=(a+b+c)/2)- 正弦定理:a/sinA=b/sinB=c/sinC(a、b、c为三角形的边长,A、B、C为对应的角度)- 余弦定理:c²=a²+b²-2abcosC- 正切定理:tan(A/2)=r/(s-a)(r为内切圆半径)3. 直角三角形的常用公式- 勾股定理:c²=a²+b²(a、b为直角边长,c为斜边长)- 30°-60°-90°三角形边长比:1:√3:2- 45°-45°-90°三角形边长比:1:1:√24. 平方差公式- (a+b)²=a²+2ab+b²- (a-b)²=a²-2ab+b²- a²-b²=(a+b)(a-b)5. 等差数列的通项公式和前n项和公式- 通项公式:an=a₁+(n-1)d(an为第n项,a₁为首项,d为公差)- 前n项和公式:Sn=(a₁+an)n/26. 等比数列的通项公式和前n项和公式- 通项公式:an=a₁*q^(n-1)(an为第n项,a₁为首项,q为公比)- 前n项和公式(当|q|<1时):Sn=a₁*(1-q^n)/(1-q)7. 可整除规则- 2的倍数:个位为0、2、4、6、8- 3的倍数:各位数字之和能够整除3- 4的倍数:末两位能够整除4- 5的倍数:个位为0或5- 9的倍数:各位数字之和能够整除98. 排列组合公式- 排列公式:An=n!/(n-r)!(从n个元素中取r个元素的排列数)- 组合公式:Cn=n!/[r!(n-r)!](从n个元素中取r个元素的组合数)以上是奥数常用公式的大全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。

10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

12.数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

11.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

12.数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数一1) 公差;数列和公式:sn,= (a1+ an)n2;数列和=(首项+末项)项数2;项数公式:n= (an+ a1)d+1;项数=(末项-首项)公差+1;公差公式:d =(an-a1))(n-1);公差=(末项-首项)(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13.二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。

所以234=200+30+4=2102+310+4。

=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610 n-7+……+A3102+A2101+A1100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

(2)= An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7 +……+A322+A221+A120注意:An不是0就是1。

十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

14.加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。

这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数15.质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。

通常用短除法分解质因数。

任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an。

求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

16.约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a 的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

相关文档
最新文档