高一高二高三数学经典错题大合集

合集下载

高中数学必修一第四章指数函数与对数函数易错题集锦(带答案)

高中数学必修一第四章指数函数与对数函数易错题集锦(带答案)

高中数学必修一第四章指数函数与对数函数易错题集锦单选题1、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B2、设函数f(x)=lg(x2+1),则使得f(3x−2)>f(x−4)成立的x的取值范围为()A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f(x)=lg(x2+1)在[0,+∞)上为增函数,f(3x−2)>f(x−4)⇒f(|3x−2|)>f(|x−4|)⇒|3x−2|>|x−4|,解得x <−1或x >32, 故选:D .3、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .69答案:C分析:将t =t ∗代入函数I (t )=K 1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解. ∵I (t )=K 1+e −0.23(t−53),所以I (t ∗)=K 1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t∗−53)=19, 所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C. 小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.4、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( )A .−12B .−13C .−16D .56答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解.由题意,令x 2−5x +6=0,解得x =2或3,不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56. 故选:D.5、已知9m =10,a =10m −11,b =8m −9,则( )A .a >0>bB .a >b >0C .b >a >0D .b >0>a答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出.[方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b .[方法二]:【最优解】(构造函数)由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1,令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b ,又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、若2x =3,2y =4,则2x+y 的值为( )A .7B .10C .12D .34答案:C分析:根据指数幂的运算性质直接进行求解即可.因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12,故选:C7、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,90050=18,故至少需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.8、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.多选题9、已知函数f(x)=log2x,g(x)=2x+a,若存在x1,x2∈[1,2],使得f(x1)=g(x2),则a的取值可以是()A.-4B.-2C.2D.3答案:AB分析:根据条件求出两个函数的值域,结合若存在x1,x2∈[1,2],使得f(x1)=g(x2),等价为两个集合有公共元素,然后根据集合的关系进行求解即可.当1≤x≤2时,0≤log2x≤1,即0≤f(x)≤1,则f(x)的值域为[0,1],当1≤x≤2时,2+a≤g(x)≤4+a,则g(x)的值域为[2+a,4+a],若存在x1,x2∈[1,2],使得f(x1)=g(x2),则[2+a,4+a]∩[0,1]≠∅,若[2+a,4+a]∩[0,1]=∅,则2+a>1或4+a<0,解得a>−1或a<−4.所以当[2+a,4+a]∩[0,1]≠∅时,a的取值范围为−4≤a≤−1.故选:AB10、已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1B.0<a<1C.c>1D.0<c<1答案:BD分析:根据对数函数的图象判断.由图象知0<a<1,可以看作是y=log a x向左移动c个单位得到的,因此0<c<1,故选:BD .11、已知函数f (x )={(12)x−1,x ≤0x 12,x >0,则下列结论中错误的是( ) A .f (x )的值域为(0,+∞)B .f (x )的图象与直线y =2有两个交点C .f (x )是单调函数D .f (x )是偶函数答案:ACD分析:利用指数函数、幂函数的性质画出f (x )的图象,由图象逐一判断即可.函数f (x )的图象如图所示,由图可知f (x )的值域为[0,+∞),结论A 错误,结论C ,D 显然错误,f (x )的图象与直线y =2有两个交点,结论B 正确.故选:ACD填空题12、函数f (x )=log 12(x 2−5x +6)的单调递减区间为___________.答案:(3,+∞)分析:利用对数型复合函数性质求解即可.由题知:x 2−5x +6>0,解得x >3或x <2.令t =x 2−5x +6,则y =log 12t 为减函数.所以t ∈(−∞,2),t =x 2−5x +6为减函数,f (x )=log 12(x 2−5x +6)为增函数,t ∈(3,+∞),t =x 2−5x +6为增函数,f (x )=log 12(x 2−5x +6)为减函数.所以函数f (x )=log 12(x 2−5x +6)的单调递减区间为(3,+∞).所以答案是:(3,+∞)13、解指数方程2x+3=3x 2−9:__________.答案:x =−3或x =3+log 32分析:直接对方程两边取以3为底的对数,讨论x +3=0和x +3≠0,解出方程即可. 由2x+3=3x2−9得log 32x+3=log 33x 2−9,即(x +3)log 32=(x −3)(x +3),当x +3=0即x =−3时,0=0显然成立;当x +3≠0时,log 32=x −3,解得x =log 32+3;故方程的解为:x =−3或x =3+log 32. 所以答案是:x =−3或x =3+log 32.14、设x 13=2,则√x 53⋅x −1=___________.答案:4分析:由根式与有理数指数幂的关系,结合指数幂的运算性质,求值即可.由√x 53⋅x −1=x 53⋅x −1=x 23=(x 13)2=22=4. 所以答案是:4.解答题15、证明:函数f (x )=log 3(1+x )的图象与g (x )=log 2x 的图象有且仅有一个公共点. 答案:证明见解析分析:把要证两函数的图象有且仅有一个公共点转化为证明方程log 3(1+x )=log 2x 有且仅有一个实根.易观察出x =2为其一根,再假设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点,然后得出矛盾即可. 要证明两函数f (x )和g (x )的图象有且仅有一个公共点,只需证明方程log 3(1+x )=log 2x 有且仅有一个实根,观察上述方程,显然有f (2)=g (2),则两函数的图象必有交点(2,1).设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点.则log 3(1+x 0)=log 2x 0,1+x 0=3y 0,x 0=2y 0,∴1+2y 0=3y 0,即(13)y 0+(23)y 0=1, 令M (x )=(13)x +(23)x ,易知函数M (x )=(13)x +(23)x 为指数型函数.显然M (x )在(−∞,+∞)内是减函数,且M (1)=1,故方程(13)y 0+(23)y 0=1有唯一解y 0=1,从而x 0=2,与x 0≠2矛盾, 从而知两函数图象仅有一个公共点.。

高中高考数学易错易混易忘题分类汇总及解析(精品)

高中高考数学易错易混易忘题分类汇总及解析(精品)

高中高考数学易错易混易忘题分类汇总例1、设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?【练1】已知集合{}2|40A x x x =+=、(){}22|2110B x x a x a =+++-=,若B A ⊆,则实数a 的取值范围是 。

例2、已知()22214y x ++=,求22x y +的取值范围 【练2】若动点(x,y )在曲线22214x y b+=()0b >上变化,则22x y +的最大值为() (A )()()2404424b b b b ⎧+<<⎪⎨⎪≥⎩(B )()()2402422b b b b ⎧+<<⎪⎨⎪≥⎩(C )244b +(D )2b 例3、()2112x xa f x ⋅-=+是R 上的奇函数,(1)求a 的值(2)求的反函数()1f x - 【练3】函数()()111f x x x =-≥的反函数是()A 、()2221y x x x =-+< B 、()2221y x x x =-+≥ C 、()221y x x x =-< D 、()221y x x x =-≥例4、已知函数()121x f x x-=+,函数()y g x =的图像与()11y f x -=-的图象关于直线y x =对称,则()y g x =的解析式为() A 、()32x gx x -=B 、()21x g x x -=+C 、()12x g x x -=+D 、()32g x x=+ 【练4】已知函数y=log 2x 的反函数是y=f -1(x),则函数y= f -1(1-x)的图象是()例5、 判断函数()2lg 1()22x f x x -=--的奇偶性。

【练5】判断下列函数的奇偶性:①()2244f x x x =-+-()(111xf x x x+=--()1sin cos 1sin cos x x f x x x ++=+-例6、 函数()2221211log 22x x f x x x -+⎛⎫=<-> ⎪⎝⎭或的反函数为()1f x -,证明()1f x -是奇函数且在其定义域上是增函数。

高中数学高频错题总结 (含例题答案)

高中数学高频错题总结 (含例题答案)

高一上学期易错陷阱总结1、 对数型函数中,(易忽略真数位置大于0)5.已知y =log a (2-ax )在[0,1]上为减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 2、 集合中,空集的特殊性(易忘记讨论空集)13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围. (1)A ∩B =∅; (2)A ⊆(A ∩B ). 3、集合中,元素的互异性(易忽略导致取值错误)[例2] 已知集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },求a 2 019+b 2 020的值.跟踪探究 2.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.4、集合中,元素的特殊要求(比如:易忽略x等条件)跟踪探究 1.若集合A ={x |1≤x ≤3,x ∈N },B ={x |x ≤2,x ∈N },则A ∩B =( )A.{x |1≤x ≤2} B .{x |x ≥1} C .{2,3}D .{1,2}5、抽象函数的定义域问题(定义域仅代表x ,括号内取值范围一致)14、函数的定义域为,则的定义域是___;函数的定义域为___.6、 区间中默认a<b14.已知函数f (x )=, x是偶函数,则a+b=7、 换元法求值域类问题(易忽略换元后,t 的取值范围)(1)f (x +1)=x +2x ,求f (x )的值域;8、动轴定区间类问题(分类讨论不重不漏)典型案例:求函数y =x 2-2ax -1在[0,2]上的最值.9同增异减求单调区间问题(对数型时不能忽略真数位置大于0)(多个区间,隔开)跟踪探究 2.求函数y =log 2(x 2-5x +6)的单调区间.10、分段函数单调性问题。

(易忽略结点处)13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax +4,(x ≤1),-ax +3a -4,(x >1)且f (x )在R 上递减,则实数a 的取值范围________.11.解分式不等式。

高一数学易错、易混、易忘典型题目

高一数学易错、易混、易忘典型题目

高一数学易错、易混、易忘典型题目【前言】“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。

本文结合多年教学经验精心挑选学生在考试中常见的易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在数学中乘风破浪,实现自已的理想报负。

【易错、易混、易忘典型题目】【易错点1】忽视空集是任何非空集合的子集导致思维不全面。

例1、 设{}2|8150A x x x =-+=,{}|10B x a x =-=,若A B B = ,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B = 易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。

解析:集合A 化简得{}3,5A =,由A B B = 知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当B φ≠时,即方程10ax -=的解为3或5,代入得13a =或15。

综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。

【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。

有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r=-+-=,其中0r >,若A B φ= 求r 的取值范围。

高中数学易错题大汇总及其解析

高中数学易错题大汇总及其解析

【目录】一、导言二、易错题汇总及解析1. 二次函数的基本性质及应用2. 数列与数学归纳法3. 平面向量的运算及应用4. 不定积分与定积分5. 空间几何与三视图6. 概率统计及应用三、总结与展望【正文】一、导言数学作为一门基础学科,对培养学生的逻辑思维能力、数学建模能力和问题解决能力有着举足轻重的作用。

而在高中阶段,数学的难度也相应提升,很多学生容易在一些常见的易错题上犯错。

本文将对高中数学易错题进行大汇总,并给出详细的解析,希望能够帮助同学们更好地理解和掌握这些知识点。

二、易错题汇总及解析1. 二次函数的基本性质及应用(1)易错题案例:已知二次函数f(x)=ax²+bx+c的图象经过点(1,2),且在点(2,1)处的切线斜率为3,求a、b、c的值。

解析:首先利用已知条件列方程,得到三元一次方程组。

然后利用切线的斜率性质,得到关于a和b的关系式。

最后代入已知条件解方程组即可求得a、b、c的值。

(2)易错题案例:已知函数f(x)=ax²+bx+c的图象经过点a、b、c,求a、b、c的值。

解析:利用函数过定点的性质列方程,再利用函数在定点处的斜率为求得a、b、c的值。

2. 数列与数学归纳法(1)易错题案例:已知等差数列{an}的前n项和为Sn=n²,求an。

解析:利用等差数列的前n项和公式列方程,然后利用数学归纳法求得an的表达式。

(2)易错题案例:已知{an}是等比数列,且a₁=2,a₃=18,求通项公式。

解析:利用等比数列的通项公式列方程,再利用已知条件求出通项公式的值。

3. 平面向量的运算及应用(1)易错题案例:已知向量a=3i+4j,b=5i-2j,求a与b的夹角。

解析:利用向量的夹角公式求出a与b的夹角。

(2)易错题案例:已知平面向量a=2i+j,b=i-2j,求2a-3b的模。

解析:利用向量的运算规则,先求出2a和3b,然后再求它们的差向量,最后求出差向量的模。

高中数学错题整理(附答案)

高中数学错题整理(附答案)

数学错题高一上学期期中错题10. 已知22(lg5)lg 2lg50x =+⋅,则x 的值为( ) A .A 0 .B 2 .C 1 .D 1216.下列几个命题,正确的有 (填序号) ①④①方程2(3)0x a x a +-+=有一个正实根,一个负实根,则0a <; ②若幂函数322-+=m mx y 的图象与坐标轴没有交点,则m 的取值范围为)1,3(-③若)1(+x f 为偶函数,则有)1()1(--=+x f x f ;④函数log (1)a y x =-+的图像可由函数log ()a y x =-向右平移1个单位得到. 18. (本小题8分)设函数f (x )=x 2-2x +2 ,x ∈[t ,t +1],t ∈R,求函数f (x )的最小值g (t )的表达式.20. (本小题12分)已知1()log ,(1)1axf x a x+=>-, (1) 判断)(x f 的奇偶性并用定义证明;(2) 当[0,1)x ∈时,总有()f x m ≥成立,求m 的取值范围.解:(1)101xx+>-,∴11x -<<,即函数的定义域为(-1,1) 11()log log ()11aa x xf x f x x x-+-==-=-+- 又定义域关于原点对称,故函数)(x f 是R 上的奇函数 (2)易证1()log 1axf x x+=-在[0,1)上单调递增, ∴min ()(0)0f x f == ∴0m ≤.高一上学期期末错题BAB13、氟利昂是一种重要的化工产品,它在空调制造业有着巨大的市场价值.已知它的市场需求量y1(吨)、市场供应量y2(吨)与市场价格x(万元/吨)分别近似地满足下列关系:y1=-x+70,y2=2x-20当y1=y2时的市场价格称为市场平衡价格.此时的需求量称为平衡需求量.(1)求平衡价格和平衡需求量;(2)科学研究表明,氟利昂是地球大气层产生臭氧空洞的罪魁祸首,《京都议定书》要求缔约国逐年减少其使用量.某政府从宏观调控出发,决定对每吨征税3万元,求新的市场平衡价格和平衡需求量.【解析】考点:函数的表示方法;函数与方程的综合运用.分析:(1)由y1=y2得-x+70=2x-20,由此可知平衡价格为30万元/吨,平衡需求量为40吨.(2)设新的平衡价格为t万元/吨,则y1=-t+70,y2=2(t-3)-20=2t-26,由y1=y2可求出新的平衡价格为32万元/吨,平衡需求量为38吨.解:(1)由y1=y2得-x+70=2x-20,∴x=30,此时y1=y2=40,平衡价格为30万元/吨,平衡需求量为40吨.(2)设新的平衡价格为t万元/吨,则y1=-t+70,y2=2(t-3)-20=2t-26,由y1=y2得-t+70=2t-26,∴t=32,此时y1=y2=38,即新的平衡价格为32万元/吨,平衡需求量为38吨.18、已知正方体ABCD-A1B1C1D1的棱长为2a,若E为棱CC1的中点.(Ⅰ)求证:A1E⊥BD;(Ⅱ)求二面角A1-BD-E的大小;(Ⅲ)求四面体A1-BDE的体积.19、(本小题满分14分)在平面直角坐标系中,已知圆的圆心为,过点且斜率为的直线与圆相交于不同的两点.(Ⅰ)求的取值范围;(Ⅱ)是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.解:⑴. 圆的方程可化为:,∴圆心为,半径.。

高一数学经典错题回顾(含答案)

高一数学经典错题回顾(含答案)

高一数学经典错题回顾(含答案)1、数列 ,11,22,5,2的一个通项公式是___________2、若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项n S 最大时的最大自然数n 是:_______3、已知45<x ,函数54124-+-=x x y 的最大值是4、设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95SS 的值为5、已知等比数列{}n a ,公比21=q 且3049531=++++a a a a ,则++21a a 503a a ++ 等于6、等差数列{}n a 共有21n +项,其中奇数项之和为319,偶数项之和为290,则中间项为_______7、若关于x 的不等式20ax bx c ++>的解集是11{}45xx x <<或,那么不等式2220cx bx a --<的解集是8、若两个等差数列{}n a 和{}n b 的前n 项和分别是,n n S T ,已知73n nS n T n =+,则54a b 等于9、数列{a n }中,前n 项和31n n s =+,则n a = 。

10、在锐角△ABC 中,BC=1,B=2A,则cos ACA的值等于 AC 的取值范围为11、直角三角形三边成等比数列,公比为q ,则2q 的值为 。

12、若方程2(1)10ax a x a +-+-=有一正、一负两实数解,则a 的范围为_____________13、若正数b a ,满足3++=b a ab ,则ab 的取值范围是14、函数9y x x=+的值域是15、如果满足∠ABC=60°,AC=2,BC=k 的△ABC 恰有一个,那么k 的取值范围是16、三个数c b a ,,成等比数列,且0,0a c >>,若1=++c b a 成立,则b 的范围是三个数c b a ,,成等比数列,且0,0a c >>,若1=++c b a 成立,则b 的范围是17、若钝角三角形三边长为a+1,a+2,a+3,则a 的取值范围是18、若正数b a ,满足3++=b a ab ,则ab 的取值范围是19、在面积为S (S 为定值)的扇形中,当扇形中心角为θ,半径为r 时,扇形周长最小,这时r ,θ的值分别为20、函数9y x x=+的值域是21、如图所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东060的C 处,12时20分测得船在海岛北偏西060的B 处,12时40分轮船到达位于海岛正西方且距海岛5 km 的E 港口,如果轮船始终匀速直线前进,问船速多少?22、在等比数列{}n a 中,已知,214,21133==S a 求q a 与1。

高中数学易错题100道

高中数学易错题100道

高中数学易错题100道数学是一门需要逻辑思维和严密推理的学科,对于很多学生来说,高中数学是一门难以逾越的学科。

在学习过程中,我们常常会遇到一些易错题,这些题目看似简单,但却容易让我们犯错。

下面是100道高中数学易错题,希望能帮助大家更好地理解和掌握数学知识。

1. 2的平方根是多少?2. 一个等边三角形的内角是多少?3. 一个圆的直径是5cm,那么它的半径是多少?4. 一个矩形的长是3cm,宽是4cm,那么它的面积是多少?5. 一个正方形的边长是2cm,那么它的面积是多少?6. 一个长方体的长是3cm,宽是4cm,高是5cm,那么它的体积是多少?7. 一个圆的半径是3cm,那么它的周长是多少?8. 一个圆的半径是3cm,那么它的面积是多少?9. 一个圆的直径是6cm,那么它的周长是多少?10. 一个圆的直径是6cm,那么它的面积是多少?11. 一个等边三角形的外角是多少?12. 一个正方形的对角线长是多少?13. 一个长方形的对角线长是多少?14. 一个长方体的表面积是多少?15. 一个圆的周长是多少?16. 一个圆的面积是多少?17. 一个圆的直径是4cm,那么它的半径是多少?18. 一个圆的半径是4cm,那么它的直径是多少?19. 一个圆的周长是12cm,那么它的半径是多少?20. 一个圆的面积是12cm²,那么它的半径是多少?21. 一个圆的面积是12cm²,那么它的直径是多少?22. 一个圆的周长是12cm,那么它的直径是多少?23. 一个圆的周长是12cm,那么它的面积是多少?24. 一个圆的半径是12cm,那么它的周长是多少?25. 一个圆的半径是12cm,那么它的面积是多少?26. 一个圆的直径是12cm,那么它的周长是多少?27. 一个圆的直径是12cm,那么它的面积是多少?28. 一个正方形的面积是16cm²,那么它的边长是多少?29. 一个长方形的面积是16cm²,长是4cm,那么它的宽是多少?30. 一个长方形的面积是16cm²,宽是4cm,那么它的长是多少?31. 一个长方体的体积是16cm³,长是2cm,宽是4cm,那么它的高是多少?32. 一个长方体的体积是16cm³,长是2cm,高是4cm,那么它的宽是多少?33. 一个长方体的体积是16cm³,宽是2cm,高是4cm,那么它的长是多少?34. 一个等边三角形的面积是多少?35. 一个等腰三角形的面积是多少?36. 一个直角三角形的斜边长是多少?37. 一个直角三角形的直角边长是多少?38. 一个直角三角形的斜边长是5cm,直角边长是3cm,那么另一直角边长是多少?39. 一个直角三角形的斜边长是5cm,另一直角边长是4cm,那么直角边长是多少?40. 一个直角三角形的直角边长是3cm,另一直角边长是4cm,那么斜边长是多少?41. 一个等边三角形的边长是4cm,那么它的高是多少?42. 一个等边三角形的边长是4cm,那么它的面积是多少?43. 一个等腰三角形的底边长是4cm,高是3cm,那么它的面积是多少?44. 一个等腰三角形的底边长是4cm,面积是6cm²,那么它的高是多少?45. 一个等腰三角形的高是3cm,面积是6cm²,那么它的底边长是多少?46. 一个等腰三角形的高是3cm,底边长是4cm,那么它的面积是多少?47. 一个直角三角形的斜边长是5cm,那么它的面积是多少?48. 一个直角三角形的斜边长是5cm,那么它的高是多少?49. 一个直角三角形的斜边长是5cm,那么它的底边长是多少?50. 一个直角三角形的高是3cm,那么它的面积是多少?51. 一个直角三角形的高是3cm,那么它的斜边长是多少?52. 一个直角三角形的高是3cm,那么它的底边长是多少?53. 一个直角三角形的底边长是4cm,那么它的面积是多少?54. 一个直角三角形的底边长是4cm,那么它的斜边长是多少?55. 一个直角三角形的底边长是4cm,那么它的高是多少?56. 一个等边三角形的高是多少?57. 一个等边三角形的面积是多少?58. 一个等腰三角形的面积是多少?59. 一个直角三角形的面积是多少?60. 一个长方形的周长是16cm,长是4cm,那么它的宽是多少?61. 一个长方形的周长是16cm,宽是4cm,那么它的长是多少?62. 一个长方体的表面积是24cm²,长是2cm,宽是3cm,那么它的高是多少?63. 一个长方体的表面积是24cm²,长是2cm,高是3cm,那么它的宽是多少?64. 一个长方体的表面积是24cm²,宽是2cm,高是3cm,那么它的长是多少?65. 一个长方体的体积是24cm³,长是2cm,宽是3cm,那么它的高是多少?66. 一个长方体的体积是24cm³,长是2cm,高是3cm,那么它的宽是多少?67. 一个长方体的体积是24cm³,宽是2cm,高是3cm,那么它的长是多少?68. 一个等边三角形的边长是6cm,那么它的高是多少?69. 一个等边三角形的边长是6cm,那么它的面积是多少?70. 一个等腰三角形的底边长是6cm,高是4cm,那么它的面积是多少?71. 一个等腰三角形的底边长是6cm,面积是12cm²,那么它的高是多少?72. 一个等腰三角形的高是4cm,面积是12cm²,那么它的底边长是多少?73. 一个等腰三角形的高是4cm,底边长是6cm,那么它的面积是多少?74. 一个直角三角形的斜边长是10cm,那么它的面积是多少?75. 一个直角三角形的斜边长是10cm,那么它的高是多少?76. 一个直角三角形的斜边长是10cm,那么它的底边长是多少?77. 一个直角三角形的高是4cm,那么它的面积是多少?78. 一个直角三角形的高是4cm,那么它的斜边长是多少?79. 一个直角三角形的高是4cm,那么它的底边长是多少?80. 一个直角三角形的底边长是6cm,那么它的面积是多少?81. 一个直角三角形的底边长是6cm,那么它的斜边长是多少?82. 一个直角三角形的底边长是6cm,那么它的高是多少?83. 一个等边三角形的高是多少?84. 一个等边三角形的面积是多少?85. 一个等腰三角形的面积是多少?86. 一个直角三角形的面积是多少?87. 一个长方形的周长是20cm,长是5cm,那么它的宽是多少?88. 一个长方形的周长是20cm,宽是5cm,那么它的长是多少?89. 一个长方体的表面积是30cm²,长是3cm,宽是5cm,那么它的高是多少?90. 一个长方体的表面积是30cm²,长是3cm,高是5cm,那么它的宽是多少?91. 一个长方体的表面积是30cm²,宽是3cm,高是5cm,那么它的长是多少?92. 一个长方体的体积是30cm³,长是3cm,宽是5cm,那么它的高是多少?93. 一个长方体的体积是30cm³,长是3cm,高是5cm,那么它的宽是多少?94. 一个长方体的体积是30cm³,宽是3cm,高是5cm,那么它的长是多少?95. 一个等边三角形的边长是8cm,那么它的高是多少?96. 一个等边三角形的边长是8cm,那么它的面积是多少?97. 一个等腰三角形的底边长是8cm,高是6cm,那么它的面积是多少?98. 一个等腰三角形的底边长是8cm,面积是24cm²,那么它的高是多少?99. 一个等腰三角形的高是6cm,面积是24cm²,那么它的底边长是多少?100. 一个等腰三角形的高是6cm,底边长是8cm,那么它的面积是多少?以上是100道高中数学易错题,希望能帮助大家更好地理解和掌握数学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一高二高三数学经典错题大合集:解三角形常见的八种失分需谨慎高中数学提分容易么,说老实话,有时候很容易,有时候很难!其实有点智商方面的关系!但最重要的还是方法!当然首当其冲的是兴趣!每个同学都有自己对应的病灶,找准,抓住,杀掉,成绩自然上来。

而错题集是学生进行提高自我成绩的一个非常好的途径!然而很多学生弄了,也没提高多少,主要是没找对方法!错题本重点是总结!然后分析!下一次再做!再错,再总结!如此循环,这一类题就基本能吃透提高了!当然,错题本还得系统,到位!清北学霸高考必备资料库中,我们的师哥师姐就整理了,将近800 来道的高中数学错题集!我们的错题集不是单纯只是把学生容易错的题拉上来,而是收集了近三年来学生针对这个考点容易失分点,容易错的进行错题集分析!非常的全面而实用!有学生在解三角形的道路上经常错。

下面就给大家分析下解三角形的常见的8 种是失分,丢分的!
现在有个福利告诉同学家长,同学家长可以添加学长微信
2475026381
即可参与清华、北大的小伙伴们发起的助学活动,免费领取我们精心打造《应试攻略》系列课程及《直击高考漏洞》电子书,以我们的经历、成功,告诫大家:考试百分百技术活,想要成为尖子生,先要跳出中等生苦学的思维⋯⋯
还有高中九科目提分笔记免费领取
【标题01】不能灵活运用正弦定理进行推理解答
标题02
】在三角形中解三角正弦方程出现错误
标题03】锐角三角形的定义理解错误
标题04】解三角形时出现多解没有注意检验
标题05】忽略了等式的性质在等式两边随便乘除导致漏解
标题06】化简三角方程时忽略了角的范围和正弦函数的图像和性质标题07】求三角函数的范围时忽略了角的取值范围
标题08】误判直线BC 是水平方向没有经过严格的证明
【标题死】误判直线肌是木平方向没有经过严格的证明
【习题08]衽潯岸A处,发现北債东45。

方冋距A为石-:!漓里的B处有一艘走私Jjfi ,在A处北{R西75。

的万向J距A为2海里的C处的绩私Ie章命以IOJ5港里/"卜时的速度诒截定私給.此时走私船正以2海里外时的速虞从B处冋北備东30。

方向追甫,i锚私船沿看什么方冋能最快追上走私船?并求出所需冀的时间.(注:√6^2.449)
【经WtSW】设绩私紺追上走私紹所需B打助t小时,如图所示,则有CD=Io √5 ■海里CD=:Iot海里.在
△ABC中』
TAB=(J5-i)海里,AC=2 海里,ZBAC=45。

+75° =1»° ,
抿捉余弦定理可得W= J(√3-1)2÷22-2.2<√3-1) cosl200二& 海里,
在ABCD中,根馮正弦定理可得:
ΛZBCD=∞* 、 ZBX=W ∙∙∙.BD=M=T^ 海里.
PJW IOt=J6 j t=-≈0. 245φ1∣4=14.7 5i钟.
10
故络私船沿北侑东0方4.7分钟才能追上走私船・
【詳细正朗设经社船追上走伽所胡时间为< 4耐 > 如區所示,则肖CD=Io √3 I淘里∙ BD=IgtJ里•在∆ABC 中.
VAB= (√3 ・1》訝里,AC=2疳里,乙BAC=45φ +75φ=120° ■
根据余毙定理可得BC- ^√3-l)j+2^2∙2Kχ∕3-l)co¼l20d = A唇里・
根IS正弦定理可得
ΞL
・•・厶BC=d5。

P 易知CB 方向与正北方f≡⅛宜.
从而 ∕CBD=90° +30' =120* .
在ZXBCD 中,根抿正弦定理可得,
/.ZKI>=30* , ZBDC=30* . .∖BD=DC=>∕6⅛里.
dO ・ 245>J K
B1=14.7 分钟. 灘!私船沿北18乐60°方向,期M 7分神才能追上走私船・
<^Λ⅛≡1C1)经認谓緬8在谋判电绒BC 量水平万同没耳经过产怙的证明.⑵橋解曼Sl 彤的影购,豐樓 把BCt^平方冋厦线BC 是水平方冋但是賈经过严播的ii 明才秆合逻Hu
【习題QS 针对训练】奁某海岸A 处J 发现北偽杀30:方向,距离A 处<√Λ^l)n 新山的E 处有一鴉走私船 在A 处北偵西15•的方即 距韶A 处√5 “de 的C 处卿私船举命以S√5nmk∕h 的速度追钺走私船・此 比 走私船正以5 H 小皿的速度从B 处阚北僞东3CT 方向迪轧 冋缜私船至少经够长时间可以启上 走和弟并指岀细和£航行方向.
SinZBCD= ^PSill 也CBD _ CD 10tedn[20° IS
高中数学经期強浣虔訓斤及针对训饬
第20讲;解三角形沪答案
【习題Ol 针对M 练答案】B
【习題0】针对Ul 练解析】'g —cM=4, ∙
∙CS U-G Y 8(A+O J 2 sin Xdn C =1・又宙已IIa 二IC ,根據
正艾走理,簿5i□∕ =2s ∙inC a>c , :.A>C, .∖C=-.故选 B ∙ 【刁Ifi 呢针对训答累】S**
駄 ,120°, 5F
aJr = 3^. 【刁附针对U 蹄析】由正弦定理F r 缶得宀 怙"丘寺乎
V0<B<180∙且 αv0 …∙.∕e∕,
时' C≈90∖ 5^ = 1Λ⅛U D C = 673 .⅛J χ∣2(Γ84, C = 3OS S“ =-nfesto C = 3√3. 2 2
【习題03针对ill 曲•答累】A
【习題皿针对M 焼鮮析】&3c>b>a f 所以最大角50,由余弦定理得 3$C= J 二W>O,β⅛⅜ΔJ 殆罡锐角三角形,
2x4x5 8
【习題04针对*惟東答察】C
【习l δ OC 针对ill 稣錄析】由正弦定理丄二代箔合己知数据可求得血.T 二;…4可縱为钝角,也可 ξa A ξΛH B 8
营&为锐角,当≡∏, zl"v∕r 跋涓足条件,当加为钝角时,g^l>l=⅛sin J>sml50∖fi 8 2 函數的⅛W±可知∕fP50∙, ⅛>RS 所決三角彫由两今絹 正确迦页为C ・故选6
【习趙05针对M 练答策】SABC 是直角三角形或竽滕三角形.
【习 SS 05 It 对训练解折】由
COSCSin A -Sin ^COiC = O Pfru.cos C(« nJ ■気 B) = O 所以 COSC = OsS sin X = sin J
所以C =90:或α",所以∖ac 是恵角三角形我苓腹三角形.
【习題*针对別稣答知B .β. Sin C = — , C r=上或—• ■ T 2 6 6
ΞL
【习边06针对i≡綃斤】VtmI χ = -≡LI.√- ≡√L, /.≤≡4 = ⅛可化为竺竺
COiX Mn J Mn J tan B扩CoSJSm B sm λ B Sin JCOSJ = Sm SCQS^>βΓsm 2Λ ≈sin 2£9βrtλ2A = 2B⅛E1Λ + IB =広或2/1-2^ = 3心时=臧心=¥或心=寻(舍)J師匹角形罡鋼或訥三角形.
yr 3
【习題07针对i∣l I练答案】(1) / = ;:⑵(1,^).
【习Iδ07ft对训练解析】(])由題意:√3sin^∙cos∕=2siα(√C∙M) = l丿6
—=—,PP /< = —;
6 6 3
(2)由(1)知:cos/! = -,
√.CQS2S +4COSXSm B = 1-2SiD i J7+2s⅛0 = -2(sio B-—)2÷- > 2 2
*.2U5C为锐角三角彫.∙W+C=∣7 ,即C=∣τ-J≤p
Jrn B I 3
贝*Jcos 2S +4cos JSin^ (】•£)・

【习题08针对训练答素】缓私給至少经过茲可以追上走私祜,纽私船的航行方向为北舫62・
【习题08計对训塚解析】isa¾jβ至少轻过小可以在0点追上走私船,则CD-S√3r, BD -5/
在△妙中,由余強定理得,- .452÷-4 C2 - 2-IB -4Ccos<lΓ ÷ 3σ ) - 4, .∖ BC - 2
•・ SinAffC■二,ZABC・60・■即
3∏sin(X--)=丄,∖Q <A ,
6 2 2
BC AC
由正虽正建得,sin4S SinJBC。

相关文档
最新文档