最新第9章机械振动习题详解

合集下载

机械振动答案

机械振动答案

机械振动答案(1)选择题1解析:选D.如图所示,设质点在A 、B 之间振动,O 点是它的平衡位置,并设向右为正.在质点由O 向A 运动过程中其位移为负值;而质点向左运动,速度也为负值.质点在通过平衡位置时,位移为零,回复力为零,加速度为零,但速度最大.振子通过平衡位置时,速度方向可正可负,由F =-kx 知,x 相同时F 相同,再由F =ma 知,a 相同,但振子在该点的速度方向可能向左也可能向右.2.解析:选B.据简谐运动的特点可知,振动的物体在平衡位置时速度最大,振动物体的位移为零,此时对应题图中的t 2时刻,B 对.3.解析:选BD.质点做简谐运动时加速度方向与回复力方向相同,与位移方向相反,总是指向平衡位置;位移增加时速度与位移方向相同,位移减小时速度与位移方向相反.4解析:选C.因为弹簧振子固有周期和频率与振幅大小无关,只由系统本身决定,所以f 1∶f 2=1∶1,选C.5解析:选B.对于阻尼振动来说,机械能不断转化为内能,但总能量是守恒的.6.解析:选B.因质点通过A 、B 两点时速度相同,说明A 、B 两点关于平衡位置对称,由时间的对称性可知,质点由B 到最大位移,与由A 到最大位移时间相等;即t 1=0.5 s ,则T2=t AB +2t 1=2 s ,即T =4 s ,由过程的对称性可知:质点在这2 s 内通过的路程恰为2 A ,即2A =12 cm ,A =6 cm ,故B 正确.7.解析:选A.两球释放后到槽最低点前的运动为简谐运动且为单摆模型.其周期T =2πR g,两球周期相同,从释放到最低点O 的时间t =T4相同,所以相遇在O 点,选项A 正确.8.解析:选C.从t =0时经过t =3π2L g 时间,这段时间为34T ,经过34T 摆球具有最大速度,说明此时摆球在平衡位置,在给出的四个图象中,经过34T 具有负向最大速度的只有C 图,选项C 正确.9.解析:选CD.单摆做简谐运动的周期T =2πlg,与摆球的质量无关,因此两单摆周期相同.碰后经过12T 都将回到最低点再次发生碰撞,下一次碰撞一定发生在平衡位置,不可能在平衡位置左侧或右侧.故C 、D 正确.10.解析:选D.通过调整发生器发出的声波就能使酒杯碎掉,是利用共振的原理,因此操作人员一定是将声波发生器发出的声波频率调到500 Hz ,故D 选项正确. 二、填空题(本题共2小题,每小题8分,共16分.把答案填在题中横线上)11答案:(1)B (2)摆长的测量、漏斗重心的变化、液体痕迹偏粗、阻力变化……12答案:(1)ABC (2)①98.50 ②B ③4π2k计算题13.(10分)解析:由题意知弹簧振子的周期T =0.5 s ,振幅A =4×10-2m. (1)a max =kx max m =kA m=40 m/s 2. (2)3 s 为6个周期,所以总路程为s =6×4×4×10-2m =0.96 m.答案:(1)40 m/s 2(2)0.96 m14.(10分)解析:设单摆的摆长为L ,地球的质量为M ,则据万有引力定律可得地面的重力加速度和高山上的重力加速度分别为:g =G M R 2,g h =G M R +h2据单摆的周期公式可知T 0=2πLg ,T =2πL g h由以上各式可求得h =(T T 0-1)R . 答案:(T T 0-1)R15.(12分解析:球A 运动的周期T A =2πl g, 球B 运动的周期T B =2π l /4g =πl g. 则该振动系统的周期T =12T A +12T B =12(T A +T B )=3π2l g. 在每个周期T 内两球会发生两次碰撞,球A 从最大位移处由静止开始释放后,经6T =9πlg,发生12次碰 撞,且第12次碰撞后A 球又回到最大位置处所用时间为t ′=T A /4. 所以从释放A 到发生第12次碰撞所用时间为t =6T -t ′=9πl g -2T 2l g =17π2lg. 答案:17π2l g16.(12分解析:在力F 作用下,玻璃板向上加速,图示OC 间曲线所反映出的是振动的音叉振动位移随时间变化的规律,其中直线OC 代表音叉振动1.5个周期内玻璃板运动的位移,而OA 、AB 、BC 间对应的时间均为0.5个周期,即t =T 2=12f=0.1 s .故可利用匀加速直线运动的规律——连续相等时间内的位移差等于恒量来求加速度.设板竖直向上的加速度为a ,则有:s BA -s AO =aT 2①s CB -s BA =aT 2,其中T =152 s =0.1 s ②由牛顿第二定律得F -mg =ma ③ 解①②③可求得F =24 N. 答案:24 N机械振动(2)机械振动(3)1【解析】 如图所示,图线中a 、b 两处,物体处于同一位置,位移为负值,加速度一定相同,但速度方向分别为负、正,A 错误,C 正确.物体的位移增大时,动能减少,势能增加,D 错误.单摆摆球在最低点时,处于平衡位置,回复力为零,但合外力不为零,B 错误.【答案】 C2【解析】 质量是惯性大小的量度,脱水桶转动过程中质量近似不变,惯性不变,脱水桶的转动频率与转速成正比,随着转动变慢,脱水桶的转动频率减小,因此,t 时刻的转动频率不是最大的,在t 时刻脱水桶的转动频率与机身的固有频率相等发生共振,故C 项正确.【答案】 C3【解析】 摆球从A 运动到B 的过程中绳拉力不为零,时间也不为零,故冲量不为零,所以选项A 错;由动能定理知选项B 对;摆球运动到B 时重力的瞬时功率是mg v cos90°=0,所以选项C 错;摆球从A 运动到B 的过程中,用时T /4,所以重力的平均功率为P =m v 2/2T /4=2m v 2T ,所以选项D 错.【答案】 B4【解析】 由振动图象可看出,在(T 2-Δt )和(T2+Δt )两时刻,振子的速度相同,加速度大小相等方向相反,相对平衡位置的位移大小相等方向相反,振动的能量相同,正确选项是D.【答案】 D5【解析】 据受迫振动发生共振的条件可知甲的振幅较大,因为甲的固有频率接近驱动力的频率.做受迫振动物体的频率等于驱动力的频率,所以B 选项正确.【答案】 B6【解析】 由题意知,在细线未断之前两个弹簧所受到的弹力是相等的,所以当细线断开后,甲、乙两个物体做简谐运动时的振幅是相等的,A 、B 错;两物体在平衡位置时的速度最大,此时的动能等于弹簧刚释放时的弹性势能,所以甲、乙两个物体的最大动能是相等的,则质量大的速度小,所以C 正确,D 错误.【答案】 C题号 1 2 3 4 5 6 7 8 9 10答案 ACBADACBDACADD(T 2-T 1)R/T 17【答案】 C8【解析】 根据题意,由能量守恒可知12kx 2=mg (h +x ),其中k 为弹簧劲度系数,h 为物块下落处距O 点的高度,x 为弹簧压缩量.当x =x 0时,物块速度为0,则kx 0-mg =ma ,a =kx 0-mg m =kx 0m -g =2mg (h +x 0)mx 0-g =2g (h +x 0)x 0-g >g ,故正确答案为D.【答案】 D9【解析】 由题中条件可得单摆的周期为T =0.30.2s =1.5s ,由周期公式T =2πlg可得l=0.56m.【答案】 A10【解析】 当摆球释放后,动能增大,势能减小,当运动至B 点时动能最大,势能最小,然后继续摆动,动能减小,势能增大,到达C 点后动能为零,势能最大,整个过程中摆球只有重力做功,摆球的机械能守恒,综上可知只有D 项正确.【答案】 D机械振动(4)1解析:选A.周期与振幅无关,故A 正确.2解析:选C.由单摆周期公式T =2π lg知周期只与l 、g 有关,与m 和v 无关,周期不变频率不变.又因为没改变质量前,设单摆最低点与最高点高度差为h ,最低点速度为v ,mgh =12m v 2.质量改变后:4mgh ′=12·4m ·(v 2)2,可知h ′≠h ,振幅改变.故选C.3解析:选D.此摆为复合摆,周期等于摆长为L 的半个周期与摆长为L2的半个周期之和,故D 正确.4解析:选B.由简谐运动的对称性可知,t Ob =0.1 s ,t bc =0.1 s ,故T4=0.2 s ,解得T =0.8s ,f =1T=1.25 Hz ,选项B 正确.5解析:选D.当单摆A 振动起来后,单摆B 、C 做受迫振动,做受迫振动的物体的周期(或频率)等于驱动力的周期(或频率),选项A 错误而D 正确;当物体的固有频率等于驱动力的频率时,发生共振现象,选项C 正确而B 错误.6解析:选BD.速度越来越大,说明振子正在向平衡位置运动,位移变小,A 错B 对;速度与位移反向,C 错D 对.7解析:选AD.P 、N 两点表示摆球的位移大小相等,所以重力势能相等,A 对;P 点的速度大,所以动能大,故B 、C 错D 对.8解析:选BD.受迫振动的频率总等于驱动力的频率,D 正确;驱动力频率越接近固有频率,受迫振动的振幅越大,B 正确.9解析:选B.读图可知,该简谐运动的周期为4 s ,频率为0.25 Hz ,在10 s 内质点经过的路程是2.5×4A =20 cm.第4 s 末的速度最大.在t =1 s 和t =3 s 两时刻,质点位移大小相等、方向相反.。

机械振动习题及答案完整版.docx

机械振动习题及答案完整版.docx

1.1试举出振动设计'系统识别和环境预测的实例。

1.2如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3设有两个刚度分别为心,心的线性弹簧如图T-1.3所示,试证明:1)它们并联时的总刚度k eq为:k eq = k x+ k22)它们串联时的总刚度匕满足:丿-畔+ 土keq & k2解:1)对系统施加力P,则两个弹簧的变形相同为X,但受力不同,分别为: P x = k x x<由力的平衡有:P = ^ + P,=(k1+k2)xp故等效刚度为:k eq^- = k1+k2x2)对系统施加力P,则两个弹簧的变形为:P%i=r 111,弹簧的总变形为:x = x}+x2= P(——I ---- )故等效刚度为:k =—Xk x k2k,2+ k、1 1=—l-------k、k21.4求图所示扭转系统的总刚度。

两个串联的轴的扭转刚度分别为心, 解:对系统施加扭矩T,则两轴的转角为:VTrx系统的总转角为:0 = G + g = Hy- + T-)褊k,i故等效刚度为:犒=二+二1.5两只减振器的粘性阻尼系数分别为q, C2,试计算总粘性阻尼系数"在两只减振器并联时,2)在两只减振器串联时。

解:1)对系统施加力P,则两个减振器的速度同为厂受力分别为:P{ - c x x<P2=C2X由力的平衡有:P=£ + E =(q+C2)Xp故等效刚度为:c eq=- = c]+c2X2)对系统施加力P,则两个减振器的速度为:p 1 1故等效刚度为:c eq=- = - + -1.6 一简谐运动,振幅为0. 5cm,周期为0.15s,求最大速度和加速度。

解:简谐运动的a>n= — = /5),振幅为5x10 3m ;= 5x10-cos(^_ 2/r即:—5x10'丽fsin(丽血/s)*610=(話讥。

机械振动现象练习题(含答案)

机械振动现象练习题(含答案)

机械振动现象练习题(含答案)1. 一个弹簧常数为3000 N/m, 质量为0.2 kg的物体,在弹簧下端受到一个向下的力2 sin(10t) N,其中t为时间(秒)。

求物体的振动方程。

根据牛顿第二定律,可以得到物体的振动方程为:m * x'' + k * x = F(t)其中,m是物体的质量,x是物体的位移,x''是位移对时间的二阶导数,k是弹簧的常数,F(t)是作用在物体上的外力。

根据题目中给出的数据,代入上述公式,我们可以得到:0.2 * x'' + 3000 * x = 2 sin(10t)这就是物体的振动方程。

2. 一个质点在受到一个力F(t) = 0.1 cos(3t) N的作用下进行振动,已知质点的质量为0.5 kg。

求质点的角频率和振动周期。

根据振动方程的形式,我们可以知道物体的振动频率和周期与力的形式有关。

在这个题目中,我们可以看出力的形式为cos(3t),它是一个正弦函数。

如果将cos(3t)函数展开,我们可以得到下面的表达式:F(t) = a cos(wt)其中,a是振幅,w是角频率。

根据题目中给出的数据,我们可以得到:a = 0.1 N,w = 3 rad/s由于振动的频率与角频率之间是有关联的,振动的周期T可以表示为:T = 2π/w代入上述数据,我们可以得到:T = 2π/3 s这就是质点的振动周期。

3. 一个质点质量为0.3 kg,在一竖直方向上的弹簧中振动,弹簧的劲度系数为2000 N/m。

当质点受到一个外力F(t) = 0.5 cos(5t) N时,求质点的振动方程。

根据题目中给出的数据,我们可以得到:m = 0.3 kg,k = 2000 N/m,F(t) = 0.5 cos(5t)代入振动方程的一般形式,我们可以得到:0.3 * x'' + 2000 * x = 0.5 cos(5t)这就是质点的振动方程。

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案)一、机械振动 选择题1.如图所示为某物体系统做受迫振动的振幅A 随驱动力频率f 的变化关系图,则下列说法正确的是A .物体系统的固有频率为f 0B .当驱动力频率为f 0时,物体系统会发生共振现象C .物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定D .驱动力频率越大,物体系统的振幅越大2.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍 B .若2T t ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于m kx m M+ 3.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( )A .丙球最先到达D 点,乙球最后到达D 点B.甲球最先到达D点,乙球最后到达D点C.甲球最先到达D点,丙球最后到达D点D.甲球最先到达D点,无法判断哪个球最后到达D点4.质点做简谐运动,其x—t关系如图,以x轴正向为速度v的正方向,该质点的v—t关系是( )A.B.C.D.5.如右图甲所示,水平的光滑杆上有一弹簧振子,振子以O点为平衡位置,在a、b两点之间做简谐运动,其振动图象如图乙所示.由振动图象可以得知( )A.振子的振动周期等于t1B.在t=0时刻,振子的位置在a点C.在t=t1时刻,振子的速度为零D.从t1到t2,振子正从O点向b点运动6.图(甲)所示为以O点为平衡位置、在A、B两点间做简谐运动的弹簧振子,图(乙)为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A.在t=0.2s时,弹簧振子可能运动到B位置B.在t=0.1s与t=0.3s两个时刻,弹簧振子的速度相同C.从t=0到t=0.2s的时间内,弹簧振子的动能持续地增加D.在t=0.2s与t=0.6s两个时刻,弹簧振子的加速度相同7.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值8.如图所示,PQ为—竖直弹簧振子振动路径上的两点,振子经过P点时的加速度大小为6m/s2,方向指向Q点;当振子经过Q点时,加速度的大小为8m/s2,方向指向P点,若PQ之间的距离为14cm,已知振子的质量为lkg,则以下说法正确的是()A.振子经过P点时所受的合力比经过Q点时所受的合力大B.该弹簧振子的平衡位置在P点正下方7cm处C.振子经过P点时的速度比经过Q点时的速度大D.该弹簧振子的振幅一定为8cm9.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h 10.如图所示,一根不计质量的弹簧竖直悬吊铁块M ,在其下方吸引了一磁铁m ,已知弹簧的劲度系数为k ,磁铁对铁块的最大吸引力等于3m g ,不计磁铁对其它物体的作用并忽略阻力,为了使M 和m 能够共同沿竖直方向作简谐运动,那么 ( )A .它处于平衡位置时弹簧的伸长量等于()2M m gk + B .振幅的最大值是()2M m gk +C .弹簧弹性势能最大时,弹力的大小等于()2M m g +D .弹簧运动到最高点时,弹簧的弹力等于011.如图所示,轻质弹簧的下端固定在水平地面上,一个质量为m 的小球(可视为质点),从距弹簧上端h 处自由下落并压缩弹簧.若以小球下落点为x 轴正方向起点,设小球从开始下落到压缩弹簧至最短之间的距离为H ,不计任何阻力,弹簧均处于弹性限度内;关于小球下落过程中加速度a 、速度v 、弹簧的弹力F 、弹性势能p E 变化的图像正确的是( )A .B .C.D.12.如图所示为某弹簧振子在0~5s内的振动图象,由图可知,下列说法中正确的是( )A.振动周期为5 sB.振幅为8 cmC.第2 s末振子的速度为零,加速度为正向的最大值D.第3 s末振子的速度为正向的最大值E.从第1 s末到第2 s末振子在做加速运动13.一质点做简谐运动的位移x与时间t的关系如图所示,由图可知( )A.频率是2HzB.振幅是5cmC.t=1.7s时的加速度为正,速度为负D.t=0.5s时,质点所受合外力为零E.t=0.5s时回复力的功率为零14.一个质点沿直线ab在平衡位置O附近做简谐运动.若从质点经O点时开始计时,经过5s质点第一次经过M点(如图所示);再继续运动,又经过2s它第二次经过M点;则该质点第三次经过M点还需要的时间是()A.6s B.4s C.22s D.8s15.如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,并排悬挂,平衡时两球刚好接触,现将摆球a向左边拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置16.如图所示,虚线和实线分别为甲、乙两个弹簧振子做简谐运动的图象.已知甲、乙两个振子质量相等,则( )A .甲、乙两振子的振幅分别为2cm 、1cmB .甲、乙两个振子的相位差总为πC .前2秒内甲、乙两振子的加速度均为正值D .第2秒末甲的速度最大,乙的加速度最大17.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示。

第9章 机械振动

第9章 机械振动
(cm),该振子的初始状态为( )。
A. 在正最大位移处
00:3 0
B. 在负最大位移处
C. 在平衡位置且向正方向运动
D. 在平衡位置且向负方向运动
精品课件
投票人数:0
3几3种. 说关法于振动相位t
(1)表征了振子的振动状态;
(2)表征了振动的周期性;
(3)给出加速度的方向;
(4)给出回复力的方向。
00:3 0
B. x0.5cosπt(π)
2
C. x1.0coπst)(
D. x0.5 2coπst(π)
4
图9-6
精品课件
投票人数:0
5.把三个完全相同的弹簧、相同的物体分别组成如图9-
7a,b,c 所示的振子,不计摩擦阻力,这三个振子振
动周期的关系为( )。
00:30
A. T1 T2 T3
B. T1T2, T2T3 C. T1T2, T2T3
(cm)
2
x10cosπt(π)
C.
2
图9-17
精品课件
00:3 0
投票人数:0
20.某质点作简谐振动,其振动曲线如图9-18所示。 该质点的振动方程为( )。
A. xAcosπ(tπ)
63
(xcmA)cos7π( tπ)
63
B. xAcos5π(tπ) (cm) 6 3
xAcos1(1πtπ)
C.
k
B. m2g2 2k ;3mg2 /2k
C.
m m 图9-14

投票人数:0
精品课件
14.一质点作简谐振动,其运动方程
cm。设某时刻它在
x 6 co 1s π 0 t (0 0 .7 π )

机械振动课后习题答案

机械振动课后习题答案

机械振动课后习题答案机械振动是力学中的一个重要分支,研究物体在受到外力作用后的振动特性。

在学习机械振动的过程中,课后习题是巩固知识、提高能力的重要途径。

本文将为大家提供一些机械振动课后习题的答案,希望能够帮助大家更好地理解和掌握这一知识。

1. 一个质量为m的弹簧振子在无阻尼情况下振动,其振动方程为mx'' + kx = 0,其中x为振子的位移,k为弹簧的劲度系数。

试求振动的周期。

解答:根据振动方程可知,振子的振动是简谐振动,其周期T与振子的质量m和弹簧的劲度系数k有关。

根据简谐振动的周期公式T = 2π√(m/k),可得振动的周期为T = 2π√(m/k)。

2. 一个质量为m的弹簧振子在受到外力F(t)的作用下振动,其振动方程为mx''+ kx = F(t),其中F(t) = F0cos(ωt)。

试求振动的解析解。

解答:根据振动方程可知,振子的振动是受迫振动,其解析解可以通过求解齐次方程和非齐次方程得到。

首先求解齐次方程mx'' + kx = 0的解xh(t),得到振子在无外力作用下的自由振动解。

然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。

将特解xp(t)代入非齐次方程,求解得到A和φ的值。

最后,振动的解析解为x(t) = xh(t) + xp(t)。

3. 一个质量为m的弹簧振子在受到阻尼力和外力的作用下振动,其振动方程为mx'' + bx' + kx = F(t),其中b为阻尼系数。

试求振动的稳定解。

解答:根据振动方程可知,振子的振动是受到阻尼力和外力的作用,其稳定解可以通过求解齐次方程和非齐次方程得到。

首先求解齐次方程mx'' + bx' + kx = 0的解xh(t),得到振子在无外力和阻尼作用下的自由振动解。

然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。

第9章机械振动习题详解

第9章机械振动习题详解

第9章 机械振动习题详解9-1下列说法正确的是: ( A )A )谐振动的运动周期与初始条件无关B )一个质点在返回平衡位置的力作用下,一定做谐振动。

C )已知一个谐振子在t =0时刻处在平衡位置,则其振动周期为π/2。

D )因为谐振动机械能守恒,所以机械能守恒的运动一定是谐振动。

9-2一质点做谐振动。

振动方程为x=A cos (φω+t ),当时间t=21T (T 为周期)时,质点的速度为 ( B )A )-A ωsin φ;B )A ωsin φ;C )-A ωcos φ;D )A ωcos φ; 9-3一谐振子作振幅为A 的谐振动,当它的动能与势能相等时,它的相位和坐标分别为 ( C ) A )3π±和32π±,;21A ± B )6π±和65π±,;23A ±C )4π±和43π±,A 22±; D )3π±和32π±,;23A ± 9-4已知一简谐振动⎪⎭⎫ ⎝⎛+=531041πt x cos ,另有一同方向的简谐振动()φ+=t x 1062cos ,则φ为何值时,合振幅最小。

( D )A )π/3;B )7π/5;C )π;D )8π/59-5有两个谐振动,x 1t A x ,t A ωωsin cos 221==,A 1>A 2,则其合振动振幅为( A )A )21A A A +=;B )21A A A -=;C )A=2221A A +;D )A=2221A A -9-6一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律用余弦函数作描述,则其初相位应为 ( C )A )π/6;B )5π/6;C )-5π/6;D )-π/69-7质量为 m =1.27×10-3kg 的水平弹簧振子,运动方程为x =0.2cos (2πt +4π)m ,则t =0.25s 时的位移为m 102-,速度为s m /52π-,加速度为2/522s m π,恢复力为N 31008.7-⨯,振动动能为J 4105-⨯,振动势能为J 4105-⨯。

高二物理第九章机械振动知识点及习题练习+单元练习(含答案)

高二物理第九章机械振动知识点及习题练习+单元练习(含答案)

机械振动三、基础知识 1、简谐运动的概念①简谐运动的定义:____________________________________________________________。

②简谐运动的物体的位移x 、回复力F 、加速度a 、速度v 、动能E K 、势能E P 的变化规律: A .在研究简谐运动时位移的起点都必须在平衡位置处。

B .在平衡位置:位移最小、回复力最小、加速度最小;速度最大、动能最大。

C .在离开平衡位置最远时:_________________________________________。

D .振动中:注意以上各量的矢量性和对称性。

③简谐运动机械能守恒,但机械能守恒的振动不一定时简谐运动。

④注意:A .回复力是效果力。

B .物体运动到平衡位置不一定处于平衡状态。

C .简谐运动定义式F=-K x 中的K 不一定是弹簧的劲度系数。

2、总体上描述简谐运动的物理量①振幅A :______________________称为振幅。

它是描述振动______的物理量。

它是__量。

简谐运动的振幅不变,而位移在时刻变化。

②周期T 和频率f :_________________________________称为周期T,它是_____量,单位是秒;________________________________称为振动频率,单位是赫兹(Hz )。

周期和频率都是描述___________的物理量,它们的关系是:T=1/f 。

它们与______无关,由_________________决定,因而以叫_______周期,或______频率。

3、单摆①单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,________________可忽略,线长远大于球的直径,这样的装置叫单摆。

②单摆的特点:A .单摆是实际摆的理想化,是一个理想模型;B .单摆的等时性,在振幅很小的情况下,单摆的振动周期与___________________无关;动C.单摆的回复力由_______________________提供,当最大摆角α<100时,单摆的振动是简谐运动,其振动周期T=__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章 机械振动习题详解9-1下列说法正确的是:( A )A )谐振动的运动周期与初始条件无关B )一个质点在返回平衡位置的力作用下,一定做谐振动。

C )已知一个谐振子在t =0时刻处在平衡位置,则其振动周期为π/2。

D )因为谐振动机械能守恒,所以机械能守恒的运动一定是谐振动。

9-2一质点做谐振动。

振动方程为x=A cos (φω+t ),当时间t=21T (T 为周期)时,质点的速度为 ( B )A )-A ωsin φ;B )A ωsin φ;C )-A ωcos φ;D )A ωcos φ; 9-3一谐振子作振幅为A 的谐振动,当它的动能与势能相等时,它的相位和坐标分别为 ( C ) A )3π±和32π±,;21A ± B )6π±和65π±,;23A ±C )4π±和43π±,A 22±; D )3π±和32π±,;23A ±9-4已知一简谐振动⎪⎭⎫ ⎝⎛+=531041πt x cos ,另有一同方向的简谐振动()φ+=t x 1062cos ,则φ为何值时,合振幅最小。

( D )A )π/3;B )7π/5;C )π;D )8π/59-5有两个谐振动,x 1t A x ,t A ωωsin cos 221==,A 1>A 2,则其合振动振幅为( A )A )21A A A +=;B )21A A A -=;C )A=2221A A +;D )A=2221A A -9-6一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律用余弦函数作描述,则其初相位应为 ( C )A )π/6;B )5π/6;C )-5π/6;D )-π/69-7质量为 m =1.27×10-3kg 的水平弹簧振子,运动方程为x =0.2cos (2πt +4π)m ,则t =0.25s 时的位移为m 102-,速度为s m /52π-,加速度为2/522s m π,恢复力为N 31008.7-⨯,振动动能为J 4105-⨯,振动势能为J 4105-⨯。

9-8一质量为M 的物体在光滑水平面上作简谐振动,振幅是12cm ,在距平衡位置处6cm 速度是24cm/s ,该谐振动的周期T =2.72s ,当速度是12cm/s 时物体的位移为 10.8cm 。

题9-6 图题9-9图9-9如图所示,一倔强系数k 的轻弹簧一端连一质量为m 的滑块,放在光滑水平面上,弹簧另一端固定。

今将弹簧压缩x 0后放手,任其自由振动,以放手时刻作为计时起点,求:(1)振动方程:(2)t =1/16s 时,滑块的位移、速度、加速度和受到的作用力; (3)从起始位置运动到弹簧伸长2x 处所需的最短时间; 2020********/)161cos()161(,16/1/)cos(/)161sin()161(,16/1,/)sin()161cos()161(16/1,)cos()2()cos()cos(0,,1s m m km k x a s t s m t mkm k x dt dv a sm m km k x v s t s m t mk m k x dt dx v m mk x x s t m t mkx x m t mkx t A x A x t mkx A πππππππϕωπϕω+-==+-==+-==+-==+==+=+=+=∴=-====时加速度:时速度:时,位移:振动方程:,由旋转矢量法得初相时,由题意知)解:(mkt t B A x AB πωθωθπθ32,322)3(0==∆∴∆==⋂ ,点的过程点转到即为图中矢量从处,伸长从起始位置运动到弹簧由旋转矢量法知,物体9-10一个小球和轻弹簧组成的系统,按)38(05.0ππ+=t x 的规律振动。

(1)求振动的角频率,周期,振幅,初相,最大速度及最大加速度; (2)求t=1秒,2秒,10秒等时刻的位相。

解:(1)已知m t X )38cos(05.0ππ+=,则πω8=, 4282===πππων, s T 25.0411===ν,题9-9第3问图m x A 05.0max ==, 3πϕ=,)3sin(πωω+-=t A V , s m A V ππω4.0805.0max =⋅==∴)3cos(2πωω+-=t A a ,2222max 2.36405.0s mA a ππω=⋅==∴(2)38ππφ+=t∴t=1s :πππφ325381=+=t=2s : πππφ3493162=+=t=10s :πππφ324138010=+=9-11有一个和轻弹簧相连的小球,沿x 轴作振幅为A 、角频率为ω的简谐振动,该振动的表达式用余弦函数表示,若t=0时,球的运动状态为: (1)A x -=0;(2)过平衡位置向x 轴正向运动; (3)过x=A/2,且向负方向运动。

试用矢量图法求出相应的初位相,并写出振动方程.解:初位相如矢量图所示, 振动方程为: (1))cos(πω+=t A x(2))23cos(πω+=t A x (3))3cos(πω+=t A x9-12 如图所示为两个谐振动的t x -曲线,试分别写出其谐振动方程.题9-12图)365cos(1.0650)3cos(1.00)3cos(1.0)cos(1.03,01,10)()2cos(1.02)cos(2,2,10)(1πππωπωπωϕωπϕπππϕϕωππω-=∴=∴<-=-=+=-====-=∴-=+======t x v t t x cm x s t cm A b t x t A x Ts T cm A a s t b b b b a a a a a a a 且由旋转矢量法得:时,由旋转矢量法:设谐振动方程为:解:9-13.有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量14s m kg 100.1--⋅⋅⨯=∆t F ,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程.)2313.3cos(10195.32310195.313.3/101010100.1)(:303maxmax 234max max πθπϕωωω+⨯=∴=⨯==∴====⨯⨯=∆=∴=∆-----t mv A A v L g s m m t F v mv t F 为计时起点,则有取摆球处在平衡位置时此时摆球处在平衡位置解:由动量定理9-14. 一质点作谐振动,其振动方程为:)43cos(100.62ππ-⨯=-t x(1)当x 值为多大时,系统的势能为总能的一半;(2)质点从平衡位置移动到此位置所需最短时间为多少? 解:(1)∵质点作谐振动∴系统机械能守恒则有:2221021kA kA E E E P K =+=+=2221)21(2121x k kA E E K '==='则2221A x ='A x 22±=' 又∵振动方程为:)43cos(100.62ππ-⨯=-t x∴2100.6-⨯=A 21023-⨯±='x(2)由对称性可令21023-⨯='x ,用向量图法:(图略)⎪⎪⎩⎪⎪⎨⎧++=-+=-πππππππππk t k t 2423432234321 由上两式相减得: s t t 75.04312==- 9-15.有两个同方向、同频率的谐振动,其合成振动的振幅为0.20米,其位相与第一振动的位相差为π/6,已知第一振动的振幅为0.173米,求第二振动的振幅及第一、第二振动之间的位相差。

解:根据题意画出振幅矢量合成图,如习题9-15图所示.由习题9-15图及余弦定理可知 cm 233.172023.172030cos 22212122⨯⨯⨯-+=︒-+=AA A A A 0.10m cm 10== 又因为)cos(cos 12ϕϕϕ∆-=0103.172)100300(4002)(2122212=⨯⨯+-=+-=A A A A A若2πϕ∆=,即第一、第二两个振动的相位差为2π9-16.有一轻弹簧,下面挂一质量为1.0克的物体时,伸长为4.9cm ,用此弹簧和质量为8.0克的小球构成一弹簧振子,将小球由平衡位置向下拉开 1.0cm 后,给予向上的速度5.0cm/s ,试求振动的周期及振动表达式。

(设向下为x 轴正方向) 解:由111kx g m F == 则:2=k (N/m )习题9-15图508.02===m k ω, 而 πωπ522==T 设振动方程为:)cos(ϕω+=t A x , 则对应的有:)sin(ϕωω+-=t A V在t=0时有:⎩⎨⎧-===-=ϕϕsin 505.0cos 01.000A V A x ⎪⎩⎪⎨⎧⨯==⇒-mA 210245πϕ∴振动方程为:m t x )455cos(1022π+⨯=-9-17.已知两个同方向、同频率的简谐振动如下:)5310cos(05.01π+=t x , )510cos(06.02π+=t x 式中x 单位为m ,t 单位为s 。

(1)求它们合振动的振幅与初相位;(2)另有一同方向简谐振动),10cos(07.03ϕ+=t x 问ϕ为何值时,31x x +的振幅最大?ϕ为何值时,32x x +的振幅最小?(3)用旋转矢量法表示(1)、(2)的结果。

解:(1)它们的合振动幅度初相位分别为:)cos(212212221ϕϕ-++=A A A A Am )535cos(06.005.0206.005.022ππ-⨯⨯⨯++=m 0892.0= 22112211cos cos sin sin arctanϕϕϕϕϕA A A A ++=316819.15.2arctan 5cos06.053cos 05.05sin06.053sin 05.0'︒===++=rad ππππ (2)当πϕϕk 21±=-,即ππϕπϕ53221+±=+±=k k 时,31x x +的振幅最大;当πϕϕ)12(2+±=-k ,即5)12()12(2ππϕϕ++±=++±=k k 时,32x x +的振幅最小.(3)略。

相关文档
最新文档