数字信号处理总复习资料
聊大《数字信号处理》复习题及参考答案

一、选择题1. 数字信号处理主要研究的是哪种信号?A. 模拟信号B. 数字信号C. 光信号D. 声信号答案:B解析:数字信号处理主要研究的是数字信号,它通过将模拟信号转换为数字信号,然后对数字信号进行各种处理和分析。
2. 下列哪个不是数字信号处理的基本步骤?A. 采样B. 量化C. 编码D. 传输答案:D解析:数字信号处理的基本步骤包括采样、量化和编码,而传输不属于数字信号处理的基本步骤。
3. 在数字信号处理中,采样率是指什么?A. 每秒钟采样的次数B. 每秒钟传输的比特数C. 每秒钟处理的信号数D. 每秒钟的样本数答案:A解析:在数字信号处理中,采样率是指每秒钟采样的次数,它决定了数字信号的时间分辨率。
4. 下列哪种类型的滤波器在数字信号处理中最为常用?A. 低通滤波器B. 高通滤波器C. 带通滤波器D. 带阻滤波器答案:A解析:在数字信号处理中,低通滤波器是最为常用的滤波器类型,它用于去除信号中的高频成分。
5. 下列哪种类型的变换在数字信号处理中最为常用?A. 傅里叶变换B. 拉普拉斯变换C. Z变换D. 小波变换答案:A解析:在数字信号处理中,傅里叶变换是最为常用的变换类型,它用于将信号从时域转换到频域,以便进行频域分析和处理。
二、填空题1. 数字信号处理(DSP)是将连续的模拟信号转换为离散的数字信号,然后对其进行一系列的操作和分析的过程。
2. 在数字信号处理中,采样是将连续信号在时间上离散化的过程,量化是将采样得到的幅度值离散化的过程。
3. 数字信号处理中的滤波器是一种用于改变信号频谱特性的系统,它可以通过保留或去除特定频率范围内的信号成分来实现。
4. 快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT),它可以将信号从时域转换到频域。
5. 数字信号处理中的Z变换是一种将离散时间信号转换为Z域(复频域)的数学工具,它用于分析和设计离散时间系统。
三、简答题1. 简述数字信号处理的基本步骤。
数字信号处理复习资料

1.序列a{n}为{1,2,4},序列b(n)为{4,2,1},求线性卷积a(n)*b(n)答:a(n)*b(n)={4,10,21,10,4}2.序列x1(n)的长度为N1,序列x2(n)的长度为N2,则他们线性卷积长度为多少?答:N1+N2-1第二次1.画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用。
第三次1.简述时域取样定理的基本内容。
第四次1.δ(n)的Z变换是?答:Z(δ(n))=12.LTI系统,输入x(n)时,输出y(n);输入为3x(n-2),输出为?答:3y(n-2第五次1、已知序列Z变换的收敛域为|z|>2,则该序列为什么序列?答:因果序列加右边序列1.相同的z变换表达式一定对应相同的时间序列吗?答:不一定,因为虽然z变换的表答式相同,但未给定收敛域,即存在因果序列和反因果序列两种情况。
2.抽样序列在单位圆上的z变换,等于其理想抽样信号的傅立叶变换?答:相等,傅里叶变换X(e^jw)=∑+∞∞-(-jwn)x(n)e^而Z变换为X(z)= ∑+∞∞-(-n)x(n)Z^令Z=e^(-jw)即X(z)|z=e^jw=X(e^jw)此时正是对应在单位圆上3.试说明离散傅立叶变换和z变换之间的关系。
答:抽样序列在单位圆上的z变换,等于其理想抽样信号的傅立叶变换。
第七次1.序列的傅里叶变换是频率w的周期函数,周期是2π吗?答:是,X(e^jw)= ∑+∞∞-(-jwn)x(n)e^= ∑+∞∞-+2mπn)x(n)e^-j(w(m为整数)2.x(n)=sinw(n)所代表的序列不一定是周期的吗?答:不一定,在于w(n)是否被2π整除。
第八次1.一个有限长为x(n)=δ(n)+ 2δ(n-5)(1)计算序列x(n)的10点DFT变换(2)前序列y(n)的DFT为y(k)=e^(j2k2π/10)x(k),式中x(k)是x(n)10点离散傅里叶变换,求序列y(n)答:(1)X(k)=∑-=-1)/π2(^)(NnNknjenx=∑=-+9)5/(^5)-2δ(nδ(n)[njwkn e=1+2e^(-jπk)=1+2(-1)^k (k=0,1,2,3……9)(2)y(k)=e^(j2k2π/10)x(k)=W k210-x(k)相当于将序列x(n)向左平移2个单位,即y(n)=δ(n+2)+ 2δ(n-3)第九次1、时间抽取法FFT对两个经时间抽取的n/2点离散序列x(2n)和x(an-1)做DFT,并将结果相加就得一个N点的DFT(x)2、用微处理机对实数序列做谱分析,要求谱分辨率小于等于50HZ,信号最高频率为1KHZ,试确定以下参数;(1)最小记录时间Tpmin(2)最大取样间隔Tmax(3)最小采样点数Nmin答:(1)Tpmin=1/F=1/50=0.02s (2)Tmax=1/2fc=1/2000=0.5ms (3)Nmin=Tpmin/Tmax=40第十次1、8点序列的按时间抽取的DFT-2FFT如何表示?答:第十一次1、已知序列x(n)=4δ(n)+ 3δ(n-1)+ 2δ(n-2)+ δ(n-3),x(k)是x(n)的6点DFT(1)有限长序列y(n)的6点DFT是y(k)= W k46x(k),求y(n)(2)若有限序列w(n)的6点DFT等于x(k)实部w(k)=Re(x(k)),求w(n)答:(1)y(n)=x(n-4)=4δ(n-4)+ 3δ(n-5)+ 2δ(n-6)+ δ(n-7)(2)x(k)=∑=5knNW)(nnx= ∑=5kn63)W-δ(n+2)-2δ(n+1)-3δ(n+4δ(n)n=4+3k6W+22k6W+3k6W又x(k)=4+3-k6W+2-2k6W+-3k6W则w(k)=Re(x(k))=1/2(8+3k6W+22k6W+23k6W+35k6W+24k6W)则w(n)=4δ(n)+ 3/2δ(n-1)+ δ(n-2)+ δ(n-3)+δ(n-4)+ 3/2δ(n-5)第十二次1、用DFT对连续信号进行谱分析的误差问题有哪些?答:由DFT变换的分析法得x(k)看不到Xa(j )的全部频谱特性,而只看到N个离散采样点的谱成于点就产生了所谓的栅栏效应、频谱混叠、截断效应第十三次1、8点序列的按频率抽取的DFT -2FFT如何表示.?答:第十题反过来第十四次1、用差分方程表示系统的直接型和级联型结构y(n)-3/4y(n-1)+1/8y(n-2)=x(n)+1/3x(n-1)①直接型②级联型第十五次1、系统的单位脉冲响应h(n)=2δ(n)+ 3δ(n-1)+ 4δ(n-2)+ 2δ(n-3)+ 0.5δ(n-5),写出系统函数,并画出它的直接型结构答:H(z)=2+3Z^-1+4Z^-2+2Z^-3+0.5Z^-5第十六次1、 简述用双线性法设计IIR 数字低通滤波器的设计步骤? 答:①根据设计要求确定相应的模拟滤波器的传递函数H(z);②再得到数字滤波器的传递函数H(z)=Ha(s)|s=Z/T(1-Z^-1)/(1+Z^-1)=Ha(Z/T(1-Z^-1)/(1+Z^-1)) ③由w=2arctan (T Ω/2)得到低频段接近线性在高频段非线性较为严重对其作预畸变方法,补偿通带截止频率和阻带截止频率分别为Wp ,Ws 预畸变处理距为Ωp ,Ωs第十七次1、 用脉冲响应不变法一个数字滤波器,模拟原型的系统函数为H (s )=(s+a)/[(s+a )^2+b^2]? 答:Ha (s )=2^2)^(b a s a s +++= )(1jb a s A +++ )(2jb a s A -+A1=)(jb a s a s -++|s=-(a+jb )=0.5; A2= )(jb a s as +++|s=-(a-jb )=0.5;则Ha (s )=)(5.1jb a s +++)(5.0jb a s -+,又H (z )=)1^()1(^11--Z T S e A +)1^()2(^12--Z T S e A ,代入H(z)=1^])a -jb ([^15.0--Z T e +1^])a -jb ([^15.0---Z T e第十八次1、 简述用窗函数法设计FIR 数字低通滤波器设计的步骤? ① 给出设计的滤波器的频率响应函数Ha (e^jw );② 根据允许的过滤带宽积和阻带衰减,选择窗函数和它的宽度N ; ③ 计算设计的滤波器的冲击响应hd (n )Hd (n )=πππ-21Hd (e^jw )e^(jwn)dw ;④ 计算FIR 数字滤波器的单位取样响应h (n ),h (n )=hd (n )w (n )其中w (n )是选择的窗函数;⑤ 计算FIR 数字滤波器的频率响应,验证是否达到所求的指标H (e^jw )=∑-=1N nh(n)e^jw ;⑥ 由H(e^jw)计算幅度响应H(w)和相位响应g (w );第十九次1、 设某FIR 数字滤波器的冲击响应,h(0)=h(7)=1,h(1)=h(6)=3,h(2)=h(5)=5,h(3)=h(4)=6,其他的值h(n)=0,试求H(e^jw)的幅频响应和相频响应表达式,并画出该滤波器流程图的线性相位结构形成?答:h(n)={ 1, 3 , 5 ,6 ,6 ,5 ,3 ,1} 0<=n<=7H(e^jw)= =∑-=1N nh(n)e^jwn=1+3e^-jw+5e^-j2w+6e^-j3w+6e^-j4w+5e^-j5w+3e^-j6w+e^-j7w=e^-7/2jw(e^7/2jw+e^-7/2jw)+3e^-7/2jw(e^5/2jw+e^-5/2jw)+5e^-7/2jw(e^3/2jw+e^-3/2jw)+6e^j7/2w(e^jw/2+e^-jw/2)=[12cos(w/2)+10cos(3w/2)+6cos(5w/2)+2cos(7w/2)] e^-7/2jw则幅频响应:H(w)= 12cos(w/2)+10cos(3w/2)+6cos(5w/2)+2cos(7w/2) 相频响应:w w 2/7)(-=ϕ线性相位结构H(z)=1+3Z^-1+5 Z^-2+6 Z^-3+6 Z^-4+5 Z^-5+3 Z^-6+ Z^-7第二十次1、 用矩形窗设计线性相位低通滤波器,逼近滤波器传递函数为Hd(e^jw)=e^-jwa 0<=|w|<=wc Hd(e^jw)=0 wc<=|w|<=π (1) 求出相应的理想低通的单位脉冲响应hd (n )(2) 求出矩形窗设计法的h (n )表达式,确定a 和N 的关系 (3) N 取奇数或偶数的滤波器特性有什么影响? 答:(1)hd (n )=π21⎰--ππjwndw e jw e Hd ^)^(=π21⎰--wcwc jwndw jwae e ^^=)()](sin[a n a n wc --π(2)要满足线性相位条件,则a=21-N ,则Nπ4<=8πN>=32 则 h (n )=hd (n )RN (n )=)()](sin[a n a n wc --π RN (n )=⎪⎩⎪⎨⎧--0)()](sin[a n a n wc π2/)1(,10其他-=-<=<=N a N n(4) N 为奇数时:Hg(w)关于w=0,π,2 π偶对称,可实现各类幅频特性;N 为偶数时:Hg (w )关于w= π对称即幅度响应函数Hg (w )=0,则 实现高通带阻滤波特性。
数字信号处理总复习

数字信号处理总复习第1章时域离散信号与系统1.1信号:传载信息的函数。
(1)模拟信号:在规定的连续时间内,信号的幅值可以取连续范围内的任意值,如正弦、指数信号等,即时间连续、幅值连续的信号。
(2)时域连续信号:在连续时间范围内定义的信号,信号的幅值可以是连续的任意值,也可以是离散(量化)的。
模拟信号是连续信号的特例,一般可以通用。
(3)时域离散信号:在离散的时间上定义的信号,独立(自)变量仅取离散值。
其幅值可以是连续的,也可以是离散(量化)的。
如理想抽信号是典型的离散信号,其幅值是连续的。
(4)数字信号:是量化的离散信号,或时间与幅值均离散的信号,即时间离散幅度被量化的信号为数字信号。
1.2 序列1.2.1序列的定义离散时闻信号可用序列来表示。
序列是一串以序号为自变量的有序数字的集合,简写作x(n)。
x(n)可看作对模拟信号x a(n)的脉冲,即x(n)=x a(n)也可以看作一组有序的数据集合。
1.2.2常用的序列(熟练掌握)数字信号处理中常用的典型序列列举如下:1.单位脉冲序列 2. 单位阶跃序列 3. 矩形序列 4. 实指数序列 5. 复指数序列 6. 正弦7. 周期序列及判别 1.2.3 序列运算(掌握) 1.3 时域离散系统(掌握特性) 1.4 卷积(掌握)例1.4-1、例1.4-21、图表法;2、表格阵法;3、相乘对位相加法;4、卷积的性质(了解)。
1.5 常系数线性差分方程1.6 数字化处理方法 理解物理概念及采样过程:熟练掌握采样定理:()()r n x b k n y a r Mr k Nk -=-∑∑==00()()()k n y a r n x b n y k Nk r M r ---=∑∑==1或:1.6-8、9式第2章 Z 变换与离散系统的频域分析2.1 Z 变换z 变换的定义可由抽样信号的拉氏变换引出的定义及过程。
2.2.1 Z 变换的收敛区理解Z 变换的收敛区的概念。
数字信号处理总复习

课程主要内容及基本要求一、离散傅里叶变换及应用(DFT & FFT)1.DFT的定义、性质、计算及应用——第3章2.DFT的快速算法(FFT)——第4章➢傅里叶变换的4种形式,傅里叶变换形式与时域信号的对应关系。
➢DFS的定义性质计算,理解周期卷积过程。
➢DFT的定义、计算、性质,掌握圆周移位、共轭对称性、圆周卷积与线性卷积的关系。
➢理解掌握频谱分析过程,频谱分析参数(DFT点数、频谱分辨力F、记录长度Tp等)的计算,存在的误差及减少措施。
➢理解掌握DIT和DIF的基2-FFT算法原理、运算流图、计算量➢理解IFFT算法原理➢了解CZT算法及分段卷积方法(重叠相加法、重叠保留法)二、数字滤波器设计与实现(IIR Filter & FIR Filter)1.IIR Filter 设计与实现——第6、5章2.线性相位FIR Filter 设计与实现——第7、5章➢掌握IIR滤波器结构、FIR滤波器结构,结构形式的主要特点、与H(z)表达式的关系➢冲激响应不变及双线性变换法原理、变换方法、特点、适用场合➢巴特沃思和切比雪夫Ⅰ型低通滤波器设计方法、频响特点、极点分布特点➢掌握利用模拟滤波器设计IIR数字滤波器的设计过程➢了解利用频带变换法设计各种类型数字滤波器的方法➢掌握线性相位FIR滤波器的特点➢理解掌握窗函数设计方法,窗函数主要指标和特点,影响过渡带宽度与阻带衰减的因素➢了解频率采样设计法第3章 离散傅里叶变换——复习1. 基本概念➢ 信号:信息的物理表现形式。
➢ 序列(离散时间信号):时间离散,幅值连续(无限精度)。
➢ 数字信号:时间离散,幅值量化(有限精度)。
➢ 信号处理:从信号中提取有用信息。
➢ 数字信号处理:用数字方法去处理。
或者说:用数字或符号表示的序列来描述信号,再用计算机或专用处理设备以数值计算的方法来处理这些序列,得到所需序列,提取信息。
2. Z 变换➢ Z 变换的定义:对离散时间信号(序列)的变换。
数字信号处理主要知识点整理复习总结

求出对应
的各种可能的序列的表达式。
解: 有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况: 三种收敛域对应三种不同的原序列。
时,
(1)当收敛域
令
,因为c内无极点,x(n)=0;
,C内有极点0,但z=0是一个n阶极点,改为求圆外极点留数,圆外极点有
数字信号处理课程 知识点概要
第1章 数字信号处理概念知识点
1、掌握连续信号、模拟信号、离散时间信号、数字信号的特点及相互关系(时间和幅度的连续性考量) 2、数字信号的产生; 3、典型数字信号处理系统的主要构成。
量化、编码 ——————
采样 ————
模拟信号
离散时间信号
数字信号
5、部分分式法进行逆Z变换 求极点 将X(z)分解成部分分式形式 通过查表,对每个分式分别进行逆Z变换 注:左边序列、右边序列对应不同收敛域 将部分分式逆Z变换结果相加得到完整的x(n)序列 6、Z变换的性质 移位、反向、乘指数序列、卷积
常用序列z变换(可直接使用)
7、DTFT与Z变换的关系
(a) 边界条件 时,是线性的但不是移不变的。
(b) 边界条件 时,是线性移不变的。
令
….
所以:
….
所以:
可见 是移一位的关系, 亦是移一位的关系。因此是移不变系统。
代入差分方程,得:
……..
所以:
因此为线性系统。
3. 判断系统是否是因果稳定系统。
Causal and Noncausal System(因果系统) causal system: (1) 响应不出现于激励之前 (2) h(n)=0, n<0 (线性、时不变系统) Stable System (稳定系统) (1) 有界输入导致有界输出 (2) (线性、时不变系统) (3) H(z)的极点均位于Z平面单位圆内(因果系统)
数字信号处理总复习

第一部分 信号与系统分析
时域分析:信号和系统的性质;LTI系统的输入、输出关系
变换域分析:信号和系统的性质;LTI系统的输入、输出关系、 频率特性分析(DTFT、ZT、DFT)、性质及应用 例1:判断系统:
2 2 y (n ) x (n ) sin( n ) 9 7
的(1)线性;(2)时变性;(3)因果性;(4)稳定性 (5)是否是周期序列;若是求出其周期。
2 0 lg| H( ) |/d B 0 -5 0 -1 00 0 0 .5 (b ) 2 00 0 -2 00 0 2 00 0 1
2 0lg| H( ) |/d B 0 -5 0
/ 2
-1 00 0
0 .5 d )
6 00 0
t 8 00 0
2 00 0 -2 00 0 2 00 0 4 00 0 (e) 6 00 0 t 8 00 0
求该滤波器的单位脉冲响应h(n),判断是否具有线性相位,求 其幅频特性和相位特性,并画出直接型结构。 例3 用双线性变换法设计一个3阶巴特沃斯低通滤波器。已知 ωc=0.2π。
例4 用窗函数法设计一个线性相位FIR低通滤波器,给定
阻带起始频率为 Ωst 2 3 103 rad / s,阻带衰减不小于 50dB。
x(0) x(4) x(2) x(6) x(1) x(5) x(3) x(7)
0 WN
0 WN 0 WN
X(0)
0 WN
-1
0 WN
X(1) X(2) X(3)
0 WN
1 WN
-1
2 WN
-1
-1
-1 -1 -1
X(4) X(5) X(6) X(7)
-1
0 WN
数字信号处理复习资料
1正弦序列数字频率与模拟角频率Ω的关系为=ΩT,模拟角频率Ω与序列的数字频率成线性关系。
=Ω/Fs表示数字域频率是模拟角频率对采样频率的归一化频率。
2线性系统T[x1(n)+x2(n)]=y1(n)+y2(n)表征线性系统的可加性;T[ax1(n)]=ay1(n)表征线性系统的比例性或齐次性(a位常数)。
y(n)=T[ax1(n)+bx2(n)]=ay1(n)+by2(n3检查仪的系统是否是时不变系统,就是检查其是否满足y(n)=T[x(n)] y(n-n0)= T[x(n-n0)]4线性时不变系统具有因果性的充分必要条件是系统的单位脉冲响应满足下式:h(n)=0 n<05系统稳定的充分必要条件是系统的单位脉冲响应绝对可和,用公式表示为系统稳定的条件是H(z)的收敛域包含单位圆。
如果系统因果且稳定,收敛域包含点和单位圆,那么收敛域可表示为r<≤ 0<r<1 这样H(z)的极点集中在单位圆的内部。
最小相位系统:如果因果稳定系统H(z)的所有零点都在单位圆内,则称之为“最小相位系统”特点:1、任何一个非最小相位系统的系统函数H(z)均可由一个最小相位系统(z)和一个全通系统(z)级联而成,即H(z)=(z)(z) 2、在幅频响应特性相同的所有因果稳定系统集中,最小相位系统的相位延迟最小。
3最小相位系统保证其逆系统存在。
、6FT[x(n)]存在的哇充分条件是序列x(n)绝对可和,既满足下式:7序列x(n)的Z变换定义为X(z)式中z是一个复变量,它所在的复平面称为z平面。
Z变化存在的条件是等号右边级数收敛,要求级数绝对可和,即. Z变量取值的域称为收敛域,一般收敛域位环状域,即8用DFT进行谱分析产生误差的现象:1、混叠现象。
2、栅栏效应。
3、阶段效应。
原因:1、泄露2、谱间干扰。
循环卷积等于线性卷积的条件是L≥N+M-19 DIT-FFT算法的分解过程可见,N=时,其运算流图应有M级蝶形,每一级都有N/2个蝶形运算构成。
数字信号处理总复习 (1)
h(n) 0 n 0
单位采样响应与卷积和
既满足叠加原理,又满足非移变条件的系统,被称为线性 非移变系统。这类系统的一个重要特性,是它的输入与输 出序列之间存在着线性卷积关系。 1.单位取样响应或单位冲激响应 当系统的输入为单位脉冲序列δ(n) 时,其输出h(n)为系 统的单位取样响应 ,即:
y ( n) x ( n) * h( n) x ( m) h( n m) m Y (e j ) X (e j ) H (e j )
• 6、频域卷积定理(序列相乘)
y ( n) x ( n) h( n) 1 1 Y (e j ) X (e j ) H (e j ) 2 2
• 4)复序列的对称性质
时域 x ( n) Re[ x(n)] j Im[ x(n)] xe (n) xo (n) 频域 X (e j ) X e (e j ) X o (e j ) Re[ X (e j )] j Im[ X (e j )]
• 5、时域卷积定理(序列卷积)
X (e j ) H (e j ( ) )d
• 7、帕斯维尔定理
1 | x(n) | 2 n
2
| X (e j ) |2 d
其中:x(n) |2 x(n) x* (n);| X (e j ) |2 X (e j ) X * (e j ) |
• 线性系统(叠加性和齐次性)
T [a1 x1 (n) a2 x2 (n)] a1T [ x1 (n)] a2T [ x2 (n)] a1 y1 (n) a2 y2 (n)
• 时不变系统
对移不变系统,若T[x(n)] y (n) 则 T [ x(n m)] y (n m),m为任意整数
数字信号处理总复习共171页
数字信号处理总复习
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心Fra bibliotek必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
数字信号处理总复习资料
第一章 离散时间信号与系统
序列及其三种表示方法 序列的运算:加法、乘法、移位、翻褶、卷积和 卷积和的定义及三种计算方法:图解、列表、对位相乘相加 常用序列及用常用序列表示其它序列 序列的周期性,尤其是对正弦序列周期性的讨论 线性、移不变、因果、稳定系统的特点及证明 单位冲激响应的概念 常系数线性差分方程的概念及其与LTI系统的关系 模拟信号抽样及奈奎斯特抽样定理 信号重建时理想低通滤波器的特性 数字域频率与模拟域频率的关系
第四章快速傅里叶变换fftfft是dft的一种快速算法而不是一种新的变换它可以在数量级的意义上提高运算速度ditfft和基2diffft的运算量05nlog简单的基2ditfft和基2diffft流程图n48和基本的蝶形运算倒位序和自然位序的概念及简单计算第五章数字滤波器的基本结构无限长单位冲激响应滤波器的基本结构直接i型和ii型级联型并联型及优缺点有限长单位冲激响应滤波器的基本结构直接型级联型快速卷积型及优缺点要求给出差分方程或系统函数或hn能画出iir与fir滤波器各结构的信号流图基础1数字滤波器的表示
y ( n)
m
x ( m) h ( n m ) x ( n ) h ( n )
线性、移不变、因果、稳定系统的特点及证明
对于LSI系统,具有 因果性的充要条件是系统 的单位取样响应满足: 对一个LSI系统来说,系 统稳定的充要条件是单位取样 响应绝对可和,即:
h(n) 0, n 0
序列的运算——加法、乘法
1. 序列的加法
x(n) x1 (n) x2 (n)
同序号的序列值逐项对应相加 2. 序列的乘法
1, 2,3, 4 1, 2,3, 4 1, 3,5, 7, 4 1, 2,3, 4 1, 2, 3, 4 0, 2, 6,12, 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1, n 0 ( n) 0, n 0
2. 单位阶跃序列u(n)
RN (n) u(n) u(n N )
RN ( n ) ( n m )
m 0 N 1
k 0
1, n 0 u ( n) 0, n 0
序列的周期性,尤其是对正弦序列周期性的讨论
如果对所有n存在一个最小的正整数N,使下 面等式成立: x(n) x(n N ) 则称x(n)为周期序列,最小周期为N。
例: x(n) sin(
4 x(n) sin[ ( n 8)] 4 sin[ n 2 ], 4
1
2
2 4 3
3 5
2 n 1 0n2
相 加 相 加
5 10 20 15 3 6 12 9 2 4 8 6
2
7 19 28 29 15
2 n 3
解得y(n)={2,7,19,28,29,15}
常用序列及用常用序列表示其它序列
1. 单位抽样序列(n)
(n) u (n) u (n 1)
数字信号处理总复习
2013~2014学年第一学期
本课程要掌握的英文简称
DSP:Digital Signal Processing数字信号处理 Digital Signal Processor 数字信号处理器 LSI:Linear Shift Invariant线性移不变 DTFT:Discrete Time Fourier Transform离散时间傅里叶变换 DFT:Discrete Fourier Transform离散傅里叶变换 DFS:Discrete Fourier Series离散傅里叶级数 FFT:Fast Fourier Transform快速傅里叶变换 IIR:Infinite Impulse Response无限长单位冲激响应 FIR:Finite Impulse Response有限长单位冲激响应 LPF/HPF/BPF/APF:Low/High/Band/All Pass Filter低/高/带/全通滤波器 BEF/BRF:Band Elimination/Rejection Filter带阻滤波器 AF/DF:Analog/Digital Filter模拟/数字滤波器 AR/MA:Auto-Regressive/Moving Average自回归/滑动平均
数字域角频率 模拟域角频率 采样间隔 采样频率
T
T / f s 2 f / f s
数字域频率与模拟域频率的关系!!!
f s 1/ T
序列的周期性,尤其是对正弦序列周期性的讨论
正弦序列的周期性讨论: N (2 / 0 )k
2
0 2 0
2
整数时,则正弦序列有周期,当k=1时,
3. 矩形序列RN(n)
1, 0 n N 1 RN (n) others 0,
用(n) 表示y(n)={2,7,19,28,29,15} y(n) 2 (n 2) 7 (n 1) 19 (n) 28 (n 1) 29 (n 2) 15 (n 3)
a1 y1 (n) a2 y2 (n) [a1 x1 (n) a2 x2 (n)] sin( n ) 9 7
T [a1 x1 (n) a2 x2 (n)] a1 y1 (n) a2 y2 (n) 所以,此系统是线性系统。
2 y (n) x(n)sin( n ) 是线性系统。 9 7
x(n 1) {1, 2,3, 4} x(n 1) {1, 2, 3, 4}
注意:与第三章的 圆周翻褶做对比!
x(n) {1, 2,3, 4}, x(n) ? {4,3, 2,1}
卷积和的三种计算方法
卷积和(线性卷积) 注意:与第三章的圆周卷积、周期卷积做对比!
y ( n ) x ( n ) h ( n)
序列的运算——加法、乘法
1. 序列的加法
x(n) x1 (n) x2 (n)
同序号的序列值逐项对应相加 2. 序列的乘法
1, 2,3, 4 1, 2,3, 4 1, 3,5, 7, 4 1, 2,3, 4 1, 2, 3, 4 0, 2, 6,12, 0
x1 (n) {1, 2,3, 4}, x2 (n) {1, 2,3, 4}, x1 (n) x2 (n) ?
y1 (n) T [ x1 (n)], y2 (n) T [ x2 (n)]
T [ax1 (n) bx2 (n)] aT [ x1 (n)] bT [ x2 (n)] ay1 (n) by2 (n)
线 性
[例]
2 y (n) x (n) sin( 2 n ) 证:y1 (n) x1 (n) sin( n ) 2 2 9 7 9 7 2 T [a1 x1 (n) a2 x2 (n)] [a1 x1 (n) a2 x2 (n)] sin( n ) 9 7 2
卷积和的三种计算方法——列表法
已知x(n)={1,2,4,3},h(n)={2,3,5}, 求y(n)=x(n)*h(n)
2
3 5
1 2 3 5
2 4 6
4 8
3 6
12 9
10 20 15
解得y(n)={2,7,19,28,29,15}
卷积和的三种计算方法——对位相乘相加法
已知x(n)={1,2,4,3},h(n)={2,3,5}, 求y(n)=x(n)*h(n)
第一章 离散时间信号与系统
序列及其三种表示方法 序列的运算:加法、乘法、移位、翻褶、卷积和 卷积和的定义及三种计算方法:图解、列表、对位相乘相加 常用序列及用常用序列表示其它序列 序列的周期性,尤其是对正弦序列周期性的讨论 线性、移不变、因果、稳定系统的特点及证明 单位冲激响应的概念 常系数线性差分方程的概念及其与LTI系统的关系 模拟信号抽样及奈奎斯特抽样定理 信号重建时理想低通滤波器的特性 数字域频率与模拟域频率的关系
y(n) T [ x(n)]
y(n n0 ) T [ x(n n0 )]
移不变性
线性、移不变、因果、稳定系统的特点及证明
[例] 证明 证:y(n) nx(nFra bibliotek 系统是移变系统
T [ x(n n0 )] nx(n n0 )
y(n n0 ) (n n0 ) x(n n0 )
y ( n)
m
x ( m) h ( n m ) x ( n ) h ( n )
线性、移不变、因果、稳定系统的特点及证明
对于LSI系统,具有 因果性的充要条件是系统 的单位取样响应满足: 对一个LSI系统来说,系 统稳定的充要条件是单位取样 响应绝对可和,即:
h(n) 0, n 0
y(n n0 ) T [ x(n n0 )]
所以,此系统不是时不变系统。 同理,可证明 y (n) x(n) sin( 0 n ) 所代表的 4 系统不是时不变系统。
线性、移不变、因果、稳定系统的特点及证明
[例]
判断y(n)=3x(n)+4所代表的系统是否是线性系统, 是否是移不变系统?
x(n) x1 (n) x2 (n)
同序号的序列值逐项对应相乘
x1 (n) {1, 2,3, 4}, x2 (n) {1, 2,3, 4}, x1 (n)x2 (n) ?
序列的运算——移位、翻褶
1. 序列的移位
y(n) x(n n0 )
当 n0>0 时,序列右移(延迟) 当 n0<0 时,序列左移(超前) x(n) {1, 2,3, 4}, x(n 1) ?, x(n 1) ? 2. 序列的翻褶 x(-n)是x(n)的翻转序列。 x(-n)是以纵轴(n=0)为对称轴 将序列x(n)加以翻转。
Step3:相乘
=2 =7 =19 =28 =29 =15
Step4:相加
h(-1-m)={ 5, 3, 2, 0}
h(-m)={ 5, 3, 2} h(1-m)={ 5, 3, 2} h(2-m)={ 5, 3, 2} h(3-m)={ 0, 5, 3, 2}
Step2:移位
解得y(n)={2,7,19,28,29,15}
离散时间信号——序列及期三种表示方法
离散时间信号的表示方法:函数表示法、数列 表示法、图形表示法,如
x(n) {1, a, a2 , a3 , a4 , a5 , a6}
x(n)
1
x(n) an RN (n), N 7
n 6
0
要求能够根据任一种表示方法写出另外两种方 法的序列的表示!
T [a1 x1 (n) a2 x2 (n)] a1 y1 (n) a2 y2 (n)
所以,此系统不是线性系统。
线性、移不变、因果、稳定系统的特点及证明
T [ x(n n0 )] 3x(n n0 ) 4
y(n n0 ) 3x(n n0 ) 4
y(n n0 ) T [ x(n n0 )]
n)
N 8
以下讨论正弦序列的周期性,但是当序列不是正(余)弦序列(包括 复指数序列)时,则需要按周期序列的定义式进行判断。
序列的周期性,尤其是对正弦序列周期性的讨论
正弦序列
x(n) A sin( n )
式中,A为幅度,ω为数字域频率,单位为 弧度,φ为初始相位。
x(n) x(t ) t nT A sin(t ) t nT A sin(nT ) A sin( n )