数字信号处理复习资料答案)

合集下载

数字信号处理复习资料(答案)

数字信号处理复习资料(答案)

一、 填空题1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字 信号。

2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。

3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。

4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。

5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是()n h n ∞=-∞<∞∑6、巴特沃思低通滤波器的幅频特性与阶次N 有关,当N 越大时,通带内越_平坦______,过渡带越_窄___。

7、用来计算N =16点DFT ,直接计算需要__(N 2)16*16=256_ __次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32_____ 次复乘法。

8、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型____和 _并联型__四种。

9、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中并联型 的运算速度最高。

10、数字信号处理的三种基本运算是: 延时、乘法、加法 11、两个有限长序列和长度分别是和,在做线性卷积后结果长度是__N 1+N 2-1_____。

12、N=2M 点基2FFT ,共有__ M 列蝶形,每列有__ N/2 个蝶形。

13、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对14、数字信号处理的三种基本运算是: 延时、乘法、加法15、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。

16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。

17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。

数字信号处理复习题及参考答案

数字信号处理复习题及参考答案

数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。

(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。

①Ωs②.Ωc③.Ωc/2④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。

①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。

①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。

①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。

①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。

①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。

①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。

数字信号处理复习题带答案

数字信号处理复习题带答案

1.若一模拟信号为带限信号,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过_____A____即可完全不失真恢复原信号。

A、理想低通滤波器B、理想高通滤波器C、理想带通滤波器D、理想带阻滤波器2.下列哪一个单位抽样响应所表示的系统不是因果系统___D__A、.h(n)=δ(n)+δ(n-10)B、h(n)=u(n)C、h(n)=u(n)-u(n-1)D、 h(n)=u(n)-u(n+1)3.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是_____A_____。

≥M ≤M≤2M ≥2M4.以下对双线性变换的描述中不正确的是__D_________。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内D.以上说法都不对5、信号3(n)Acos(n)78xππ=-是否为周期信号,若是周期信号,周期为多少?A、周期N=37πB、无法判断C、非周期信号D、周期N=146、用窗函数设计FIR滤波器时,下列说法正确的是___a____。

A、加大窗函数的长度不能改变主瓣与旁瓣的相对比例。

B、加大窗函数的长度可以增加主瓣与旁瓣的比例。

C、加大窗函数的长度可以减少主瓣与旁瓣的比例。

D、以上说法都不对。

7.令||()nx n a=,01,a n<<-∞≤≤∞,()[()]X Z Z x n=,则()X Z的收敛域为__________。

A 、1||a z a -<<B 、1||a z a -<<C 、||a z <D 、1||z a -< 。

点FFT 所需乘法(复数乘法)次数为____D___。

A 、2N log NB 、NC 、2ND 、2log 2NN 9、δ(n)的z 变换是AA. 1B.δ(w)C. 2πδ(w)D. 2π 10、下列系统(其中y(n)是输出序列,x(n)是输入序列)中__ C___属于线性系统。

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
第 1 章 时域离散信号和时域离散系统
题8解图(一)
第 1 章 时域离散信号和时域离散系统
(5) 画x3(n)时, 先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°), 然后再右移2位, x3(n)波形如题2解图(四)所示。
第 1 章 时域离散信号和时域离散系统
题2解图(一)
第 1 章 时域离散信号和时域离散系统
题2解图(二)
第 1 章 时域离散信号和时域离散系统
题2解图(三)
分别求出输出y(n)。
(1) h(n)=R4(n), x(n)=R5(n) (2) h(n)=2R4(n), x(n)=δ(n)-δ(n-2) (3) h(n)=0.5nu(n), xn=R5(n)
解: (1) y(n)=x(n)*h(n)=

数字信号处理第三版习题答案

数字信号处理第三版习题答案

数字信号处理第三版习题答案数字信号处理(Digital Signal Processing,简称DSP)是一门研究如何对数字信号进行处理和分析的学科。

它在现代通信、音频处理、图像处理等领域有着广泛的应用。

为了更好地理解和掌握数字信号处理的知识,许多人选择了《数字信号处理(第三版)》这本经典教材。

本文将为大家提供一些《数字信号处理(第三版)》习题的答案,以帮助读者更好地学习和巩固所学知识。

第一章:离散时间信号和系统1.1 习题答案:a) 离散时间信号是在离散时间点上取值的信号,而连续时间信号是在连续时间上取值的信号。

b) 离散时间系统是对离散时间信号进行处理的系统,而连续时间系统是对连续时间信号进行处理的系统。

c) 离散时间信号可以通过采样连续时间信号得到。

1.2 习题答案:a) 线性系统满足叠加性和齐次性。

b) 时不变系统的输出只与输入的时间延迟有关,与输入信号的具体形式无关。

c) 因果系统的输出只与当前和过去的输入有关,与未来的输入无关。

第二章:离散时间信号的时域分析2.1 习题答案:a) 离散时间信号的能量是信号幅值的平方和,而功率是信号幅值的平方的平均值。

b) 离散时间信号的能量和功率可以通过计算信号的幅值序列的平方和和平方的平均值得到。

2.2 习题答案:a) 离散时间信号的自相关函数是信号与其自身经过不同时间延迟的乘积的和。

b) 离散时间信号的自相关函数可以用于确定信号的周期性和频率成分。

第三章:离散时间信号的频域分析3.1 习题答案:a) 离散时间信号的频谱是信号在频率域上的表示,可以通过对信号进行傅里叶变换得到。

b) 离散时间信号的频谱可以用于分析信号的频率成分和频谱特性。

3.2 习题答案:a) 离散时间信号的频谱具有周期性,其周期等于采样频率。

b) 离散时间信号的频谱可以通过对信号进行离散傅里叶变换得到。

第四章:离散时间系统的频域分析4.1 习题答案:a) 离散时间系统的频率响应是系统在不同频率下的输出与输入之比。

数字信号处理习题集及答案

数字信号处理习题集及答案
证明略。
6. 长为N的有限长序列, 分别为 的圆周共轭偶部及奇部,也即
证明:

7.若
证: (1)
(2)
由(2) ,将 互换,则有
(这应该是反变换公式)
(用 ,且求和取主值区)
与(1)比较所以
8.若 ,求证 。
证:

( 为整数)
0
所以
于是
9.令 表示N点序列 的N点DFT,试证明:
(a)如果 满足关系式 ,则 。
答:错。受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。
第二章离散时间信号与系统分析基础
一、离散时间信号与系统频域分析
(b)当N为偶数时,如果 ,则 。
证:
(a)
N为偶数:
N为奇数:
而 中间的一项应当满足:
因此必然有
这就是说,当N为奇数时,也有 。
(b)当N为偶数:
当N为偶数时, 为奇数,故 ;又由于 故有
10.设 ,求证 。
【解】因为
根据题意
因为
所以
11.证明:若 为实偶对称,即 ,则 也为实偶对称。
【解】根据题意
计算题:
7.设 是长度为M的有限长序列,其Z变换为
今欲求 在单位圆上N个等距离点上的采样值 ,其中 解答下列问题(用一个N点的FFT来算出全部的值)
(1)当 时,写出用一个N点FFT分别算出 的过程;
(2)若求 的IDFT,说明哪一个结果和 等效,为什么?
解:(1) ,对序列 末尾补零至N个点得序列 ,计算 的N点FFT即可得到 。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。

A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。

A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。

答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。

答案:DFT三、简答题1. 简述数字滤波器的基本原理。

答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。

它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。

2. 解释什么是窗函数,并说明其在信号处理中的作用。

答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。

在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。

四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。

答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。

2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。

答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。

答案:数字信号处理在现代通信系统中扮演着至关重要的角色。

数字信号处理习题及答案(精编文档).doc

数字信号处理习题及答案(精编文档).doc

【最新整理,下载后即可编辑】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫⎝⎛-= (2))81(j e)(π-=n n x解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 填空题1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字 信号。

2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。

3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。

4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。

5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是()n h n ∞=-∞<∞∑6、巴特沃思低通滤波器的幅频特性与阶次N 有关,当N 越大时,通带内越_平坦______,过渡带越_窄___。

7、用来计算N =16点DFT ,直接计算需要__(N 2)16*16=256_ __次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32_____ 次复乘法。

8、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型____和 _并联型__四种。

9、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并联型 的运算速度最高。

10、数字信号处理的三种基本运算是: 延时、乘法、加法11、两个有限长序列和长度分别是和,在做线性卷积后结果长度是__N 1+N 2-1_____。

12、N=2M点基2FFT ,共有__ M 列蝶形,每列有__ N/2 个蝶形。

13、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对14、数字信号处理的三种基本运算是: 延时、乘法、加法15、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。

16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。

17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。

18、单位脉冲响应分别为和的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n),=H 1(e j ω)×H 2(e j ω)。

19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。

20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。

二、选择题1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( D ) A. y(n)=x 3(n)B. y(n)=x(n)x(n+2)C. y(n)=x(n)+2D. y(n)=x(n 2)2、有限长序列h(n)(0≤n ≤N-1)关于τ=21-N 偶对称的条件是( B )。

A. h(n)=h(N-n) B. h(n)=h(N-n-1) C. h(n)=h(-n) D. h(n)=h(N+n-1) 3、下列关于窗函数设计法的说法中错误的是( D )。

A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加D.窗函数法不能用于设计FIR 高通滤波器4、因果FIR 滤波器的系统函数H(z)的全部极点都在( A )处。

A.z = 0 B.z = 1C.z = jD.z =∞5、以下序列中周期为5序列是( D )。

A.)853cos()(π+=n n x B.)853sin()(π+=n n xC )852()(π+=n j e n x D.)852()(ππ+=n j en x6、已知某序列z 变换的收敛域为|z|<1,则该序列为( C )。

A .有限长序列 B.右边序列C.左边序列D.双边序列7、序列)1()(---=n u a n x n ,则)(Z X 的收敛域为( A )。

A.a Z <B.a Z ≤C.a Z >D.a Z ≥8、在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系( D )。

A. T s >2/f hB. T s >1/f hC. T s <1/f hD. T s <1/(2f h )9、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足( B )。

A.16>NB.16=NC.16<ND.16≠N10、线性相位FIR 滤波器有几种类型( D ) 。

A 1 B 2 C 3 D 411、在IIR 数字滤波器的设计中,用哪种方法只适合于片断常数特性滤波器的设计。

( B ) A.脉冲响应不变法B.双线性变换法C.窗函数法D.频率采样法12、下列对IIR 滤波器特点的论述中错误的是( C )。

A .系统的单位冲激响应h(n)是无限长的 B.结构必是递归型的 C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ=21-N 偶对称的条件是( B )。

A. h(n)=h(N-n) B. h(n)=h(N-n-1) C. h(n)=h(-n) D. h(n)=h(N+n-1) 14、下列关于窗函数设计法的说法中错误的是( D )。

A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加D.窗函数法不能用于设计FIR高通滤波器15、对于傅立叶级数而言,其信号的特点是( A )。

A. 时域连续非周期,频域连续非周期B. 时域离散周期,频域连续非周期C. 时域连续周期,频域离散非周期D. 时域离散非周期,频域连续周期三、判断题1.线性系统必是移不变的。

( F )2.两序列的z变换形式相同则这两序列也必相同。

( F )3.只要找到一个有界的输入,产生有界输出,则表明系统稳定。

( F )4.按时间抽取的基-2FFT算法的运算量等于按频率抽取的基-2FFT算法。

( T )5.FFT可用来计算IIR滤波器,以减少运算量。

( F )6.两序列的z变换形式相同则这两序列也必相同。

( F )7.双线性变换法的频率座标变换是线性关系。

( F )8.计算N×N点二维DFT可用N个N点FFT去完成。

( F )9.脉冲响应不变法不能设计高通数字滤波器。

( T )10.双线性变换法是非线性变换,所以用它设计IIR滤波器不能克服频率响应混叠效应。

( F )四、画图题1、已知有限序列的长度为8,试画出基2 时域FFT的蝶形图,输出为顺序。

x(0) x(4) x(2) x(6)x(1) x(5) x(3) x(7)A(0)A(0)N或2、已知有限序列的长度为4,试画出基2 时域FFT 的蝶形图,输出为顺序。

x (2) x (1) x (0) x (3)W W W W N 0 N 0 N 0 N 0 ----W W W W N0 N2 N0 N2 ----W W W W NN N N1 2 3.. . . .x (0)x (4) x (2)x (6) x (1)x (5) x (3)x (7) X(0)X(1) X(2) X(3)X(4) X(5) X(6) X(7)3、已知系统)2(61)1(31)(61)2(51)1(1514)(-+-++---=n x n x n x n y n y n y ,用直接Ⅱ型结构实现。

解:212121212.09333.011667.03333.01667.0628305105)(--------+-++=+-++=z z z z z z z z z H4、已知滤波器单位取样响应为⎩⎨⎧≤≤=其它,050,2.0)(n n h n ,求其直接型结构流图。

1-z 1-z 1-z 1-z 1-z五、 计算证明题1、设某线性时不变离散系统的差分方程为 10(1)()(1)()3y n y n y n x n --++=,试求它的单位脉冲响应。

它是不是因果的?它是不是稳定的?解:对上式两边取Z 变换,得:极点:当ROC :|z|>3时,系统因果不稳定,;当ROC :1/3<|z|<3时,系统非因果稳定,;当ROC :|z|<1/3时,系统非因果不稳定,。

2、设)]([)(n x DFT k X =,)(n x 是长为N 的有限长序列。

证明:如果00(),1()(=---=)则X n N x n x证明:)()()1()()()()0(12120m n 1N 121210010∑∑∑∑∑∑-=-==-=-=-=-==-=−−−−→−---===N m N n N N n N n N n NN n m x n x n N x n x n x W n x X --令3、已知模拟滤波器传输函数为235)(2++=s s s H a ,设s T 5.0=,用脉冲响应不变法和双线性变换法将)(s H a 转换为数字滤波器系统函数)(z H 。

解:用脉冲响应不变法(令)()(nT Th n h a =)将)(s H a 转换为数字滤波器系统函数)(z H 。

1113122231.015.13679.015.11313)(---------=---=z z z e T z e T z H T T 。

用双线性变换法将)(s H a 转换为数字滤波器系统函数)(z H 。

212121211142.09333.011667.03333.01667.0628305105)()(11--------+-=+-++=+-++==--z z z z z z z z s H z H zz s a 。

4、一个具有广义线性相位的FIR 滤波器具有如下性质: (1) h (n )是实的,且n <0和n >5时h (n )=0。

(2)5(1)()0nn h n =-=∑。

(3) 在j π/40.7e z=处()H z 等于零。

(4)j (e )d 4H πωπωπ-=⎰。

试求该滤波器的()H z 。

(P224 6.4题)解:由(1)可知,系统函数5()()n n H z h n z -==∑由(2)可知,当z =-1时,55()()(1)()(1)nnn n H z h n h n -===-=-∑∑所以,系统函数有零点z 1=-1根据线性相位滤波器零点分布特点,由(3)可得零点/4/4/4/42345110.7, 0.7, , 0.70.7j j j j z e z e z e z e ππππ--==== 因此,滤波器的系统函数H (z )可表示为:/41/41/41/41111()(10.7)(10.7)(1)(1)(1)0.70.7j j j j H z A e z e z e z e z z ππππ-------=----+ 其中,A为多项式的零阶系数,A =h (0)由(4)可得,(0)2h =,即A =2所以/41/41/41/4111212111()2(10.7)(10.7)(1)(1)(1)0.70.72(10.49)(1)(1)0.49j j j j H z e z e z e z e z z z z z ππππ------------=----+=-+-++5、用矩形窗口设计法设计一个FIR 线性相位低通数字滤波器,已知ωc=0.5π,N=21。

相关文档
最新文档