压铸模设计之一
压铸模具设计范文

压铸模具设计范文压铸模具设计是指为了生产压铸件而设计的模具,其主要任务是将液态金属注入模具中,并在模具中冷却、凝固,最终得到所需形状的金属零件。
压铸模具设计的主要工作包括设计模具的结构、选材、计算模具的合理尺寸和形状等。
一、压铸模具结构设计1.模具整体结构设计:根据压铸件的形状和尺寸,确定模具的整体结构。
一般情况下,压铸模具采用上下模结构,上模为固定模,下模为活动模。
针对复杂形状的压铸件,可能需要设计多个滑模和拉杆。
2.模腔设计:根据压铸件的形状和尺寸,确定模腔的几何形状和尺寸。
模腔的设计应保证在模具关闭时,模腔中的液态金属能够充满整个腔体,并且在冷却凝固过程中,金属能够均匀收缩,避免产生缩孔和其他缺陷。
3.浇口和导流系统设计:浇口和导流系统的设计对于压铸件的质量和生产效率有着重要的影响。
浇口的设计应尽量避免金属的湍流流动,避免气泡的产生。
导流系统的设计应考虑金属的顺序填充和排气,以及冷却和凝固过程中的温度控制。
二、压铸模具选材压铸模具的选材应根据金属的性能和压铸工艺的要求来确定。
通常情况下,模具会选用高强度和耐磨损的合金钢作为材料,以保证模具的使用寿命和精度。
同时,还需要考虑模具的热传导性能,以确保压铸件能够快速冷却、凝固。
三、压铸模具尺寸和形状计算1.模具尺寸计算:模具尺寸的计算包括模腔尺寸、模板尺寸、滑模尺寸、导流系统尺寸等。
模具尺寸的计算需要考虑压铸件的最终尺寸、缩孔和收缩率等因素。
2.模具形状计算:模具的形状计算主要是指模腔内部的曲面和棱角的设计。
对于复杂形状的压铸件,需要使用CAD软件进行三维建模和形状优化,以确保模具的制造精度和压铸件的质量。
压铸模具设计需要充分考虑压铸件的形状和尺寸、材料的性能、压铸工艺要求等因素,通过合理的结构设计、选材和计算,能够提升压铸件的质量和生产效率。
在设计过程中,还需要考虑模具的制造难度和制造成本,以确保模具的可行性和经济性。
压铸件设计及压铸模设计

压铸件的精度较高,表面光洁,且稳定性好,因此,压铸件具有很好的互换性。
压铸件的尺寸精度取决于压铸件的设计、模具结构以及模具制造的质量。
通常,压铸件的尺寸精度比模具的精度低三到四级左右。
压铸件尺寸稳定性取决于工艺因素、操作条件、模具修理次数及其使用期限等各方面因素。
压铸件的尺寸精度一般按机械加工精度来选取,在满足使用要求的前提下,尽可能选取较低的精度等级。
此外,同一压铸件上不同部位的尺寸可按照实际使用要求选取不同的精度,以提高经济性。
1. 长度尺寸压铸件能达到的尺寸公差及配合尺寸公差等级见表3.1。
压铸件的表面形状和位置主要由压铸模的成型表面决定,而压铸模成型表面的形位公差精度较高,所以对压铸件的表面形位公差一般不另行规定,其公差值包括在有关尺寸的公差范围内。
对于直接用于装配的表面,类似机械加工零件,在图中注明表面形状和位置公差。
对于压铸件而言,变形是一个不可忽视的问题,整形前和整形后的平面度和直线度公差按表3.7选取。
平行度、垂直度和倾斜度公差按表3.8选取。
同轴度和对称度公差按表3.9选取。
压铸件的表面粗糙度取决于压铸模成型零件型腔表面的粗糙度,通常压铸件的表面粗糙度比模具相应成型表面的粗糙度高两级。
若是新模具,压铸件的表面粗糙度应达到GB 1031—83的R a2.5~0.63 µm,要求高的可达到R a0.32 µm。
随着模具使用次数增加,压铸件的表面粗糙度逐渐增大。
不论零件如何复杂,都可以将其分解为壁、连接壁的圆角、孔和槽、肋、凸台、螺纹等部分,这些部分就是组成零件的结构单元。
压铸件壁的厚薄对其质量有很大的影响。
压铸件表面约0.8~1.2 mm的表层由于快速冷却而晶粒细小、组织致密,因为它的存在使压铸件的强度较高。
而若是厚壁压铸件,其壁中心层的晶粒粗大,易产生缩孔、缩松等缺陷。
通常,压铸件的力学性能随着壁厚增加而降低,而且也增加了材料的用量和压铸件的重量。
图3.1为铸件壁厚对抗拉强度的影响。
第十二章 压铸模设计

平直分型面
倾斜分型面
折线分型面
曲线分型面
单一分型面
一、分型面的类型 对于某些压铸件,由于结构的特殊性,以及为了使 模具更好地适应压铸生产的工艺要求,往往需要增设一 个或两个辅助分型面,称为多分型面,如图所示。
双分型面
第二节 分型面设计
二、分型面的选择原则 分型面的选择对决定模具的结构和铸件的质量都有 很大的影响。 压铸模分型面的选择原则与注射模基本相同,一般 应遵循以下原则: 1)开模后铸件应 保证留在动模内,以 便顶出,故铸件的包 紧力较大的部分应放 在动模,如图所示。 不合理 合理
第三篇
压铸模设计基础
压铸模设计
压铸机选用 分型面设计 浇注系统和排溢系统的设计 成形零件结构设计
第十二章
第一节 第二节 第三节 第四节
压铸模模
压铸模
压铸模
第十二章 第一节
压铸模设计 压铸机选用
一、基于锁模力选用压铸机 二、以压射能量为基础优选压铸机 三、压室容量的估算 四、模具厚度与动模座板行程的核算
压铸机p-Q 图
二、以压射能量为基础优选压铸机
从p- Q2图中求得交点E的流量QE,若QE值大于工艺 所需的流量值,则说明压铸机的能量可以满足浇注系统 的要求;反之,则说明压铸机不能满足要求,只有通过 调整压铸件参数(液压系统的 工作压力、速度调节阀的开启 程度、选用不同直径的压射冲 头)、更换压铸机、改变模具 型腔等措施来满足生产的需要。
四、模具厚度与动模座板行程的核算 模具厚度需满足以下公式
Hmin+10≤H设≤Hmax-10 式中 Hmin——模具厚度 H设 ——说明书中给定的模具最小厚度 Hmax——说明书中给定的模具最大厚度
压铸机合模机构与模具厚度
压铸型(模)设计

压铸型(模)设计压铸型(模)是进行压铸生产的主要工艺装备。
压铸件的质量和生产率,在很大程度上取决于型(模)具结构的合理性和技术上的先进性。
在设计和制造型(模)具过程中,充分利用一切型(模)具设计的知识和实践经验,会达到更好的使用效果。
第一节压铸型(模)设计概述一、设计的依据(1)产品分析根据产品的零件图、压铸合金种类、技术要求,了解产品的用途、产品的批量、产品的经济价值、产品的装配关系、产品的压铸和后加工过程。
站在压铸型(模)设计和制造角度上,对产品进行压铸工艺分析,使其符合压铸工艺、压铸件结构的要求。
在型(模)具设计过程中,为满足产品的要求而选择相应的压铸工艺和型(模)具各种参数,对于作结构用途的产品,需要保证其机械强度、致密性、尺寸精度;而对于作装饰用途的产品,则对外表面质量要求更高。
因此,对产品作细致的分析是型(模)具设计的基础。
(2)压铸机选用产品的质量,要靠压铸机所能提供的压铸能量来满足压铸型(模)所需的充型能量来保证,以生产出合乎要求的优质压铸件。
型(模)具结构、安装尺寸、锁型(模)力、相关的参数都必须与所选用的压铸机相匹配。
传统的方法是根据锁型(模)力选用压铸机。
根据压铸件的投影面积,所需要的比压,计算出所需要的锁型(模)力,确定选用多大吨位的压铸机最合适,以充分发挥压铸机的能力和生产效率。
新的方法是以压射能量为基础选用压铸机。
应用压射系统的最大金属静压与流量的关系-PQ2图,根据压铸件需要的压射能量,压铸机所能提供的压射能量,把压铸机和压铸型(模)组成一个压铸系统,这个系统具有较大的"柔性",能在尽可能大的范围内调整工艺参数,以适应多变的生产条件,获得优质压铸件。
(3)技术经济性合理在保证压铸件质量和安全生产的前提下,使型(模)具结构尽量简化,型(模)具材料选择合理,型(模)具制造技术先进,制造周期短,型(模)具使用寿命长。
型(模)具的经济效益体现在型(模)具的寿命上,而决定型(模)具寿命的最主要的因素是:型(模)具材料、热处理、压铸生产过程控制。
压铸模具设计方案

压铸模具设计方案压铸模具设计方案一、设计方案概述本设计方案旨在设计一种用于压铸工艺的模具,以满足工件的外观质量和尺寸精度要求。
本设计方案采用CAD软件进行设计,并结合模具设计的基本原理和经验进行设计。
二、模具结构设计1. 模具整体结构设计模具采用分离式结构设计,包括上模和下模。
上模为固定模,下模为活动模。
其中,上模包括模座、顶针、顶杆等部件,下模包括模座、导柱、导套等部件。
模具座采用刚性结构,以确保模具的稳定性和刚度。
2. 模具中心距设计模具中心距的确定是保证工件尺寸精度的关键之一。
根据工件的尺寸和结构特点,设计合理的模具中心距,以确保模具能够精确复制工件的尺寸。
3. 模具冷却系统设计为了提高生产效率、减少模具磨损和延长模具寿命,设计冷却系统对模具进行冷却。
冷却系统包括冷却孔和进水口,通过冷却水的流动,迅速冷却模具,以提高生产效率和模具寿命。
4. 模具材料选择模具的材料选择是保证模具寿命和使用效果的重要因素。
根据工件的材料和要求,选择适当的模具材料,保证模具具有良好的硬度和耐磨性。
三、模具生产工艺1. 加工工艺规程模具的加工工艺包括数控加工、外圆磨削等。
根据模具的具体结构和工艺要求,制定合理的加工工艺规程,以确保模具的加工质量。
2. 检测工艺模具加工完成后,进行检测以验证模具的质量。
检测工艺包括模具尺寸检测、表面质量检测等,通过合适的检测工艺,确保模具符合设计要求。
四、模具的维护、维修和更换为了保证模具的正常使用和延长其寿命,进行模具的定期维护、维修和更换。
维护工作包括清洁模具、添加润滑剂等,维修工作包括修复模具损伤、更换模具部件等,更换工作包括根据模具磨损程度,定期更换模具部件。
五、结论本设计方案是一种用于压铸工艺的模具设计方案,通过合理的结构设计、材料选择和加工工艺,可以满足工件的外观质量和尺寸精度要求。
同时,通过模具的定期维护、维修和更换,可以保证模具的正常使用和延长其寿命。
压铸模具设计浇道流道设计精讲教程

压铸模具设计浇道流道设计精讲教程压铸模具是压铸工艺中的一种重要工具,其设计的好坏直接影响到产品的质量和生产效率。
而浇道流道设计则是压铸模具设计中的关键环节之一,它决定了熔化金属流动的路径和方式,直接影响到铸件的充型性能和凝固过程。
在压铸模具设计中,浇道是指从熔化金属进入模腔的通道,流道是指熔化金属在模具中流动的路径。
浇道流道的设计合理与否直接关系到铸件的充型质量和凝固性能。
因此,设计师在进行浇道流道设计时需要考虑以下几个方面:1. 浇道流道的位置:浇道流道的位置应尽量选择在铸件较厚的部位,以便熔化金属在流动过程中能够充分填充铸件细节,避免铸件出现空隙和缺陷。
2. 浇道流道的长度:浇道流道的长度应尽量短,以减小熔化金属的流动阻力,提高充型速度。
同时,短浇道流道还能减少熔化金属在流动过程中的冷却损失,提高铸件的凝固性能。
3. 浇道流道的截面积:浇道流道的截面积应根据铸件的充型需求和熔化金属的流动特性进行合理选择。
截面积过小会增加金属的流动阻力,导致充型不良;截面积过大则会增加金属的冷却损失,影响铸件的凝固性能。
4. 浇道流道的形状:浇道流道的形状应尽量简洁,避免出现过多的转弯和分支,以减小金属流动的阻力和能量损失。
同时,浇道流道的形状也要考虑到铸件的结构特点和充型需求,以保证熔化金属能够充分填充铸件细节。
在进行浇道流道设计时,还需要考虑到以下几个问题:1. 浇道流道的位置和长度如何确定:浇道流道的位置和长度的确定需要考虑到铸件的结构特点、充型需求和凝固性能。
一般来说,浇道流道的位置应选择在铸件较厚的部位,长度应尽量短,以提高充型速度和凝固性能。
2. 浇道流道的截面积如何确定:浇道流道的截面积的确定需要考虑到铸件的充型需求和熔化金属的流动特性。
一般来说,截面积应根据铸件的充型速度和凝固性能进行合理选择,过小会增加金属的流动阻力,过大则会增加金属的冷却损失。
3. 浇道流道的形状如何确定:浇道流道的形状的确定需要考虑到金属流动的阻力和能量损失。
压铸模具设计与制造

压铸模具设计与制造压铸模具是一种用于压铸工艺的专用模具,是实现产品形状的塑造和制造。
它是生产压铸件的关键工具,对于提高产品质量、加工效率和降低成本具有重要作用。
压铸模具设计与制造是模具行业中的核心技术之一首先,产品分析是模具设计的第一步。
通过对产品的结构、材料、尺寸等特点进行分析,确定产品的成形方式和模具设计方案。
然后,根据产品的成形方式,设计模具的结构。
模具结构设计要满足产品成形的要求,并考虑到模具的简化、标准化和通用化,以提高模具的使用寿命和降低制造成本。
在模具零件设计阶段,需要根据模具结构设计的要求,对模具零部件进行设计。
模具零件设计要考虑到材料的选择、精度的控制和加工工艺的可行性,以保证模具的质量和性能。
同时,还需要考虑到模具的装配性,设计模具零件的尺寸和形状,以便于模具的装配和调试。
最后,模具装配设计是将模具零部件进行组装和调试的过程。
模具装配设计要保证模具的装配精度和准确性,以避免在生产过程中出现问题。
在装配和调试过程中,需要进行模具的试制和调试,以确保模具的质量和性能。
模具的制造过程一般包括模具材料的选择、加工和热处理等几个步骤。
首先,根据模具的使用要求和制造成本,选择合适的模具材料。
模具材料要具有良好的耐磨性、耐热性和耐腐蚀性,以保证模具的使用寿命和稳定性。
然后,进行模具的加工,包括铣削、车削、镗削、磨削等工艺,以制造出符合图纸要求的模具零件。
最后,进行模具的热处理,以提高模具的硬度和综合性能。
热处理过程一般包括淬火、回火、脱碳、氮化等工艺,根据模具的材料和使用要求进行选择。
热处理可以提高模具零件的硬度和耐磨性,增加模具的使用寿命。
总结起来,压铸模具设计与制造是一项复杂而关键的工艺,需要设计师和制造者具有扎实的基础知识和丰富的经验。
只有通过合理的设计和精确的制造,才能获得高质量的模具,为产品的成形提供有力的保障。
压铸模设计

鑄 模 設
為基準,減去斜度值及加工余量,另一端按脫模斜度 相應增大.
計
2019/5/29
Macherchen
25
三.壓鑄模零部件設計
d 中心距尺寸:
CM=(1+K’) CZ (CM )±δZ/2 =[(1+K’) CZ] ±δZ/2
中心距尺寸在加工製造和磨損過程中不受影響及上下
壓
偏差對稱分布.
鑄
模
設
計
2019/5/29
Macherchen
26
三.壓鑄模零部件設計
e 成型中心邊距尺寸: 1). 磨損後增大的成型中心邊距
(C’M )±δZ/2 =[(1+K’) C’Z -△/24 ] ±δZ/2
2). 磨損後減小的成型中心邊距
壓
(C’M )±δZ/2 =[(1+K’) C’Z +△/24 ] ±δZ/2
壓 鑄 模 設 計
2019/5/29
Macherchen
13
三.壓鑄模零部件設計
(3)避免銳角的鑲拼
壓 鑄 模 設 計
2019/5/29
Macherchen
14
三.壓鑄模零部件設計
(4)防止熱處理變形的鑲拼
壓 鑄 (5)便於更換維修的鑲拼 模 設 計
2019/5/29
Macherchen
15
三.壓鑄模零部件設計
3)壓鑄件上和模具上的中心距尺寸均采用雙向等值正負偏差,它
壓
們的基本尺寸為平均值.
鑄
模
設
計
2019/5/29
Macherchen
20
三.壓鑄模零部件設計
3. 影響壓鑄件尺寸精度的因素:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)流变压铸(Rheocasting) 金属锭→液态→制备浆料(搅拌→ 冷却)→半固态浆料→压铸
(二)触变压铸(Thixocasting)
金属锭→液态→制备浆料(搅拌→ 冷却)→半固态浆料→淬冷→ 铸锭→ 切割胚料→ 重新加热→触变压铸
(2)压 铸 过 程
(3)标准化设计 1)可以使用不同的热流杯长度配合模具设计。 2)又单流、双流、管状的导流块。 3)配合温控仪,可控制热流温度、水冷、加热及显示温度。
2、热流道工艺的特点 (1)避免铸件产生冷纹、冷隔等缺陷,提高铸件表面质量。
热流道与普通流道长度比较
热流道生产的锌合金压铸件
成形原理
射铸成形过程(1)
射铸成形过程(2)
射铸成形机
射铸成形产品图
第一讲 完
谢谢!
ቤተ መጻሕፍቲ ባይዱ
(2)流道剖面全程为圆形,散热损失、表面阻力小,有利于金 属液填充型腔。
侧浇口热流道浇注系统
(3)大大减少铸件浇注系统的金属重量,节约能源及成本, 同时大大减少回炉料。
热流道与普通流道实物对比
40 to 80 tonnes 80 to 160 tonnes 160 to 320 tonnes 320 to 650 tonnes
一、热流道技术 (Hot Sprue Technology)
(一)侧浇口的热流道技术
1、热流道工艺
(1)热流道组件 热流道的组件包括:bush、electric heat element、guide、
thermocouples、fix ring、ring等。
热流道组件图
热流道组合示意图
安装在模具上的热流道
半固态压铸工艺过程
优点:
充型平稳,铸件尺寸精度高,表面质量优良,气孔、缩孔、缩松 缺陷少,组织致密。可以热处理、可以焊接。压铸模寿命长。
三、射铸成形 (Injection Molding)
原理:把镁合金颗粒投入料斗,原料经过加热到高温的筒,螺杆的转动对镁 合金产生剪切作用,使其成为具有触变物理性能的半固态浆料,快速注射 到模具内成形。
冷压室压铸机压铸工艺简图
压铸工艺的优点
1、可以制造形状复杂、轮廓清晰的铸件。 2、压铸件表层组织致密,使压铸件具有较高的硬度和强度。
压铸工艺的缺点:
1、复杂的浇注系统导致材料的利用率不高。 2、压铸件中经常有气孔和夹杂存在。
最新的压铸工艺
为了克服传统压铸工艺的缺点,发展出了新的压铸工艺,如热流道技术 (Hot Sprue Technology)、半固态压铸(Semi-solid Casting)、射铸成形 (Injection Molding)等。
Mass Saved Kilograms 50,000 83,000 190,000 300,000
Cost Saved Dollars $30,000 $50,000 $113,000 $180,000
(二)点浇口的热流道技术
普通浇口、热流道侧浇口、热流道点浇口
二、半固态压铸 (Semi-Solid Casting)
压铸模设计之一
压铸简介
压力铸造的定义: 熔融金属在压射冲头作用下,高压高速充填型腔,并且在高压下
凝固形成铸件的铸造工艺。
热压室压铸机 (Hot Chamber Die Casting Machine)
热压室压铸机压铸工艺简图
冷压室压铸机 (Cold Chamber Die Casting Machine)