高一下期末复习--- 三角恒等变换

合集下载

三角恒等变换专题总结复习

三角恒等变换专题总结复习

三角恒等变换【知识分析】1、本章网络结构2、要点概述(1)求值常用的方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等。

(2)要熟悉角的拆拼、变换的技巧,倍角与半角的相对性,如是的半角,是的倍角等。

(3)要掌握求值问题的解题规律和途径,寻求角间关系的特殊性,化非特殊角为特殊角,正确选用公式,灵活地掌握各个公式的正用、逆用、变形用等。

(4)求值的类型:①“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合和差化积、积化和差、升降幂公式转化为特殊角并且消降非特殊角的三角函数而得解。

②“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系。

③“给值求角”:实质上可转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角。

(5)灵活运用角和公式的变形,如:,等,另外重视角的范围对三角函数值的影响,因此要注意角的范围的讨论。

(6)合一变形(辅助角公式)把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的形式。

,其中.(7)化简三角函数式常有两种思路:一是角的变换(即将多种形式的角尽量统一),二是三角函数名称的变化(即当式子中所含三角函数种类较多时,一般是“切割化弦”),有时,两种变换并用,有时只用一种,视题而定。

(8)三角恒等变换方法观察(角、名、式)→三变(变角、变名、变式)① “变角”主要指把未知的角向已知的角转化,是变换的主线,如α=(α+β)-β=(α-β)+β, 2α=(α+β)+ (α-β), 2α=(β+α)-(β-α),α+β=2·,= (α-)-(-β)等.②“变名”指的是切化弦(正切余切化成正弦余弦),③“变式’指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等。

高一数学三角恒等变换知识点介绍

高一数学三角恒等变换知识点介绍

高一数学三角恒等变换知识点介绍在高一学生学习的知识点是比较的多,学生需要学好,否则高三的时候会很吃力,下面是店铺给大家带来的有关于高一数学关于三角恒等变化知识点的介绍,希望能够帮助到大家。

高一数学三角恒等变换知识点三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量不含根式等.1.求值中主要有三类求值问题:(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.2.三角恒等变换的常用方法、技巧和原则:(1)在化简求值和证明时常用如下方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等.(2)常用的拆角、拼角技巧如:2α=(α+β)+(α-β),α=(α+β)-β,α=(α-β)+β,α+β2=α-β2+β-α2,α2是α4的二倍角等.(3)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式.(4)消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异.高一数学期末综合复习题一、选择题(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后的括号内。

三角函数、向量的数量积与三角恒等变换 高一数学下学期期末考点大串讲(人教B版2019必修第三册)

三角函数、向量的数量积与三角恒等变换 高一数学下学期期末考点大串讲(人教B版2019必修第三册)
要判定三角函数值的符号,关键是
要搞清三角函数中的角是第几象限角,
再根据正、余弦函数值在各象限的符号
确定函数值的符号.如果角不能确定所在
象限,那就要进行分类讨论求解.
题型3 同角三角函数基本关系式的应用
【例3】 已知α是三角形的内角,且tan
1
3
1
α=- ,则sin
3
α+cos α=
1
3
.

10
9
解析 由tan α=- ,得sin α=- cos α,将其代入sin2α+cos2α=1,得 cos2α=
|a·b|与|a||
b|的关系
坐标表示
x1x2+y1y2 =0
a·b=0

x1y2-x2y1
a=λb(λ∈R)
|a·b|≤|a||b|
(当且仅当a∥b时等号成
=0

|x1x2+y1y2|
≤ (12 + 12 )(22 + 22 )
立)
提醒 (1)向量平行与垂直的坐标公式不要记混;(2)a⊥b⇔a·b=0是对非
几何表示
数量积
a·b=|a||b|cos θ

|a|= ·
夹角
cos
·
θ=
||||
坐标表示
x1x2+y1y2
a·b=
12 + 12
|a|=
cos θ=

1 2 +1 2
12 +12 · 22 +22

考点8 平面向量的数量积
几何表示
a⊥b的充要条件
a∥b的
充要条件
(3)(sin α±cos α)2=1±2sin αcos α;

2023年新高考数学大一轮复习专题18 三角恒等变换 (解析版)

2023年新高考数学大一轮复习专题18 三角恒等变换 (解析版)

专题18 三角恒等变换【考点预测】知识点一.两角和与差的正余弦与正切 ①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±=;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式 ①sin22sin cos ααα=;②2222cos2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-; 知识点三:降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===知识点四:半角公式sin22αα== sin 1cos tan.21cos sin aαααα-==+知识点五.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中abb a a b a b =+=+=ϕϕϕtan cos sin 2222,,). 【方法技巧与总结】 1.两角和与差正切公式变形)tan tan 1)(tan(tan tan βαβαβα ±=±; 1)tan(tan tan )tan(tan tan 1tan tan ---=++-=⋅βαβαβαβαβα.2.降幂公式与升幂公式ααααααα2sin 21cos sin 22cos 1cos 22cos 1sin 22=+=-=;;; 2222)cos (sin 2sin 1)cos (sin 2sin 1sin 22cos 1cos 22cos 1αααααααααα-=-+=+=-=+;;;.3.其他常用变式αααααααααααααααααααsin cos 1cos 1sin 2tan tan 1tan 1cos sin sin cos 2cos tan 1tan 2cos sin cos sin 22sin 222222222-=+=+-=+-=+=+=;;.3. 拆分角问题:①=22αα⋅;=(+)ααββ-;②()αββα=--;③1[()()]2ααβαβ=++-; ④1[()()]2βαβαβ=+--;⑤()424πππαα+=--.注意 特殊的角也看成已知角,如()44ππαα=--.【题型归纳目录】题型一:两角和与差公式的证明 题型二:给式求值 题型三:给值求值 题型四:给值求角题型五:正切恒等式及求非特殊角 【典例例题】题型一:两角和与差公式的证明例1.(2022·山西省长治市第二中学校高一期末)(1)试证明差角的余弦公式()C αβ-:cos()cos cos sin sin αβαβαβ-=+;(2)利用公式()C αβ-推导:①和角的余弦公式()C αβ+,正弦公式()S αβ+,正切公式()T αβ+; ②倍角公式(2)S α,(2)C α,(2)T α.【答案】(1)证明见解析;(2)①答案见解析;②答案见解析 【解析】 【分析】在单位圆里面证明()C αβ-,然后根据诱导公式即可证明()C αβ+和()S αβ+,利用正弦余弦和正切的关系即可证明()T αβ+;用正弦余弦正切的和角公式即可证明对应的二倍角公式.【详解】(1)不妨令2,k k απβ≠+∈Z . 如图,设单位圆与x 轴的正半轴相交于点1,0A ,以x 轴非负半轴为始边作角,,αβαβ-,它们的终边分别与单位圆相交于点()1cos ,sin P αα,()1cos ,sin A ββ,()()()cos ,sin P αβαβ--.连接11,A P AP .若把扇形OAP 绕着点O 旋转β角,则点,A P 分別与点11,A P 重合.根据圆的旋转对称性可知,AP 与11A P 重合,从而,AP =11A P ,∴11AP A P =. 根据两点间的距离公式,得:()()2222[cos 1]sin (cos cos )(sin sin )αβαβαβαβ--+-=-+-,化简得:()cos cos cos sin sin .αβαβαβ-=+ 当()2k k απβ=+∈Z 时,上式仍然成立.∴,对于任意角,αβ有:()cos cos cos sin sin αβαβαβ-=+. (2)①公式()C αβ+的推导: ()()cos cos αβαβ⎡⎤+=--⎣⎦()()cos cos sin sin αβαβ=-+-cos cos sin sin αβαβ=-.公式()S αβ+的推导:()sin cos 2παβαβ⎛⎫+=+- ⎪⎝⎭cos 2παβ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦cos cos sin sin 22ππαβαβ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭cos sin sin cos αβαβ=+正切公式()T αβ+的推导:()()()sin tan cos αβαβαβ++=+sin cos cos sin cos cos sin sin αβαβαβαβ+=-tan tan 1tan tan αβαβ+=-②公式()2S α的推导:由①知,()sin2sin cos sin sin cos 2sin cos ααααααααα=+=+=. 公式()2C α的推导:由①知,()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-.公式()2T α的推导:由①知,()2tan tan 2tan tan2tan 1tan tan 1tan ααααααααα+=+==-⋅-.例2.(2022·云南·昭通市第一中学高三开学考试(文))已知以下四个式子的值都等于同一个常数 22sin 26cos 343sin 26cos34+-; 22sin 39cos 213sin 39cos 21+-;()()22sin 52cos 1123sin 52cos112-+--;22sin 30cos 303sin 30cos30+-.(1)试从上述四个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,推广为三角恒等式,并证明你的结论. 【答案】(1)选第四个式子,14;(2)证明见解析. 【解析】 【分析】(1)选第四个式子,由1sin 30,cos302︒=︒=(2)由题意,设一个角为α,另一个角为60α︒-,应用两角差的余弦公式展开三角函数,由同角正余弦的平方和关系化简求值 【详解】(1)由第四个式子:221331sin 30cos 303sin 30cos304444+-=+-= (2)证明:()()22sin cos 603sin cos 60αααα+---2211sin cos cos 22αααααα⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2222133sin cos cos sin cos sin 442αααααααα=++-14=【点睛】本题考查了三角函数,利用特殊角的函数值求三角函数式的值,应用两角差余弦公式展开三角函数式及同角的正余弦平方和关系化简求值,属于简单题例3.(2022·陕西省商丹高新学校模拟预测(理))如图带有坐标系的单位圆O 中,设AOx α∠=,BOx β∠=,AOB αβ∠=-,(1)利用单位圆、向量知识证明:cos()cos cos sin sin αβαβαβ-=+(2)若π,π2α⎛⎫∈ ⎪⎝⎭,π0,2β⎛⎫∈ ⎪⎝⎭,4cos()5αβ-=-,5tan 12α=-,求cos β的值【答案】(1)证明见解析;(2)6365. 【解析】(1)根据向量的数量积公式即可证明;(2)根据角的范围分别求出正弦和余弦值,利用两角和的余弦公式计算得出答案. 【详解】(1)由题意知:||||1OA OB ==,且OA 与OB 的夹角为αβ-, 所以·11cos()cos()OA OB αβαβ=⨯⨯-=-, 又(cos ,sin )OA αα=,(cos ,sin )OB ββ=, 所以·cos cos sin sin OA OB αβαβ=+, 故cos()cos cos sin sin αβαβαβ-=+.(2)π,π2α⎛⎫∈ ⎪⎝⎭且5tan 12α=-,则512sin ,cos 1313αα==-;π0,2β⎛⎫∈ ⎪⎝⎭,则,02πβ⎛⎫-∈- ⎪⎝⎭,又π,π2α⎛⎫∈ ⎪⎝⎭,()0,αβπ∴-∈,4cos(),sin()553αβαβ-=--=,()()()1245363cos cos cos cos sin sin 13513565βααβααβααβ⎛⎫=--=-+-=-⨯-+⨯=⎡⎤ ⎪⎣⎦⎝⎭【点睛】本题主要考查平面向量的数量积的定义,考查平面向量数量积的坐标运算,考查两角和与差的余弦公式,属于中档题.例4.(2022·全国·高三专题练习)如图,考虑点(1,0)A ,1(cos ,sin )P αα,2(cos ,sin )P ββ-,(cos(),sin())P αβαβ++,从这个图出发.(1)推导公式:cos()cos cos sin sin αβαβαβ+=-;(2)利用(1)的结果证明:1cos cos [cos()cos()]2αβαβαβ=++-,并计算sin 37.5cos37.5︒︒⋅的值.【答案】(1)推导见解析;(2【解析】 【分析】(1)根据图象可知2212AP PP =,再展开化简,得到两角和的余弦公式;(2)首先令ββ=-,求()cos αβ-,再代入所证明的公式;首先根据二倍角公式和诱导公式化简为11sin 37.5cos37.5sin 75cos1522⋅==,再根据两角差的余弦公式化简. 【详解】(1)因为12(cos ,sin ),(cos ,sin ),(cos(),sin())P P P ααββαβαβ-++, 根据图象,可得2212AP PP =,即2212||AP PP =, 即2222(cos()1)sin ()(cos cos )(sin sin )αβαββαβα+-++=-++. 即cos()cos cos sin sin αββαβα+=-.(2)由(1)可得cos()cos cos sin sin αββαβα+=-, ① cos()cos cos sin sin αββαβα-=+ ②由①+②可得:2cos cos cos()cos()βααβαβ=++- 所以1cos cos [cos()cos()]2βααβαβ=++-,所以()111sin 37.5cos37.5sin 75cos15cos 4530222︒︒︒︒︒︒===-.()1cos 45cos30sin 45sin 302=+1122⎫==⎪⎪⎝⎭【点睛】本题考查两角和差余弦公式的证明,以及利用三角恒等变换求值,重点考查逻辑推理证明,公式的灵活应用,属于基础题型.【方法技巧与总结】推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.题型二:给式求值例5.(2022·全国·高三专题练习)已知sin α=()cos αβ-=且304πα<<,304πβ<<,则sin β=( )A B C D 【答案】A 【解析】易知()()sin sin βααβ=--,利用角的范围和同角三角函数关系可求得cos α和()sin αβ-,分别在()sin αβ-=和sin β,结合β的范围可确定最终结果.【详解】2sin α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴-<-<,()sin αβ∴-==当()sin αβ-=()()()()sin sin sin cos cos sin βααβααβααβ=--=---57==304πβ<<,sin 0β∴>,sin β∴=不合题意,舍去;当()sin αβ-=sin β=.综上所述:sin β=故选:A . 【点睛】易错点睛:本题中求解cos α时,易忽略sin α的值所确定的α的更小的范围,从而误认为cos α的取值也有两种不同的可能性,造成求解错误.例6.(2020·四川·乐山外国语学校高三期中(文))已知sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,则()sin 60α︒+的值为( )A .13B .13-C .23D .23-【答案】A 【解析】根据题意得到sin 152α⎛⎫︒- ⎪⎝⎭进而得到26cos 1529α⎛⎫︒-= ⎪⎝⎭,()1cos 303α︒-=,从而有()()()sin 60sin 9030cos 30ααα⎡⎤︒+=︒-︒-=︒-⎣⎦.【详解】∵sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,∴()sin 15tan 210tan 18030tan302α⎛⎫︒-=︒=︒+︒=︒= ⎪⎝⎭则226cos 151sin 15229αα⎛⎫⎛⎫︒-=-︒-= ⎪ ⎪⎝⎭⎝⎭,()221cos 30cos 15sin 15223ααα⎛⎫⎛⎫︒-=︒--︒-= ⎪ ⎪⎝⎭⎝⎭,∴()()sin 60sin 9030αα⎡⎤︒+=︒-︒-⎣⎦ ()1cos 303α=︒-=, 故选A. 【点睛】本题主要考查二倍角公式,同角三角函数的基本关系,诱导公式,属于基础题.例7.(2020·全国·高三专题练习)若7cos(2)38x π-=-,则sin()3x π+的值为( ).A .14B .78 C .14±D .78±【答案】C 【解析】 【分析】利用倍角公式以及诱导公式,结合已知条件,即可求得结果. 【详解】∵27cos(2)cos[2()]2cos ()13668x x x πππ-=-=--=-, ∴1cos()64x π-=±,∵1sin()cos[()]cos()32364x x x ππππ+=-+=-=±,故选:C. 【点睛】本题考查利用三角恒等变换解决给值求值问题,属基础题.(多选题)例8.(2022·全国·高三专题练习)设sin()sin 6πββ++=sin()3πβ-=( )AB .12C .12-D. 【答案】AC 【解析】 【分析】利用三角恒等变换化简已知条件,结合同角三角函数的基本关系式,求得sin 3πβ⎛⎫- ⎪⎝⎭.【详解】依题意sin()sin 6πββ++=sin()sin 3233ππππββ⎛⎫-++-+= ⎪⎝⎭1cos()sin )3233πππβββ⎛⎫-+--= ⎪⎝⎭1sin )233ππββ⎛⎫--= ⎪⎝⎭)sin 2cos()133ππββ⎛⎫-+-⎪⎝⎭,)1sin cos()3πβπβ⎛⎫-- ⎪-=22sin cos 133ππββ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,)221sin 1sin 3πβπβ⎛⎫⎡⎤⎢⎥⎛⎫-+= ⎪⎝⎭-- ⎪⎦⎣,化简得(()(28sin 2sin 3033ππββ⎛⎫⎛⎫+----+= ⎪ ⎪⎝⎭⎝⎭,2,(24sin 2sin 033ππββ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭,2sin 12sin 033ππββ⎡⎤⎡⎛⎫⎛⎫-+-= ⎪ ⎪⎢⎥⎢⎝⎭⎝⎭⎣⎦⎣, 解得1sin 32πβ⎛⎫-=- ⎪⎝⎭或sin 3πβ⎛⎫-=⎪⎝⎭. 故选:AC例9.(2022·全国·模拟预测(文))已知,0,2παβ⎛⎫∈ ⎪⎝⎭,3cos25β=,()4cos 5αβ+=,则cos α=___________.【解析】 【分析】 由,0,2,()4cos 5αβ+=,即可求得()sin αβ+,用二倍角公式即可求得sin β 和cos β ,用拼凑角思想可表示出()ααββ=+-,用三角恒等变换公式求解即可. 【详解】因为()4cos 5αβ+=,且,0,2,所以()3sin 5αβ+=.又因为23cos 212sin 5ββ=-=,解得sin β=则cos β==故()()()cos cos cos cos sin sin ααββαββαββ=+-=+++⎡⎤⎣⎦4355==. 例10.(2022·上海静安·模拟预测)已知sin 4πα⎛⎫+= ⎪⎝⎭,则sin 2α的值为_____________.【答案】12##0.5 【解析】 【分析】由倍角公式以及诱导公式求解即可. 【详解】231cos 212sin 124442ππαα⎛⎫⎛⎫+=-+=-⨯=- ⎪ ⎪⎝⎭⎝⎭cos 2cos 2sin 242ππααα⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭1sin 22α∴=故答案为:12例11.(2022·江苏泰州·模拟预测)若0θθ=时,()2sin2cos f θθθ=-取得最大值,则0sin 24πθ⎛⎫+= ⎪⎝⎭______.【解析】 【分析】首先利用二倍角公式和辅助角公式,化简,再代入求值. 【详解】()()111sin 21cos2sin 2cos2222f θθθθθ=-+=--()112222θθθϕ⎫---⎪⎝⎭(其中cos ϕsin ϕ=, 当()f θ取最大值时,022πθϕ-=,∴022πθϕ=+0sin 2sin cos 2πθϕϕ⎛⎫=+= ⎪⎝⎭0cos2cos sin 2πθϕϕ⎛⎫=+=-= ⎪⎝⎭∴0sin 24πθ⎛⎛⎫+== ⎪ ⎝⎭⎝⎭⎝⎭【方法技巧与总结】给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.题型三:给值求值例12.(2022·福建省福州第一中学三模)若3sin 5α=-,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα-=+( )A .12 B .12-C .2D .-2【答案】D 【解析】 【分析】由2222sin cos2tan222sin 2sincos22sin cos tan 1222ααααααααα===++,可解得tan 2α,即可求解 【详解】3sin 2sincos225ααα==-,故2222sincos2tan32225sin cos tan 1222αααααα==-++, 可解得1tan23α=-或tan 32α=-,又3ππ,2α⎛⎫∈ ⎪⎝⎭,故tan 32α=-,故1tan 221tan2αα-=-+, 故选:D例13.(2022·湖北武汉·模拟预测)已知1sin 64x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭( )A .78-B .78C.D【答案】B 【解析】 【分析】根据题意得sin 6x π⎛⎫- ⎪⎝⎭的值,再根据2cos 212sin 36x x ππ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】因为sin sin 66x x ππ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,所以1sin 64x π⎛⎫-=- ⎪⎝⎭,2217cos 2cos 212sin 1236648x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=--= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.例14.(2022·湖北·模拟预测)已知,22ππα⎛⎫∈- ⎪⎝⎭,且1cos 42πα⎛⎫-= ⎪⎝⎭,则cos2α=( )A. B.C .12D【答案】D【解析】 【分析】由已知α的取值范围,求出4πα-的取值范围,再结合1cos 42πα⎛⎫-= ⎪⎝⎭即可解得α的值,cos2α即可求解 【详解】 因为22ππα-<<,所以3444πππα-<-< 又1cos 42πα⎛⎫-= ⎪⎝⎭,所以43ππα-=-,所以12πα=-所以cos 2cos cos 66ππα⎛⎫=-==⎪⎝⎭故选:D例15.(2022·全国·模拟预测)已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭( )A .2325B .2325-C D . 【答案】B 【解析】 【分析】利用诱导公式化简,然后利用二倍角公式即得. 【详解】因为1sin cos cos 3665πππααα⎛⎫⎛⎫⎛⎫+=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22123cos 2cos22cos 121366525πππααα⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:B .例16.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos2=α( )A .2425B .2425-C .725D .725-【答案】B 【解析】 【分析】首先根据同角三角函数的基本关系求出()cos 45α︒+,再利用二倍角公式及诱导公式计算可得; 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==-,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯-=- ⎪⎝⎭。

三角恒等变换-知识点+例题+练习

三角恒等变换-知识点+例题+练习

三角恒等变换-知识点+例题+练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角恒等变换-知识点+例题+练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角恒等变换-知识点+例题+练习的全部内容。

两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C(α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C(α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S(α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S(α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T(α+β):tan(α+β)=错误!;(6)T(α-β):tan(α-β)=错误!。

2.二倍角的正弦、余弦、正切公式(1)S2α:sin 2α=2sin_αcos_α;(2)C2α:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;(3)T2α:tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β);(2)cos2α=错误!,sin2α=错误!;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=错误!sin错误!。

4.函数f(α)=a cos α+b sin α(a,b为常数),可以化为f(α)=a2+b2sin (α+φ)或f(α)=a2+b2cos(α-φ),其中φ可由a,b的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=错误!-错误!;错误!=错误!-错误!.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分"、“分解与组合"、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .2cos 2 错误!-1B .1-2sin 275°C 。

三角恒等变换知识点及题型归纳总结

三角恒等变换知识点及题型归纳总结

三角恒等变换知识点及题型归纳总结(共8页)-本页仅作为预览文档封面,使用时请删除本页-三角恒等变换知识点及题型归纳总结知识点精讲常用三角恒等变形公式 和角公式sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-差角公式sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ--=+倍角公式sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===半角公式sin 22αα== sin 1cos tan.21cos sin a αααα-==+辅助角公式sin cos ),tan (0),ba b ab aαααϕϕ+=+=≠角ϕ的终边过点(,)a b ,特殊地,若sin cos a b αα+=或tan .b aα= 常用的几个公式sin cos );4πααα±=±sin 2sin();3πααα±=±cos 2sin();6πααα±=±题型归纳总结题型1 两角和与差公式的证明 题型归纳及思路提示思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例 证明(1):cos()cos cos sin sin ;C αβαβαβαβ++=-(2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβαβαβ+++=-解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得2221212122()PP OP OP OP OP cos αβ=+-⋅+22[cos cos()][sin sin()]22cos()αβαβαβ⇒--+--=-+22(cos cos sin sin )22cos()αβαβαβ⇒--=-+:cos()cos cos sin sin .C αβαβαβαβ+⇒+=-证法二:利用两点间的距离公式.如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++3(cos(),sin()),P ββ--由231;OAP OP P ∆≅∆得,213.AP PP =故2222(1cos())(0sin())[cos()cos ][sin()sin ],αβαββαβα-++-+=--+--即222222[1cos()]sin ()cos cos 2cos cos sin sin 2sin sin αβαββααββααβ-+++=+-+++化简得cos()cos cos sin sin αβαβαβ+=-(2)sin()[()][()]22cos cos ππαβαβαβ+=+-=+-cos()sin sin()22cos ππαβαβ=---sin sin cos cos αβαβ=+:sin()sin cos sin S cos αβαβαβαβ+⇒+=+ sin(sin cos cos sin (3)tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-sin cos cos sin cos cos cos cos cos cos sin sin cos cos cos cos αβαβαβαβαβαβαβαβ+-tan tan :tan().1tan tan T αβαβαβαβ++⇒+=- 变式1 证明:(1):cos()cos cos sin sin ;C αβαβαβαβ--=+ (2):sin()sin cos sin S cos αβαβαβαβ--=- tan tan (3):tan().1tan tan T αβαβαβαβ---=+题型2 化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角. 一、化同角同函例 已知3cos()45x π+=则2sin 22sin ()1tan x xx -=-7.25A 12.25B 11.25C 18.25D 解析 解法一:化简所求式22sin 22sin 2sin cos 2sin sin 1tan 1cos x x x x xx x x--=--cos 2sin (cos sin )2sin cos .cos sin xx x x x x x x=-=-由3cos()45x π+=得3,225x x -=即cos sin 5x x -=两边平方得 2218cos sin 2sin cos ,25x x x x +-=即1812sin cos .25x x -= 所以72sin cos .25x x =故选A. 解法二:化简所求式2sin 22sin 2sin cos sin 21tan x xx x xx-==-27sin[2()]cos 2()12cos ().424425x x x ππππ=+-=-+=-+=故选A. 评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单. 变式1 若13cos(),cos(),55αβαβ+=-=则tan tan _______.αβ=变式2 若4cos 5α=-,α是第三象限角,则1tan2()1tan 2αα+=- 1.2A - 1.2B .2C .2D -变式3 (2012江西理4)若1tan 4tan θθ+=,则sin 2().θ= 1.5A 1.4B 1.3C 1.2D 二、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式.常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等. 1.和、差角变换如α可变为()αββ+-;2α可变为()()αβαβ++-;2αβ-可变为()αβα-+ 例 若330,cos ,sin(),255παβπααβ<<<<=+=-则cos β的值为( ). .1A - .1B -或725 24.25C - 24.25D ±分析 建立未知角与已知角的联系,().βαβα=+-解析 解法一:cos cos[()]cos()cos sin()sin .βαβααβααβα=+-=+++因为3(,)22ππαβ+∈所以,则 4cos(),(0,),sin 0,52παβαα+=-∈>4sin 5,α=433424cos ()().555525β=-⨯+-⨯=-解法二:因为(,)2πβπ∈,所示cos (1,0).β∈-故选C.评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:();();()()βαβαβααβαβαγβγ=+-=--+=-++等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号. 变式1已知sin ),(0,)2πααβαβ=-=∈则().β=.3B π .4C π .6D π变式2 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则 sin()______.αβ+=二、辅助角公式变换 例已知cos()sin 65παα-+=,则7sin()6πα+的值为( )..5A -.5B 4.5C - 4.5D分析 将已知式化简,找到与未知式的联系. 解析由题意,cos cossin sinsin 66ππααα++=3cos sin )2265πααα⇒+=+=,得4sin().65πα+= 所以74sin()sin[()]sin().6665πππαπαα+=++=-+=-故选C. 变式1设6sin14cos14,sin16cos16,,2b c α=+=+=则a,b,c 的大小关系为( ). <b<c <c<a <c<b <a<c变式2设sin15cos15,sin17cos17,b α=+=+则下列各式中正确的是( ).22.2a b A a b +<< 22.2a b B a b +<<5.12A π22.2a b C b a +<< 22.2a b D b a +<<3.倍角,降幂(次)变换例(2012大纲全国理7)已知α为第二象限角,sin cos αα+=则cos 2().α=.A .B - C D分析 利用同角三角函数的基本关系式及二倍角公式求解.解析 解法一:;因为sin cos αα+=所以21(sin cos )3αα+=得22sin cos 3αα=-,即2sin 23α=-.又因为α为第二象限角且sin cos 0αα+=>,则3(2,2)().24k k k Z ππαππ∈++∈所以32(4,4)().2k k k Z παπππ∈++∈故2α为第三象限角,cos 2α==.故选A.解法二:由α为第二象限角,得cos 0,sin 0αα<>,cos sin 0,αα-<且2(cos sin )12sin cos αααα-=-,又sin cos αα+=,则 21(sin cos )12sin cos 3αααα+=+=22sin cos 3αα⇒=-,得25(cos sin )3αα-=,所以cos sin 3αα-=-22cos2cos sin (cos sin )(cos sin )ααααααα=-=+-(==故选A. 变式1 若1sin()63πα-=则2cos()().3πα+= 7.9A - 1.3B - 1.3C 7.9D变式2设α为锐角,若4cos()65πα+=,则7sin(2)12πα+的值省为 .变式3已知312sin(2),sin 513αββ-==-且(,),(,0),22ππαπβ∈∈-求sin α值. 变式4若31sin ,(,),tan()522πααππβ=∈-=,则tan(2)().αβ-= 24.7A - 7.24B - 24.7C 7.24D 变式5已知1sin cos 2αα=+,且(0.)2πα∈,则cos 2_____.sin()4απα=-4.诱导变换例若(sin )3cos 2f x x =-,则(cos )().f x =.3cos 2A x - .3sin 2B x - .3cos 2C x + .3sin 2D x +分析 化同函(cos )(sin())f x f =以便利用已知条件. 解析 解法一:(cos )[sin()]3cos 2()3cos(2)3cos 2.22f x f x x x x πππ=+=-+=-+=+故选C.解法二:22(sin )3cos23(12sin )2sin 2f x x x x =-=--=+则2()22,[1,1]f x x x =+∈-故22(cos )2cos 22cos 13cos2 3.f x x x x =+=-+=+故选C.变式1α是第二象限角,4tan(2)3πα+=-,则tan _______.α= 变式2若5sin(),(0,)4132ππαα-=∈,则cos 2_____.cos()4απα=+最有效训练题1.已知函数()sin ,f x x x =设(),(),()763a fb fc f πππ===,则,,a b c 的大小关系为( ).<b<c B. c<a<b <a<c <c<a2.若1sin()34πα+=,则cos(2)().3πα-= 1.4B - 7.8C - 7.8D3.若1tan 2α=,则cos(2)().2πα+= 4.5A 4.5B - 1.2C 1.2D - 4.已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,则2().αβ-= .4A π 3.4B π- 5.,44C ππ 35.,,444D πππ-1.4A5.函数sin()(0)y x πϕϕ=+>的部分图像如图4-33所示,设P是图像的最高点,A,B是图像与x 轴的交点,则tan ().APB ∠=A.10 B.8 8.7C 4.7D6.函数sin 3cos 4x y x -=+的最大值是( ).1.2A -1226.15B -- 4.3C - 1226.15D -+ 7.已知tan()34πθ+=,则2sin 22cos ______.θθ-=8.已知,x y 满足1sin sin 31cos cos 5x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,则cos()______.x y += 9.23tan101________.(4cos 102)sin10+=- 10.已知113cos ,cos()714ααβ=-=,且02πβα<<<,则tan 2____,____.αβ== 11.已知函数2()2cos 3sin .2x f x x =- (1)求函数()f x 的最小正周期和值域; (2)若α是第二象限角,且1()33f πα-=,求cos 21cos 2sin 2ααα+-的值.12.已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =,求角α;(2)若1AC BC ⋅=-,求22sin sin 21tan ααα++的值.。

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧在高中数学中,三角函数是一个重要的概念,而三角恒等变换则是在解决三角函数方程和简化三角函数式子时经常用到的重要工具。

本文将总结常用的三角恒等变换公式,并介绍其应用技巧。

一、基本恒等变换公式1. 余弦函数的基本恒等变换(1) 余弦函数的平方形式:cos²θ + sin²θ = 1(2) 二倍角公式:cos2θ = cos²θ - sin²θ(3) 余弦函数的和差角公式:cos(θ ± φ) = cosθcosφ - sinθsinφ2. 正弦函数的基本恒等变换(1) 正弦函数的平方形式:sin²θ + cos²θ = 1(2) 二倍角公式:sin2θ = 2sinθcosθ(3) 正弦函数的和差角公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ3. 正切函数的基本恒等变换(1) 正切函数的平方形式:tan²θ + 1 = sec²θ1 + cot²θ = cosec²θ(2) 二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)二、常用恒等变换公式1. 互余公式:sin(π/2 - θ) = cosθcos(π/2 - θ) = sinθtan(π/2 - θ) = cotθ2. 余角公式:sin(π - θ) = sinθcos(π - θ) = -cosθtan(π - θ) = -tanθ3. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)4. 积化和差公式:sinθsinφ = (1/2)[cos(θ - φ) - cos(θ + φ)]cosθcosφ = (1/2)[cos(θ - φ) + cos(θ + φ)]sinθcosφ = (1/2)[sin(θ + φ) + sin(θ - φ)]三、恒等变换的应用技巧1. 解三角函数方程:利用恒等变换可以将复杂的三角函数方程转化为简单的等式,从而更容易求解。

高三角恒等变换知识点

高三角恒等变换知识点在高中数学的学习中,三角恒等变换是一个重要而基础的内容。

了解和掌握三角恒等变换的知识点,对于解题和深入理解三角函数之间的关系非常有帮助。

本文将介绍一些高三角恒等变换的知识点,帮助读者更好地掌握这一内容。

1. 三角比恒等变换三角比恒等变换是指一些三角函数之间的关系式。

这些关系式可以通过恒等变换得到,从而推导出其他与之相关的恒等式。

以下是一些常见的三角比恒等变换:1.1 正弦、余弦、正切三者的关系:sinθ = cos(π/2 - θ)cosθ = sin(π/2 - θ)tanθ = 1/tan(π/2 - θ)1.2 余切的恒等变换:cotθ = 1/tanθ1.3 余割的恒等变换:secθ = 1/cosθ1.4 正割的恒等变换:cscθ = 1/sinθ2. 和差角公式和差角公式是指将两个角的三角函数之和或之差表示为乘积或商的公式。

熟练掌握和差角公式可以在三角函数的求解过程中简化计算。

2.1 正弦和差角公式:sin(α + β) = sinαcosβ + cosαsinβsin(α - β) = sinαcosβ - cosαsinβ2.2 余弦和差角公式:cos(α + β) = cosαcosβ - sinαsinβcos(α - β) = cosαcosβ + sinαsinβ2.3 正切和差角公式:tan(α + β) = (tanα + tanβ)/(1 - tanαtanβ)tan(α - β) = (tanα - tanβ)/(1 + tanαtanβ)3. 二倍角公式二倍角公式是将一个角的两倍表示为另一个角的函数的形式。

这些公式在求解中经常被使用。

3.1 正弦二倍角公式:sin2θ = 2sinθcosθ3.2 余弦二倍角公式:cos2θ = cos²θ - sin²θ3.3 正切二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)4. 三倍角公式三倍角公式是将一个角的三倍表示为另一个角的函数的形式。

高一数学《三角函数 三角恒等变换知识点总结》

三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ; (5)由α的终边所在的象限,通过 来判断2α所在的象限。

来判断3α所在的象限 (6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。

期末专题02 三角恒等变换小题综合解析版

期末专题02三角恒等变换小题综合一、单选题1.(2022春·江苏南通·高一统考期末)已知cos α+π4 =35,则sin2α=()A.725B.1825C.-725D.-1825【答案】A【分析】根据两角和的余弦公式及平方关系,结合正弦的二倍角公式即可求解.【详解】由cos α+π4 =35,得cos αcos π4-sin αsin π4=35,即cos α-sin α=325,两边平方,得2sin αcos α=725,即sin2α=725.故选:A .2.(2022春·江苏镇江·高一统考期末)计算:23sin70°-3sin10°cos10°=()A.1B.2C.3D.4【答案】C【分析】根据两角差的正弦公式化简求解即可.【详解】23sin70°-3sin10°cos10°=23sin (60°+10°)-3sin10°cos10°=2332cos10°+12sin10°-3sin10°cos10°=3cos10°cos10°=3,故选:C3.(2022春·江苏宿迁·高一统考期末)若sin α+5π12 =13,则cos 2α-π6的值为()A.429B.-429C.79D.-79【答案】D【分析】设θ=α+5π12,再表达出2α-π6=2θ-π,从而根据诱导公式与二倍角公式求解即可【详解】设θ=α+5π12,则α=θ-5π12,故2α-π6=2θ-5π6-π6=2θ-π,故sin θ=13,则cos 2α-π6 =cos 2θ-π =-cos2θ=2sin 2θ-1=-79故选:D 4.(2022春·江苏淮安·高一统考期末)已知a =sin1,b =2cos1sin1,c =2tan12,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.c >a >bD.c >b >a【答案】D【详解】b =2cos1sin1=sin2=sin (π-2),又π2>π-2>1>0,所以sin (π-2)>sin1,即b >a ,利用三角函数线可以证明x 为锐角时,tan x >x ,如图,在单位圆中,以Ox 为始边,O 为顶点作出角x ,其终边与单位圆交于点P ,过单位圆与x 轴正半轴交点A 作x 轴的垂线,角x 的终边与这条垂线交于点T ,则AT =tan x ,劣弧PA的长为l =x ,扇形OPA 的面积为S 1=12lr =12x ,△OAT 面积为S 2=12OA AT =12tan x ,由图形,易知S 2>S 1,即12tan x >12x ,所以tan x >x ,所以c =2tan 12>2×12=1,b =sin2<1,所以c >b >a .故选:D .5.(2022春·江苏南通·高一金沙中学校考期末)在平面直角坐标系xOy 中,若曲线y =sin2x 与y =32tan x 在区间π6,π上交点的横坐标为α,则α的值为()A.π3 B.2π3C.3π4D.5π6【答案】D 【分析】在区间π6,π 上,联立y =sin2x y =32tan x ,即可解出.【详解】在x ∈π6,π 上,由y =sin2x y =32tan x可得2sin x cos x =32×sin x cos x ,而sin x ≠0,所以,cos 2x =34,即cos x =32或cos x =-32,而x ∈π6,π ,所以x =5π6.故选:D .6.(2022春·江苏苏州·高一统考期末)已知向量a =3sin α,-2 ,b =1,1-cos α ,若a ⋅b =-2,则tan2α=【分析】根据向量数量积的坐标表示a ⋅b=x 1x 2+y 1y 2,结合题意整理可得tan α,再代入二倍角的正切公式tan2α=2tan α1-tan 2α运算求解.【详解】由题意可得:a ⋅b =3sin α-21-cos α =-2,整理得3sin α=-2cos α,即tan α=-23∴tan2α=2tan α1-tan 2α=2×-23 1--23 2=-125故选:C .7.(2022春·江苏常州·高一统考期末)已知a =22cos1°-sin1° ,b =1-tan 222.5°1+tan 222.5°,c =sin22°cos24°+cos22°sin24°,则a ,b ,c 的大小顺序为( ).A.b >a >cB.c >b >aC.c >a >bD.b >c >a【答案】B【分析】利用和差角正弦公式及商数关系可得a =sin44°、b =sin45°、c =sin46°,根据正弦函数的性质判断大小.【详解】a =cos1°sin45°-sin1°cos45°=sin44°,b =1-tan 222.5°1+tan 222.5°=cos 222.5°-sin 222.5°cos 222.5°+sin 222.5°=cos45°=sin45°,c =sin22°cos24°+cos22°sin24°=sin46°,所以c >b >a .故选:B8.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)下列等式不正确的是()A.cos15°-sin15°=22B.1+tan15°1-tan15°=3C.sin22°sin38°-cos22°sin52°=12D.1-cos30°2=6-24【答案】C【分析】A 应用差角正弦公式化简;B 应用和角正切公式化简;C 应用诱导公式及差角正弦公式化简;D 写出特殊角的函数值,将分子因式分解化简求值.【详解】A :cos15°-sin15°=2(sin45°cos15°-cos45°sin15°)=2sin30°=22,正确;B :1+tan15°1-tan15°=tan45°+tan15°1-tan45°tan15°=tan60°=3,正确;C :sin22°sin38°-cos22°sin52°=sin22°cos52°-cos22°sin52°=-sin30°=-12,错误;D :1-cos30°2=2-34=4-238=(3-1)28=3-122=6-24,正确;故选:Cππ10【分析】由三角恒等变换将等式化简为cos x-π4=55,即可求出sin x-π4,进一步求出sin x,cos x,即可求出tan x.【详解】因为sin x+sin x+π2=105,则sin x+cos x=2cos x-π4=105,则cos x-π4=55,因为x∈π2,π,所以x-π4∈π4,3π4,所以sin x-π4=255,所以sin x=sin x-π4+π4=sin x-π4cosπ4+cos x-π4sinπ4=255×22+55×22=31010,因为x∈π2,π,所以cos x=-1010,tan x=sin xcos x=-3.故选:A.10.(2022春·江苏南通·高一金沙中学校考期末)已知α,β∈0,π,tan(α-β)=12,tanβ=-17,则2α-β=()A.5π4B.π4C.-π4D.-3π4【答案】D【分析】结合式子中角的特点以及范围,分别求tanα=tan[(α-β)+β],tan(2α-β)=tan[(α-β)+α],再根据正切值缩小α,β的范围,从而得到2α-β的范围,即可得到角2α-β的大小.【详解】因为tanα=tanα-β+β=tanα-β+tanβ1-tanα-βtanβ=12-171+12×17=13<1,tan(2α-β)=tan[(α-β)+α]=tan(α-β)+tanα1-tan(α-β)tanα=12+131-12×13=1,而α,β∈(0,π),tanβ=-17>-1,所以0<α<π4,3π4<β<π,-π<-β<-3π4,-π<2α-β<-π4,所以2α-β=-3π4.故选:D.11.(2022春·江苏扬州·高一统考期末)已知0<α<β<π,函数f(x)=5sin x-π6,若f(α)=f(β)=3,则sin(β-α)=( ).A.2425B.-2425C.1D.-35【答案】A【分析】由已知条件,结合三角函数的性质可得π<α<2π,2π<β<7π,从而利用sinβ-α=【详解】解:令f x =5sin x -π6 =0,0<x <2π,则x =π6或x =7π6,令f x =5sin x -π6 =5,0<x <2π,则x =2π3,又0<α<β<π,f α =f β =3,所以π6<α<2π3,2π3<β<7π6,sin α-π6 =35,sin β-π6 =35,因为0<α-π6<π2,π2<β-π6<π,所以cos α-π6 =45,cos β-π6 =-45,所以sin β-α =sin β-π6 -α-π6 =sin β-π6 cos α-π6 -cos β-π6 sin α-π6 =35×45+45×35=2425,故选:A .12.(2022春·江苏常州·高一统考期末)已知0°<α<90°,且sin18°1+sin2α =2cos 29°cos2α,则α=()A.9°B.18°C.27°D.36°【答案】D【分析】根据二倍角公式和逆用余弦的差角公式化简得到cos 2α+9° =sin9°,结合0°<α<90°得到2α+9°=90°-9°,求出α.【详解】因为sin18°1+sin2α =2sin9°cos9°1+sin2α ,所以2cos 29°cos2α=2sin9°cos9°1+sin2α ,整理得:cos9°cos2α=sin9°sin2α+sin9°,cos9°cos2α-sin9°sin2α=sin9°,cos 2α+9° =sin9°,因为0°<α<90°,所以9°<2α+9°<189°,所以2α+9°=90°-9°,解得:α=36°故选:D .13.(2022春·江苏连云港·高一统考期末)如图,屋顶的断面图是等腰三角形ABC ,其中AC =BC ,横梁AB 的长为8米,∠BAC =α,为了使雨水从屋顶(设屋顶顶面为光滑斜面)上尽快流下,则α的值应为()A.30°B.45°C.60°D.75°【答案】B【分析】根据物体受力分析,利用二倍角的正弦公式化简后,由正弦函数的性质求出雨水流下时间的最小值对应α的值.则CD ⊥AB ,且AD =BD =12AB .因为F =mg sin α=ma ,所以a =g sin α;在直角三角形ACD 中,s =AD cos α=12at 2,所以t 2=2AD a cos α=AB g sin αcos α=2AB g sin2α≥2AB g =16g ,当sin2α=1,即α=45°时等号成立,故选:B .14.(2022春·江苏盐城·高一统考期末)已知函数f (x )=2x 2-3x +1,若方程f (sin x )=a +cos2x 在x ∈[0,2π)上恰有四个不同的解,则实数a 的取值范围是()A.-34<a <1 B.34≤a <1 C.-916<a <1 D.-916≤a <1【答案】C【分析】令t =sin x ∈[-1,1],将问题转化为y =a 与g (t )=t (4t -3)有两个交点,注意正弦函数值对应自变量的个数确定a 的范围.【详解】由题设a =f (sin x )-cos2x =sin x (4sin x -3)在x ∈[0,2π)上恰有四个不同的解,令t =sin x ∈[-1,1],则y =a 与g (t )=4t -38 2-916有两个交点,而g (-1)=7>g (1)=1,注意:a =g (-1)时t =-1,则对应x 在[0,2π)上有一个解;g (1)<a <g (-1)或a =g 38 时t 在[-1,1]只有一个对应值,则对应x 在[0,2π)上有两个解;a =g (1)时t =1或t =-14,对应x 在[0,2π)上有三个解;g 38<a <g (1)时t 在[-1,1]只有两个对应值,此时对应x 在[0,2π)上有四个解;综上,-916<a <1.故选:C15.(2022春·江苏南通·高一统考期末)△ABC 中,若A ,B ∈0,π2,sin C =sin A sin B ,则tan A +B 的取值范围是()A.-43,-1B.-43,-1C.1,43D.1,43【答案】A【分析】利用三角函数恒等变换进行化简,可得tan A +tan B =tan A tan B ,利用基本不等式得【详解】∵A ,B ∈0,π2,∴cos A cos B ≠0,∵sin C =sin A sin B ,即sin A +B =sin A sin B ,∴sin A cos B +cos A sin B =sin A sin B ,两边同时除以cos A cos B ,得tan A +tan B =tan A tan B ,∵tan A ,tan B >0,∴tan A +tan B ≥2tan A tan B ,当且仅当tan A =tan B 时等号成立,∴tan A tan B ≥2tan A tan B ,即tan A tan B ≥4,tan (A +B )=tan A +tan B 1-tan A tan B =tan A tan B1-tan A tan B =11tan A tan B-1,∵tan A tan B ≥4,∴0<1tan A ⋅tan B≤14,∴-1<1tan A ⋅tan B-1≤-34,∴-43≤11tan A ⋅tan B -1<-1,即tan A +B 的取值范围是-43,-1 .故选:A .二、多选题16.(2022秋·江苏苏州·高一统考期末)下列选项中,与sin -11π6的值相等的是()A.2sin15°sin75°B.cos18°cos42°-sin18°sin42°C.2cos 215°-1D.tan22.5°1-tan 222.5°【答案】ABD【解析】求出sin -11π6的值,进而利用二倍角的正弦求值判断A ;利用两角和的余弦求值判断B ;利用二倍角的余弦求值判断C ;利用两角和的正切求值判断D .【详解】sin -11π6 =sin -2π+π6 =sin π6=12.对于A ,2sin15°sin75°=2sin15°cos15°=sin30°=12;对于B ,cos18°cos42°-sin18°sin42°=cos 18°+42°=cos60°=12;对于C ,2cos 215°-1=cos30°=32;对于D ,因为tan45°=2tan22.5°1-tan 222.5°=1,可得tan22.5°1-tan 222.5°=12.∴与sin -11π6的值相等的是ABD .故选:ABD .17.(2022秋·江苏连云港·高一校考期末)已知函数f (x )=cos 2x -π-cos2x ,则()B.f (x )的图象关于点7π6,0对称C.f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z )D.f (x )在[0,2π]上有4个零点【答案】ACD【分析】先通过降幂公式、两角和与差的正弦公式及辅助角公式将函数化简,进而结合三角函数的图象和性质解得答案.【详解】f (x )=1+cos 2x -π3 2-cos2x =12+1212cos2x +32sin2x -cos2x =34sin2x -34cos2x +12=32sin 2x -π3 +12,则f x 的最大值为1+32,A 正确;易知f x 图象的对称中心的纵坐标为12,B 错误;令2x -π3=π2+k π(k ∈Z ),得x =5π12+k π2(k ∈Z ),此即f x 图象的对称轴方程,C 正确;由f (x )=32sin 2x -π3 +12=0,得sin 2x -π3 =-33,当x ∈[0,2π]时,2x -π3∈-π3,11π3,作出函数y =sin x x ∈-π3,11π3 的图象,如图所示:所以方程sin 2x -π3 =-33在[0,2π]上有4个不同的实根,即f (x )在[0,2π]上有4个零点,D 正确.故选:ACD .18.(2022秋·江苏无锡·高一江苏省天一中学校考期末)已知函数f x =sin n x +cos n x x ∈N * ,则()A.对任意正奇数n ,f x 为奇函数B.对任意正整数n ,f x 的图象都关于直线x =π4对称C.当n =1时,f x 在-π2,π2上的最小值为-1【分析】对A:取n=1,易得f(x)=sin x+cos x不是奇函数,从而即可判断;对B:利用诱导公式计算fπ2-x=f(x)即可判断;对C:利用三角函数的知识即可求解;对D:n=4时,利用三角恒等变换化简解析式得f(x)=14cos4x+34,从而即可求解.【详解】解:对A:取n=1,则f(x)=sin x+cos x,此时f(0)=1≠0,所以f(x)不是奇函数,故选项A错误;对B:因为fπ2-x=sin nπ2-x+cos nπ2-x=cos n x+sin n x=f(x),所以f(x)的图象关于直线x=π4对称,故选项B正确;对C:当n=1时,f(x)=sin x+cos x=2sin x+π4,因为-π2≤x≤π2,所以-π4≤x+π4≤3π4,所以-22≤sin x+π4≤1,所以-1≤2sin x+π4≤2,所以f x 在-π2,π2上的最小值为-1,故选项C正确;对D:当n=4时,f(x)=sin4x+cos4x=(sin2x+cos2x)2-2sin2x cos2x=1-12sin22x=1-1-cos4x4=14cos4x+34,由2kπ-π≤4x≤2kπ,k∈Z,可得-π4+kπ2≤x≤kπ2,(k∈Z),则f(x)的递增区间为-π4+kπ2,kπ2(k∈Z),故选项D正确.故选:BCD.19.(2022春·江苏盐城·高一统考期末)下列关于函数f x =sin4x+cos4x的说法正确的有()A.最小正周期为πB.在-π4,0上单调递增C.值域为12,1D.若x=x0为f x 的一条对称轴,则f x0=1【答案】BC【分析】利用二倍角公式化简可得f x =14cos4x+34,根据余弦型函数的最小正周期、单调性、值域和对称性的求法依次判断各个选项即可.【详解】f x =sin4x+cos4x=sin2x+cos2x2-2sin2x cos2x=1-12sin22x=14cos4x+34;对于A,f x 的最小正周期T=2π4=π2,A错误;对于B,当x∈-π4 ,0时,4x∈-π,0,∴f x 在-π4 ,0上单调递增,B正确;对于C,∵cos4x∈-1,1,∴14cos4x+34∈12,1,即f x 的值域为12,1,C正确;对于D,若x=x0为f x 的一条对称轴,则f x0=1或12,D错误.故选:BC.1C.cos20°cos40°+sin200°sin140°D.tan20°+tan25°+tan20°tan25°【答案】AC【分析】选项A 逆用二倍角的正弦求值;选项B 逆用二倍角的正切求值;选项C 逆用两角和的余弦公式求值;选项D 利用两角和的正切公式求值.【详解】解:因为2sin75°cos75°=sin 2×75° =12,故选项A 正确;因为3tan15°1-tan 215°=32×2tan15°1-tan 215°=32tan30°=32≠12,故选项B 错误;因为cos20°cos40°-sin20°sin40°=cos60°=12,故选项C 正确;因为1=tan 20°+25° =tan20°+tan25°1-tan20°tan25°,整理得,tan20°+tan25°+tan20°tan25°=1,故选项D错误;故选:AC .21.(2022春·江苏南通·高一统考期末)已知向量a =(sin ωx ,cos ωx )(ω>0),b =sin 2ωx 2+π4 ,cos 2ωx 2,函数f x =a ⋅b,则()A.若f (x )的最小正周期为π,则f (x )的图象关于点3π8,0对称B.若f (x )的图象关于直线x =π2称,则ω可能为12C.若f (x )在-2π5,π6 上单调递增,则ω∈0,32D.若f (x )的图象向左平移π3个单位长度后得到一个偶函数的图象,则ω的最小值为32【答案】BC【分析】首先化简函数f x ,再根据三角函数的周期,对称,单调性,以及图象平移,即可判断选项.【详解】f x =a ⋅b =sin ωx ⋅sin 2ωx 2+π4 +cos ωx ⋅cos 2ωx2=sin ωx ⋅1-cos ωx +π2 2 +cos ωx ⋅1+cos ωx 2 =sin ωx ⋅1+sin ωx 2+cos ωx ⋅1+cos ωx2=12sin ωx +cos ωx +12=22sin ωx +π4 +12,A .若函数的最小正周期为π,则ω=2,即f x =22sin 2x +π4 +12,当x =3π8时,2×3π8+π4=π,此时f x =12,所以函数关于3π8,12对称,故A 错误;B .若函数的图象关于直线x =π2对称,则ω⋅π2+π4=π2+k π,k ∈Z ,得ω=12+2k ,k ∈Z ,所以ω的可能为12,故B 正确;C . 当x ∈-2π5,π6 时,ωx +π4∈-2π5ω+π4,π6ω+π4 ,则-2π5ω+π4≥-π2π6ω+π4≤π2ω>0,解得:0<ω≤32,故C 正确;D .函数f x 的图象向左平移π3个单位长度后得到g x =22sin ωx +π3 +π4 +12,函数g x 是偶函数,则当x =0时,ω⋅π3+π4=π2+k π,k ∈Z ,得ω=34+3k ,k ∈Z ,且ω>0,所以ω的最小值是34,故D 错误.故选:BC22.(2022春·江苏镇江·高一统考期末)tan75°=()A.2+3B.1+cos150°1-cos150°C.sin150°1+cos150°D.tan25°tan35°tan85°【答案】ACD【分析】根据两角和的正切公式及特殊角的三角函数值判断A ,由正切半角公式判断BC ,由tan 60°-α tan 60°+α tan α=tan3α,令α=25°即可判断出D .【详解】tan75°=tan (45°+30°)=tan45°+tan30°1-tan45°tan30°=1+331-33=2+3,故A 正确;由正切的半角公式知tan75°=1-cos150°1+cos150°,故B 错误;tan75°=sin75°cos75°=2sin75°cos75°2cos 275°=sin150°1+cos150°,故C 正确;∵tan 60°-α tan 60°+α tan α=tan3α,令α=25°,得tan75°=tan25°tan35°tan85°,可得D 正确.故选:ACD .23.(2022春·江苏苏州·高一校联考期末)计算下列各式的值,其结果为1的有()A.cos40°1+3tan10°B.121cos80°-3sin80° C.sin140°3-tan190°D.4sin18°⋅sin54°【答案】ACD【分析】由商数关系、诱导公式、和差角公式及倍角公式依次化简求值即可求解.【详解】对于A ,cos40°1+3tan10° =cos40°1+3sin10°cos10° =cos40°⋅cos10°+3sin10°cos10°=cos40°⋅2sin 30°+10° cos10°=2sin40°cos40°cos10°=sin80°cos10°=sin 90°-10° cos10°=cos10°cos10°=1,A 正确;对于B ,121cos80°-3sin80° =12⋅sin80°-3cos80°sin80°cos80°=2sin 80°-60° sin160°=2sin20°sin 180°-20°=2,B错误;对于C ,sin140°3-tan190° =sin140°3-sin190°cos190° =sin140°⋅3cos190°-sin190°cos190°sin 190°+90° cos190°=cos190°cos190°=1,C 正确;对于D ,4sin18°⋅sin54°=4sin 90°-72° ⋅sin 90°-36° =4cos72°⋅cos36°=4cos72°⋅cos36°⋅sin36°sin36°=2cos72°⋅sin72°sin36°=sin144°sin36°=sin 180°-36° sin36°=sin36°sin36°=1,D 正确.故选:ACD .24.(2022春·江苏南京·高一南京市中华中学校考期末)已知函数f (x )=|cos2x |+cos |x |,有下列四个结论,其中正确的结论为()A.f (x )在区间3π4,3π2上单调递增 B.π是f (x )的一个周期C.f (x )的值域为-22,2D.f (x )的图象关于y 轴对称【答案】CD【解析】代入特殊值检验,可得A 错误;求得f (x +π)的表达式,即可判断B 的正误;分段讨论,根据x 的范围,求得cos x 的范围,利用二次函数的性质,即可求得f (x )的值域,即可判断C 的正误;根据奇偶性的定义,即可判断f (x )的奇偶性,即可判断D 的正误,即可得答案.【详解】对于A :因为x ∈3π4,3π2 ,所以2x ∈3π2,3π,f 5π4 =cos 5π2 +cos 5π4 =-22,f (π)=cos2π +cosπ=0,所以f 5π4 <f (π),所以f (x )在区间3π4,3π2上不是单调递增函数,故A 错误;对于B :f (x +π)=|cos2(x +π)|+cos |x +π|=cos2x +cos |x +π|≠cos2x +cos |x |,所以π不是f (x )的一个周期,故B 错误;对于C :f (x +2π)=|cos2(x +2π)|+cos |x +2π|=cos2x +cos |x |=f (x ),所以f (x )的周期为2π,当x ∈0,π4 时,cos x ∈22,1,f (x )=|cos2x |+cos |x |=cos2x +cos x =2cos 2x -1+cos x ∈22,2;当x ∈π4,3π4 时,cos x ∈-22,22,f (x )=|cos2x |+cos |x |=-cos2x +cos x =1-2cos 2x +cos x ∈-22,98;当x ∈3π4,5π4 时,cos x ∈-1,-22 ,f (x )=|cos2x |+cos |x |=cos2x +cos x =2cos 2x -1+cos x ∈-22,0;当x ∈5π4,7π4 时,cos x ∈-22,22,f (x )=|cos2x |+cos |x |=-cos2x +cos x =1-2cos 2x +cos x ∈-22,98;当x ∈7π4,2π 时,cos x ∈22,1 ,f (x )=|cos2x |+cos |x |=cos2x +cos x =2cos 2x -1+cos x ∈综上:f (x )的值域为-22,2,故C 正确;对于D :f (-x )=|cos (-2x )|+cos |(-x )|=|cos2x |+cos |x |=f (x ),所以f (x )为偶函数,即f (x )的图象关于y 轴对称,故D 正确,故选:CD【点睛】解题的关键是根据的f (x )解析式,结合函数的奇偶性、周期性求解,考查分类讨论,化简计算的能力,综合性较强,属中档题.25.(2022秋·江苏无锡·高一统考期末)已知函数f (x )=sin n x +cos n x n ∈N * ,则()A.当n =4时,f (x )的最小正周期是π2B.当n =6时,f (x )的值域是14,1C.当n =2k -1k ∈N * 时,f (x )为奇函数D.对∀n ∈N *,f (x )的图象关于直线x =π4对称【答案】ABD【分析】先把n 值代入函数f (x )的解析式,化简整理成正弦型三角函数,再去求最小正周期、值域;依据定义去判断奇偶性、对称轴即可解决.【详解】选项A :当n =4时,f (x )=sin 4x +cos 4x =sin 2x +cos 2x 2-2sin 2x cos 2x =1-12sin 22x =14cos4x +34最小正周期是π2.判断正确;选项B :当n =6时,f (x )=sin 6x +cos 6x =sin 2x +cos 2x sin 4x -sin 2x cos 2x +cos 4x =sin 2x +cos 2x 2-3sin 2x cos 2x =1-34×1-cos4x 2=38cos4x +58f (x )的值域是14,1.判断正确;选项C :当n =2k -1时,f (x )=sin 2k -1x +cos 2k -1x 则f (-x )=sin 2k -1-x +cos 2k -1-x =-sin 2k -1x +cos 2k -1x 故f (-x )≠-f (x ),即f (x )不是奇函数. 判断错误;选项D :f (x )=sin n x +cos n x n ∈N * f π2-x =sin n π2-x +cos n π2-x =cos n x +sin n x =f (x )则f (x )的图象关于直线x =π4对称. 判断正确.故选:ABD三、填空题26.(2022春·江苏南京·高一统考期末)tan15°=.【答案】2-3##-3+2【分析】利用正切的差角公式进行求解.【详解】tan15°=tan 45°-30° =tan45°-tan30°=1-33=3-3=12-63=2-327.(2022春·江苏镇江·高一统考期末)求值:sinπ8⋅cos π8=.【答案】24【分析】根据二倍角的正弦公式逆用,计算即可得答案.【详解】由题意得sin π8⋅cos π8=12sin 2×π8 =12sin π4=24.故答案为:2428.(2022春·江苏南通·高一统考期末)如图是古希腊数学家希波克拉底研究的几何图形,此图由三个半圆构成,直径分别为直角三角形ABC 的斜边AB ,直角边BC 、AC ,点D 在以AC 为直径的半圆上.已知以直角边AC 、BC 为直径的两个半圆的面积之比为3,cos ∠DAB =45,则cos ∠DAC =.【答案】43+310【分析】由以直角边AC 、BC 为直径的两个半圆的面积之比为3,可得ACBC=3,进而可得∠BAC =π6,从而利用两角差的余弦公式即可求解.【详解】解:因为以直角边AC 、BC 为直径的两个半圆的面积之比为3,所以ACBC=3,所以在直角三角形ABC 中∠BAC =π6,因为cos ∠DAB =45,所以sin ∠DAB =35,所以cos ∠DAC =cos ∠DAB -π6 =cos ∠DAB cos π6+sin ∠DAB sin π6=45×32+35×12=43+310,故答案为:43+310.29.(2022春·江苏扬州·高一统考期末)tan75°的值为.【答案】2+3##3+2【分析】根据tan75°=tan 30°+45° ,结合两角和的正切公式求解即可【详解】tan75°=tan 30°+45° =tan30°+tan45°1-tan30°tan45°=1+331-33=3+13-1=3+1 23-1 3+1=2+330.(2022春·江苏常州·高一校联考期末)已知cos α+sin α-π6=0,则tan2α=.【答案】-3【分析】由两角差的正弦公式展开,由商数关系求得tan α,然后由二倍角的正切公式计算.【详解】cos α+sin α-π6 =cos α+sin αcos π6-cos αsin π6=12cos α+32sin α=0,tan α=-33,tan2α=2tan α1-tan 2α=2×-33 1--332=-3.故答案为:-3.31.(2022春·江苏连云港·高一统考期末)已知α是锐角,sin α=35,则cos α-π4的值是.【答案】7210##7102【分析】结合同角三角函数的基本关系式、两角差的余弦公式求得正确答案.【详解】由于α是锐角,sin α=35,所以cos α=1-sin 2α=45,所以cos α-π4 =cos αcos π4+sin αsin π4=2235+45 =7210.故答案为:721032.(2022秋·江苏常州·高一校考期末)已知tan α、tan β是方程x 2-33x +4=0的两根,且α、β∈-π2,π2,则α+β的值等于.【答案】2π3【分析】根据一元二次方程根与系数关系,结合两角和的正切公式进行求解即可.【详解】已知tan α、tan β是方程x 2-33x +4=0的两根,所以有tan αtan β=4>0tan α+tan β=33>0⇒α、β∈0,π2⇒α+β∈0,π ,tan α+β =tan α+tan β1-tan αtan β=331-4=-3,因为α+β∈0,π ,所以α+β=2π3,故答案为:2π333.(2022春·江苏淮安·高一统考期末)已知cos α+π3 =13,且α∈0,π2 ,则sin 2α+π6的值为.【答案】79【分析】由诱导公式与二倍角公式求解即可π2ππ2π故答案为:7934.(2022春·江苏扬州·高一期末)在△ABC 中,AC =2BC =6,∠ACB 为钝角,M ,N 是边AB 上的两个动点,且MN =2,若CM ⋅CN的最小值为3,则cos ∠ACB =.【答案】2-2109【分析】取线段MN 的中点P ,结合向量数量积求出边AB 上的高CO ,进而求出∠OCA ,∠OCB 的正余弦即可求解作答.【详解】取线段MN 的中点P ,连接CP ,过C 作CO ⊥AB 于O ,如图,PM =12MN =1,依题意,CM ⋅CN =CP +PM ⋅CP -PM =CP 2-PM 2=CP2-1,因CM ⋅CN 的最小值为3,则CP 的最小值为2,因此CO =2,在Rt △AOC 中,cos ∠OCA =CO CA=13,sin ∠OCA =223,在Rt △BOC 中,cos ∠OCB =CO CB =23,sin ∠OCB =53,所以cos ∠ACB =cos (∠OCA +∠OCB )=cos ∠OCA cos ∠OCB -sin ∠OCA sin ∠OCB =2-2109.故答案为:2-2109【点睛】关键点睛:涉及定长的线段两端点向量数量积,取线段的中点,借助向量数量积的计算公式求解是关键.35.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)如图,正方形ABCD 的边长为10米,以点A 为顶点,引出放射角为π6的阴影部分的区域,其中∠EAB =x ,π12≤x ≤π4,记AE ,AF 的长度之和为f x .则f x 的最大值为.【答案】106【分析】由题意结合三角恒等变换得到f (x )=203sin x +π3sin 2x +π6+12且π12≤x ≤π4,令t =sin x +π3∈6+24,1 ,进一步得到f (x )=g (t )=2032t -1,由函数单调性求最大值即可.而∠FAD=∠EAB+∠EAF∈π4,5π12,故∠DAF=π3-x∈π12,π4,所以AF=ADcosπ3-x=10cosπ3-x,综上,f(x)=101cos x+1cosπ3-x且π12≤x≤π4,所以f(x)=101cos x+2cos x+3sin x=10⋅3cos x+3sin xcos x(cos x+3sin x)=203sin x+π3sin2x+π6+12,令t=sin x+π3∈6+24,1,则t2=sin2x+π3=1-cos2x+2π32=1-cosπ2+2x+π62=1+sin2x+π62,所以sin2x+π6=2t2-1,故f(x)=g(t)=2032t-12t 在t∈6+24,1上递减,所以f(x)max=g(t)max=g6+24=2036+22-26+2=106,此时x=π12或x=π4.故答案为:106。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一下期末复习--- 三角恒等变换
知识点:
1.两角和与差的正弦、余弦、正切公式:
2.二倍角的正弦、余弦、正切公式:
=+)sin(βα______________ =-)s i n (βα _______________=α2sin ____________
=+)cos(βα______________ =-)cos(βα______________ =α2cos ______ =_______ =____ =+)tan(βα______________ =-)tan(βα ______________ =α2tan ____________
课前热身:
1. 化简sin163sin 223sin 253sin313+=
.
2.若1cos()3
αβ-=
,则22
(sin sin )(cos cos )αβαβ+++= . 3.
已知sin(45)α︒
+=
,则sin 2α= . 4.
已知sin cos 22θθ
+=sin θ的值为 ,cos 2θ的值为 .
5.求值:sin 6sin 42sin 66sin 78
6.已知02
π
βαπ<<
<<,且12
cos(),sin()2923
β
ααβ-
=--=,则 cos()αβ+= .
︒的值是 . 8.函数2sin (sin cos )y x x x =+的最大值为 ,其单调增区间是 . 题型分析:
考点一:三角函数式求值 例1.已知[]的值求)3
sin(),6cos(,53cos ,,0π
απααπα+-=∈
练1.已知)2tan(,3
1
tan ,71tan βαβα+==求的值
例2.已知)sin(,13
5
)4sin(,53)4cos(,432,434βαβπαππβππαπ+=+=-<<<<求的值
练2.已知的值求αββαπβππαsin 1312sin ,53)2sin(),0,2(,,2-==--∈⎥⎦


⎣⎡∈
考点二:三角函数式求角 例3. 若,10
10sin ,55sin ==B A 且B A ,均为钝角,求B A +的值
变式:若B A ,均为锐角呢?
考点三: )sin(cos sin 22ϕα++=
+b a x b x a 的应用
例4.已知函数⎥⎦

⎢⎣⎡∈+=
ππ,2,cos sin sin 3)(2x x x x x f
(1)求)(x f 的零点 (2)求)(x f 的最大值和最小值
练4.已知函数13sin 322sin )(2++-=x x x f
(1)求)(x f 的最小正周期及其单调递增区间 (2)当⎥⎦

⎢⎣⎡-∈6,6ππx 时,求)(x f 的值域。

相关文档
最新文档