(完整版)高一数学必修四三角恒等变换单元测试题(含答案)

合集下载

(好题)高中数学必修四第三章《三角恒等变形》测试题(答案解析)

(好题)高中数学必修四第三章《三角恒等变形》测试题(答案解析)

一、选择题1.已知函数()sin 3cos f x x x ωω=+()0ω>的图像与直线2y =交于,A B 两点,若AB 的最小值为π,则函数()f x 的一条对称轴是( )A .3x π=B .4x π=C .6x π=D .12x π=2.已知2tan 23θ=,则1cos sin 1cos sin θθθθ-+++的值为( ) A .23 B .23-C .32D .32-3.若sin 3cos 0θθ+=,则2cos sin 2θθ+的值( ) A .2B .2-C .12D .12-4.已知0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,且4cos 5α=,2sin()3αβ+=,则( )A .0,3πβ⎛⎫∈ ⎪⎝⎭B .,32ππβ⎛⎫∈⎪⎝⎭ C .2,23ππβ⎛⎫∈⎪⎝⎭D .2,3πβπ⎛⎫∈⎪⎝⎭5.已知0,2x π⎛⎫∈ ⎪⎝⎭,3cos 45x π⎛⎫+= ⎪⎝⎭,则sin x 的值为( ) A .210-B .210 C .7210D .7210-6.如下图,圆O 与x 轴的正半轴的交点为A ,点,C B 在圆O 上,且点C 位于第一象限,点B 的坐标为43,,,55AOC α⎛⎫-∠= ⎪⎝⎭若1BC =,则233cos sin cos 222ααα--的值为( )A .45B .35C .45-D .357.已知cos 25π2)4αα=+1tan tan αα+等于( )A .92B .29C .9-2D .2-98.已知α为锐角,且1sin 34πα⎛⎫-= ⎪⎝⎭,则sin α的值为( )A.18± BC.8D9.在ABC ∆中,已知其面积为22()S a b c =--,则tan A =( ) A .34B .817C .815D .171910.若0||4πα<<,则下列说法①sin2α>sinα,②cos2α<cosα,③tan2α>tanα,正确的是( ) A .①B .②C .③D .①③11.已知()1sin 30cos 3αα︒+=+,则()sin 230α+︒=( ) A .79-B .79CD. 12.若3sin 2sin 03παα⎛⎫-+-= ⎪⎝⎭,则tan α=( )A.BC. D二、填空题13.已知1cos 3α=,且02πα-<<,则()()()cos sin 2tan 23sin cos 22αππαπαππαα--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭______. 14.给出下列命题:①存在实数α使得sin cos 1αα=;②存在实数α使得3sin cos 2αα+=; ③5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数; ④8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程; ⑤若α、β是第一象限角,且αβ>,则tan tan αβ>, 其中正确命题的序号是______.15.2cos10sin 20sin 70︒︒︒-=______. 16.求值:sin 50sin 30sin10cos50cos30sin10︒+︒︒︒-︒︒=_______17.若tan 30,2tan 10αβ-=-=,则()tan αβ+=________.18________.19.已知锐角α,β满足()sin 23sin αββ+=,则()tan cot αβα+=______. 20.在半径为2的半圆形钢板上截取一块面积最大的矩形,则最大面积是________.三、解答题21.已知函数()sin()1g x ax bπ=-++,从下面三个条件中任选一个条件,求出,a b 的值,并解答后面的问题. ①已知函数f (x )=2sin(x +6π)·sin(x -3π)+2的最小值为a ,最大值为b ; ②已知0,0a b >>,且4a b +=,当19a b+取到最小值时对应的a ,b ; ③已知函数3()f x b x a=+-,满足(1)(1)6f x f x -++=. (1)选择条件________,确定,a b 的值;(2)求函数()g x 的单调递增区间和对称中心. 22.已知02πα<<,4sin 5α. (1)求tan2α的值; (2)求cos 24πα⎛⎫+ ⎪⎝⎭的值; (3)若02πβ<<且1cos()3αβ+=-,求sin β的值.23.已知函数()f x 满足:()()()22f x f x a a R +=+∈,若()12f =,且当(]2,4x ∈时,()22611f x x x =-+.(1)求a 的值;(2)当(]0,2x ∈时,求()f x 的解析式;并判断()f x 在(]0,4上的单调性(不需要证明);(3)设()24log 231x g x ⎛⎫=+⎪-⎝⎭,()2cos cos 2,22h x x m x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值.24.已知1sin cos 5αα+=,其中0απ<<. (1)求11sin cos αα+的值; (2)求tan α的值.25.如图,角θ的顶点与平面直角坐标系xOy 的原点重合,始边与x 轴的非负半轴重合,终边与单位圆交于点P ,若点P 的坐标为04(,)5y -.(1)求tan sin 2θθ-的值;(2)若将OP 绕原点O 按逆时针方向旋转40︒,得到角α,设tan m α=,求()tan 85θ+︒的值.26.设函数2()cos 22sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 的最大值及取得最大值时x 的集合; (2)若,42⎛⎫∈⎪⎝⎭ππα,且2()5f α=,求sin 2α.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】化简得()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由题可得周期为π,即可求出2ω=,令2,32πππ+=+∈x k k Z 求出对称轴即可得出答案.【详解】()sin 32sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,()f x 直线2y =交于,A B 两点,且AB 的最小值为π,T π=,则22T πω==,即()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令2,32πππ+=+∈x k k Z ,则,122k x k Z ππ=+∈, ()f x ∴的对称轴为,122k x k Z ππ=+∈, 当0k =时,12x π=.故选:D. 【点睛】本题考查正弦型函数的对称轴问题,解题的关键是利用辅助角公式化简函数得出周期,求出解析式,即可解决.2.A解析:A 【分析】根据半角公式得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,再分子分母同除以2cos 2θ得2tan 1cos sin 21cos si tan2n 31ta 2n 2θθθθθθθ-+=++=++. 【详解】解:根据半角公式得:22cos 12sin2cos 122θθθ=-=-,sin 2sincos22θθθ=所以22222sin 2sin cos sin sin cos2222222cos 2sin cos cos sin cos 21cos sin 1cos 222n 2i 2s θθθθθθθθθθθθθθθθ-+==++++++, 对上述式子分子分母同除以2cos 2θ得: 222sin sin cos tan22222cos s 42ta in cos 22n 1cos sin 1029321cos sin 1531tan 1322θθθθθθθθθθθθθ+-+==+++===++++. 故选:A. 【点睛】本题解题的关键在于利用半角公式化简得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,进而构造齐次式求解即可,考查运算求解能力,是中档题. 3.D解析:D 【分析】先根据题意得tan 3θ=-,再根据正弦的二倍角公式化简得2212tan 1cos sin 21tan 2θθθθ++==-+.【详解】解:由sin 3cos 0θθ+=得tan 3θ=-.所以2222222cos sin 2cos 2sin cos cos sin 2cos sin cos sin θθθθθθθθθθθ+++==++ 22222222cos 2sin cos 12tan 51cos cos cos sin 1tan 102cos cos θθθθθθθθθθθ++-====-++, 故选:D. 【点睛】本题解题的关键是将等式2cos sin 2θθ+变形化简得2212tan cos sin 21tan θθθθ++=+,进而求解,考查运算求解能力,是中档题.4.C解析:C 【分析】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,可得()0,βπ∈,再由()βαβα=+-展开式结合同角三角函数关系可得61cos (,0)152β-=-,从而得解. 【详解】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,,02πα⎛⎫-∈- ⎪⎝⎭,可得()0,βπ∈.又4cos 5α=,2sin()3αβ+=,且0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,所以3sin 5α==,cos()3αβ+==-. 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++4236(0353515-=-⨯+⨯=<.因为6127015230--+=>,所以1cos (,0)2β∈- 所以2,23ππβ⎛⎫∈ ⎪⎝⎭. 故选:C. 【点睛】方法点睛:在利用两角和与差的三角函数公式求值或化简时,常根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论的差异,使问题获解,常见角的变换方式有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-等.5.B解析:B 【分析】 先求得πsin 4x ⎛⎫+ ⎪⎝⎭的值,然后利用ππsin sin 44x x ⎛⎫=+-⎪⎝⎭,展开后计算得出正确选项. 【详解】由于πππ3π0,,,2444x x ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭, 所以π4sin 45x ⎛⎫+== ⎪⎝⎭.故ππsin sin 44x x ⎛⎫=+- ⎪⎝⎭ππππsin cos cos sin4444x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭43525210=⨯-⨯=,故选B. 【点睛】本小题主要考查同角三角函数的基本关系式,考查化归与转化的数学思想方法,属于基础题.6.B解析:B 【解析】 ∵点B 的坐标为43,55⎛⎫-⎪⎝⎭,设AOB θ∠=, ∴325sinπθ-=-(),425cos πθ-=(), 即35sin θ=,45cos θ=, ∵AOC α∠=,若1BC =,∴3πθα+=,则3παθ=-,则213sincossin cos cos sin 222222625αααππαααθθ⎛⎫⎛⎫--=-=+=-== ⎪ ⎪⎝⎭⎝⎭故选B.点睛:本题主要考查三角函数的化简和求值,利用三角函数的定义以及三角函数的辅助角公式是解决本题的关键;利用降幂公式可将所求表达式化简为关于α的表达式,设AOB θ∠=,当角α的终边与单位圆的交点坐标为(),u v 时,sin v α=,cos u α=,可先求出关于θ的三角函数式,结合等边三角形寻找,αθ之间的关系即可.7.A解析:A 【分析】先利用cos 2sin 22παα⎛⎫=+ ⎪⎝⎭结合cos 2π3)4αα=+得出cos 46πα⎛⎫+= ⎪⎝⎭的值,然后利用二倍角公式得到24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭,即4sin 29α=,又12tan tan sin 2ααα+=,将4sin 29α=代入便可解出答案. 【详解】因为sin 22sin cos cos 2244π4)444πππααααπαππααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+ ⎪⎛⎫⎛⎫⎝⎭+++ ⎪ ⎪⎝⎭⎝⎭,4πα⎛⎫+= ⎪⎝⎭,则cos 4πα⎛⎫+= ⎪⎝⎭ 所以24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭, 又4cos 2sin 229παα⎛⎫+=-=- ⎪⎝⎭,所以4sin 29α=, 所以1sin cos 1229tan 4tan cos sin sin cos sin 229ααααααααα+=+====.故选:A. 【点睛】本题考查诱导公式,考查正弦、余弦的二倍角公式及其应用,难度一般,解答时公式的变形运用是关键.8.B解析:B 【分析】通过三角恒等式可求出cos 3πα⎛⎫- ⎪⎝⎭的值,再根据两角和的正弦即可得出结果. 【详解】 ∵02πα<<,∴336πππα-<-<,又∵1sin 34πα⎛⎫-= ⎪⎝⎭,∴cos 3πα⎛⎫-=== ⎪⎝⎭∴11sin sin 3342ππαα⎛⎫=-+=⨯= ⎪⎝⎭ 故选:B. 【点睛】本题主要考查了三角恒等式的应用以及通过两角和正弦公式求值,属于中档题.9.C解析:C 【分析】由题结合余弦定理可得1si s 2n 22co bc A c A bc b +=,整理化简有22sincos 42sin 222A A A =⨯,进而可计算出1tan 24A =,再由正切的二倍角公式计算可得答案. 【详解】 由题意得222221sin 2()2S bc A a b c b c a bc =--+=+=--, 又因为2222cos b c a bc A +-=,所以1si s 2n 22co bc A c A bc b +=, 整理得()41s c s i o n A A =-,所以22sincos 42sin 222A A A =⨯ 即cos 4sin 22A A =,所以1tan 24A = ,则28tan 1512tan2tan 2A AA ==- 故选C. 【点睛】本题考查的知识点有三角形的面积公式,余弦定理,二倍角公式,属于一般题.10.B解析:B 【分析】 取6πα=-判断①③,根据余弦函数的性质结合二倍角公式判断②.【详解】当6πα=-时,1sin 2sin ,sin sin ,sin 2sin 3262ππαααα⎛⎫⎛⎫=-=-=-=-< ⎪ ⎪⎝⎭⎝⎭tan 2tan tan tan tan 2tan 36ππαααα⎛⎫⎛⎫=-==-=< ⎪ ⎪⎝⎭⎝⎭,则①③错误;0||4πα<<,cos cos ||αα⎫∴=∈⎪⎪⎝⎭2cos 2cos 2cos cos 1(cos 1)(2cos 1)0αααααα∴-=--=-+<即cos2cos αα<,②正确; 故选:B 【点睛】本题主要考查了求余弦函数的值域以及二倍角的余弦公式的应用,属于中档题.11.B解析:B 【分析】根据条件展开化简得到()1sin 303α-︒=,再利用角的变换,得到()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒,再利用二倍角公式化简求值.【详解】由()1sin 30cos 3αα︒+=+,得11cos cos 223ααα+=+, 化简得()1sin 303α-︒=; ()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒ ()21712sin 301299α=--︒=-⨯=故选:B . 【点睛】本题考查三角恒等变换,重点考查转化的思想,计算能力,属于基础题型.12.A解析:A 【分析】由两角和的正弦公式化简,并引入锐角β,cos β=,sin β=,已知条件化为sin()1αβ-=,这样可得22k παβπ=++,k Z ∈,代入tan α,应用切化弦公式及诱导公式可得结论. 【详解】由已知3sin 2sin 3sin 2sin cos cos sin 0333πππααααα⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭2sin αα=1αα=,设cos β=,sin β=,且β为锐角,cos sin sin cos sin()1ααβαβααβ=-=-=, ∴22k παβπ-=+,k Z ∈,即22k παβπ=++,k Z ∈,tan tan 2tan 22k ππαβπβ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭sin cos 2sin 3cos 2πββπββ⎛⎫+ ⎪⎝⎭====--⎛⎫+ ⎪⎝⎭, 故选:A . 【点睛】本题考查两角和与差的正弦公式,考查诱导公式及同角间的三角函数关系,化简变形求值是解题的基本方法.二、填空题13.【分析】用同角间的三角函数关系计算用诱导公式化简后再计算然后计算可得【详解】∵且∴∴故答案为:【点睛】方法点睛:本题考查诱导公式同角间的三角函数关系三角函数求值问题首先要进行化简应用诱导公式化简应用解析:-【分析】用同角间的三角函数关系计算sin α,用诱导公式化简后再计算.然后计算tan α,可得. 【详解】∵1cos 3α=,且02πα-<<,∴sin 3α==-, ∴()()()cos sin 2tan 2cos sin (tan )sin tan 3cos (sin )cos sin cos 22αππαπααααααππααααα--+---=====---⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:-. 【点睛】方法点睛:本题考查诱导公式,同角间的三角函数关系.三角函数求值问题,首先要进行化简,应用诱导公式化简,应用同角间的三角函数关系化简,最后才代入求值.应用诱导公式应牢记:奇变偶不变,符号看象限,应用同角间的三角函数关系应注意在应用平方关系求函数值需确定角的范围,以确定正弦余弦值的正负.14.③④【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;解析:③④ 【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误. 【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦, 所以,不存在实数α使得sin cos 1αα=,①错误; 对于命题②,sin cos 4πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭, 所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪ ⎪⎝-⎭-⎭=⎝,()cos 2cos2x x -=,所以,函数5sin 22y x π⎛⎫⎪⎝=⎭-是偶函数,③正确;对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程,命题④正确; 对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但tan 1tan αβ==,⑤错误.因此,正确命题的序号为③④.故答案为:③④. 【点睛】本题考查有关三角函数命题真假的判断,考查了三角函数的有界性、正弦型函数的奇偶性、对称性以及正切值大小的比较,考查计算能力与推理能力,属于中等题.15.【分析】观察角之间的特殊关系:运用两角差的余弦公式和诱导公式可得解【详解】原式故填:【点睛】本题考查两角差的余弦公式和诱导公式关键在于观察出题目的角之间的特殊关系属于中档题【分析】观察角之间的特殊关系:103020=-,709020=-,运用两角差的余弦公式和诱导公式可得解. 【详解】原式()2cos(3020)sin 20sin 9020︒︒︒︒--=-()2cos30cos 20sin30sin20sin 20cos 20︒︒︒︒+-=12cos 20sin 20sin 2022cos 20︒︒︒︒⎛⎫+- ⎪⎝⎭====.【点睛】本题考查两角差的余弦公式和诱导公式,关键在于观察出题目的角之间的特殊关系,属于中档题.16.【分析】根据代入原式利用正余弦的和差角公式求解即可【详解】故答案为:【点睛】本题主要考查了非特殊角的三角函数化简与求值需要根据所给的角度与特殊角的关系并利用三角恒等变换进行求解属于中档题【分析】根据506010︒=︒-︒,代入原式利用正余弦的和差角公式求解即可. 【详解】()()sin 6010sin 30sin10sin 50sin 30sin10cos50cos30sin10cos 6010cos30sin10︒-︒+︒︒︒+︒︒=︒-︒︒︒-︒-︒︒sin 60cos10cos60sin10sin 30sin10cos60cos10sin 60sin10cos30sin10︒︒-︒︒+︒︒=︒︒+︒︒-︒︒sin 60cos10tan 60cos60cos10︒︒==︒=︒︒【点睛】本题主要考查了非特殊角的三角函数化简与求值,需要根据所给的角度与特殊角的关系,并利用三角恒等变换进行求解.属于中档题.17.【分析】由题得再利用两角和公式求解即可【详解】因为所以所以故答案为:【点睛】本题考查正切函数的两角和公式属于基础题 解析:7-【分析】由题得tan 3α=,1tan 2β=,再利用两角和公式求解即可. 【详解】因为tan 30,2tan 10αβ-=-=, 所以tan 3α=,1tan 2β=, 所以()1t 32731n 2a αβ++==--, 故答案为:7-. 【点睛】本题考查正切函数的两角和公式,属于基础题.18.【分析】利用同角三角函数的基本关系式二倍角公式结合根式运算化简求得表达式的值【详解】依题意由于所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式二倍角公式考查根式运算属于基础题解析:4【分析】利用同角三角函数的基本关系式、二倍角公式,结合根式运算,化简求得表达式的值. 【详解】=4==,由于342ππ<<=故答案为:4 【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式,考查根式运算,属于基础题.19.2【分析】将三角函数式配成与由正弦函数和角与差角公式展开即可求解【详解】锐角满足变形可得由正弦和角与差角公式展开可得合并化简可得等式两边同时除以可得即故答案为:2【点睛】本题考查了三角函数式化简求值解析:2 【分析】将三角函数式配成()αβα++与()αβα+-,由正弦函数和角与差角公式展开,即可求解. 【详解】锐角α,β满足()sin 23sin αββ+=变形可得()()sin 3sin αβααβα++=+-⎡⎤⎡⎤⎣⎦⎣⎦ 由正弦和角与差角公式展开可得()()()()sin cos sin cos 3sin cos 3sin cos αβαααβαβαααβ+++=+-+合并化简可得()()4sin cos 2sin cos ααβαβα+=+ 等式两边同时除以()2cos cos αβα+ 可得()2tan tan ααβ=+ 即()tan cot 2αβα+= 故答案为:2 【点睛】本题考查了三角函数式化简求值,角的变化形式,属于中档题.20.4【分析】做出图像由三角函数定义设其中一个顶点坐标从而表示矩形的长与宽进而表示面积求出最大值【详解】由题可构建图像根据三角函数的定义可知所以矩形的面积当时故答案为:4【点睛】本题考查三角函数定义的实解析:4 【分析】做出图像,由三角函数定义设其中一个顶点坐标,从而表示矩形的长与宽,进而表示面积,求出最大值. 【详解】 由题可构建图像根据三角函数的定义,可知()2cos ,2sin A αα 所以矩形的面积4cos 2sin 4sin2S ααα=⋅=当4πα=时,max 4sin 244S π⎛⎫=⋅= ⎪⎝⎭故答案为:4 【点睛】本题考查三角函数定义的实际应用,注意建模,再借助三角函数求最值,属于中档题.三、解答题21.(1)1,3a b ==;(2)递增区间为7[2,2]()66k k k Z ππππ++∈,对称中心为,13k ππ⎛⎫-+ ⎪⎝⎭()k Z ∈. 【分析】(1)选择条件①,利用两角和与差的公式,二倍角公式和辅助角公式整理函数()f x ,利用最值即求得参数,a b ;选择条件②,妙用“1”代入,使用基本不等式,计算取等号条件,即求得参数,a b ;根据分式函数对称中心和已知条件对照,即求得参数,a b ; (2)先利用参数,a b 得()sin()13g x x π=-++,再利用整体代入法求函数单调增区间和对称中心即可. 【详解】解:(1)选择条件①,()2sin()sin()263f x x x ππ=+-+,故111()=2sin cos sin 2sin 222222222f x x x x x x x ⎛⎫⎛⎫⎛⎫+-+=-++ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()sin(2)23f x x π∴=-++,当sin(2)13x π+=-时,max ()3f x =;当sin(2)13x π+=时,min ()1f x =.故1,3a b ==;选择条件②,0,0a b >>,4a b +=,则19119191()()(19)(104444b a a b a b a b a b +=++=+++≥+=,当且仅当9b a a b=时,等号成立,即3b a =代入4a b +=,得1,3a b ==; 选择条件③,函数3()f x b x a=+-的定义域{}x x a ≠,值域为{}y y b ≠,即该分式函数对称中心为(),a b ,又(1)(1)6f x f x -++=得()f x 对称中心为()13,, 故1,3a b ==;(2)由(1)知1,3a b ==, 得()sin()13g x x π=-++,要使()g x 递增,只需sin()3x π+递减,故令322,232k x k k Z πππππ+≤+≤+∈, 解得722,66k x k k Z ππππ+≤≤+∈, 所以()g x 递增区间为72,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 令3x k ππ+=,解得:3x k ππ=-+,k Z ∈,所以()g x 的对称中心为,13k ππ⎛⎫-+ ⎪⎝⎭()k Z ∈. 【点睛】 方法点睛:求三角函数性质问题时,通常先利用两角和与差的三角函数公式、二倍角公式及辅助角公式将函数化简成基本形式()()sin f x A x b ωϕ=++,再利用整体代入法求解单调性、对称性等性质.22.(1)247-,(2)50-,(3)415【分析】(1)由02πα<<,4sin 5α,可求出35cos α=,从而可求出4tan 3α=,进而利用正切的二倍角公式可求得答案;(2)先利用两角和的余弦公式展开,再利用二倍角公式求解;(3)先由已知条件求出sin()3αβ+=,再利用sin sin[()]βαβα=+-展开代值可求得结果 【详解】解:(1)因为02πα<<,4sin 5α,所以3cos 5α===,所以4sin 45tan 3cos 35ααα===, 所以22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭, (2)cos 2cos 2cos sin 2sin 444πππααα⎛⎫+=- ⎪⎝⎭(cos 2sin 2)2αα=-2(12sin 2sin cos )2ααα=--1643(122)2255550=-⨯-⨯⨯=-, (3)因为02πα<<,02πβ<<,所以0αβ<+<π,因为1cos()3αβ+=-,所以sin()3αβ+===, 所以sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+3144()353515=⨯--⨯=【点睛】关键点点睛:此题考查三角函数恒等变换公式的应用,考查计算能力,考查同角三角函数的关系的应用,角的变换公是解题的关键,属于中档题 23.(1)7;(2)()2f x x x =+,单调递增;(3)-1.【分析】(1)根据题意可得()()3214f f a a =+=+,再由()311f =即可求解. (2)设2(]0,x ∈,则2(2,4]x +∈,代入()()227f x f x +=+即可得出()2f x x x =+,再由分段函数单调性判断方法即可求解.(3)由(2)知,当4x >时,()21f x ≥,且由条件知,()12f =,根据()g x 的单调性可得()1h x ≥恒成立,设cos [0,1]x t =∈,只需不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,讨论m 的取值范围即可求解. 【详解】(1)由题意()12f =,所以()()3214f f a a =+=+, 又()2323631111f =⨯-⨯+=,因为411a +=,所以7a =; (2)设2(]0,x ∈,则2(2,4]x +∈,所以()2222(2)6(2)11227f x x x x x +=+-++=++,又()()227f x f x +=+,代入解得:()2f x x x =+;显然,()f x 在(0,2],(2,4]上分别是单增函数, 又()26f =,而当2x +→时,7y →, 因为76>,所以()f x 在(0,4]上单调递增; (3)由(2)知,()f x 是区间(0,4]上单调递增, 且(2,4]x ∈时,()419f =,()7f x >,且当4x >时,设(2,22](2,)x n n n n Z ∈+≥∈,则(22)(2,4]x n --∈,()232()2(2)72(4)7(21)2(6)7221f x f x f x f x =-+=-+⋅+=-+⋅++()1232[(22)]72221n n n f x n ---=⋅⋅⋅=--+⋅++⋅⋅⋅++ ()123727222121n n n --->⋅+⋅++⋅⋅⋅++≥且由条件知,()12f =; 再看函数()24 log 231x g x ⎛⎫=+ ⎪-⎝⎭, 由420031x x +>⇒>-,即定义域为(0,)+∞, 且4231x y =+-在(0,)+∞上单减, 所以()24log 231xg x ⎛⎫=+ ⎪-⎝⎭在(0,)+∞上单减, 又发现()12g =,所以()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在,22x ππ⎡⎤∈-⎢⎥⎣⎦上恒成立, 设cos [0,1]x t =∈,则不等式222(1)0mt t m +-+≥在[0,1]t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立; ②当0m >时,当0t =代入得()10m -+≥,矛盾;③当0m <时,只需(1)01122(1)01m m m m m m ⎧-+≥≤-⎧⇒⇒=-⎨⎨+-+≥≥-⎩⎩, 综上,实数m 的值为-1. 【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想. 24.(1)115sin cos 12αα+=-;(2)4tan 3α=-. 【分析】(1)将等式1sin cos 5αα+=两边平方,可求出sin cos αα的值,进而可求得11sin cos αα+的值; (2)法一:利用同角三角函数的基本关系可求得sin cos αα-的值,结合已知条件可得出关于sin α、cos α的方程组,解出sin α、cos α的值,进而可求得tan α的值;法二:由弦化切可得出222sin cos tan 12sin cos tan 125αααααα==-++,可得出关于tan α的二次方程,由已知条件可得出tan 1α<-,由此可求得tan α的值. 【详解】(1)由1sin cos 5αα+=①,得()21sin cos 12sin cos 25αααα+=+=. 12sin cos 25αα∴=-,所以,111sin cos 5512sin cos sin cos 1225αααααα++===--; (2)法一:由(1)知12sin cos 25αα=-,0απ<<,sin 0α>,cos 0α<,sin cos 0αα∴->.()249sin cos 12sin cos 25αααα∴-=-=,7sin cos 5αα∴-=②.由①②得,4sin 5α,3cos 5α=-,sin 4tan cos 3∴==-ααα; 法二:由(1)知12sin cos 25αα=-,22sin cos 1αα+=,22sin cos 12sin cos 25αααα∴=-+. 2222sin cos 12cos sin cos 25cos αααααα∴=-+,即2tan 12tan 125αα=-+,整理可得212tan 25tan 120αα++=,得4tan 3α=-或3tan 4α=-. 因为0απ<<,所以sin 0α>,cos 0α<, 又1sin cos 05αα+=>,所以sin cos αα>,tan 1α∴<-,所以4tan 3α=-. 【点睛】方法点睛:在利用同角三角函数的基本关系求值时,可利用以下方法求解:(1)应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二;(2)关于sin α、cos α的齐次式,往往化为关于tan α的式子.25.(1)21100;(2)11m m +-. 【分析】(1)由三角函数定义求得cos θ,再由同角间三角函数关系求得sin θ,tan θ,用二倍角公式得sin 2θ后可得结论;(2)由角的关系得8545θα+︒=+︒,利用两角和的正切公式可求得tan(85)θ+︒.【详解】解:(1)由题意得:4cos 5θ=-,且角θ为第二象限的角则3sin 5θ==,3tan 4θ=- ∴tan sin 2tan 2sin cos θθθθθ-=-334324212455425100⎛⎫=--⨯⨯-=-+= ⎪⎝⎭ (2)由题意知40αθ=+︒,则40θα=-︒则()()tan 85tan 45θα+︒=+︒tan tan 451tan tan 45αα+︒=-︒ 11m m+=-. 【点睛】关键点点睛:本题考查三角函数的定义,两角和与差的正切公式,二倍角公式,同角韹三角函数关系.解题确定角的关系是关键.由旋转得40αθ=+︒,则40θα=-︒,从而有8545θα+︒=+︒,再结合已知条件柯得结论.确定已知角和未知角的关系选用恰当的公式也是解题关键.26.(1),3x xx k k Z ππ⎧⎫∈=-+∈⎨⎬⎩⎭∣时,max ()2f x =;(2. 【分析】(1)利用两角和的余弦展开和正弦的降幂公式化简,再利用两角和的正弦写成()()sin f x A x ωϕ=+形式可求最值及对应的x 的值;(2)由3sin 265πα⎛⎫+= ⎪⎝⎭和α的范围利用平方关系求出cos 26πα⎛⎫+ ⎪⎝⎭,再利用凑角sin 2sin 266ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦可得答案. 【详解】(1)1()cos 221cos 222f x x x x =-+-1sin 26x π⎛⎫=-+ ⎪⎝⎭, 当2262x k πππ+=-+,即,3x x x k k Z ππ⎧⎫∈=-+∈⎨⎬⎩⎭∣时,max ()2f x =. (2)21sin 265πα⎛⎫-+= ⎪⎝⎭,3sin 265πα⎛⎫∴+= ⎪⎝⎭, ,42ππα⎛⎫∈ ⎪⎝⎭,272,636πππα⎛⎫∴+∈ ⎪⎝⎭,4cos 265πα⎛⎫∴+==- ⎪⎝⎭341sin 2sin 266552ππαα⎡⎤-⎛⎫=+-=-⨯= ⎪⎢⎥⎝⎭⎣⎦. 【点睛】本题考查了三角函数的性质、三角函数的化简求值,关键点是正用两角和的余弦、正弦公式和逆用两角和的正弦公式,利用凑角求三角函数值,考查了学生的基础知识、基本运算能力.。

(好题)高中数学必修四第三章《三角恒等变形》测试题(有答案解析)(4)

(好题)高中数学必修四第三章《三角恒等变形》测试题(有答案解析)(4)

一、选择题1.已知矩形ABCD 中,AB AD >.设点B 关于AC 的对称点为B ',AB '与CD 交于点P ,若3CP PD =,则tan BCB '∠=( )A .22-B .2-C .22-D .24-2.函数()2cos ||cos 2f x x x =-在[,]x ππ∈-上的单调增区间为( ) A .,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦B .,03π⎡⎤-⎢⎥⎣⎦和,3ππ⎡⎤⎢⎥⎣⎦C .,06π⎡⎤-⎢⎥⎣⎦和,6ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦和06,π⎡⎤⎢⎥⎣⎦ 3.已知4sin cos 3θθ+=,,42ππθ⎛⎫∈ ⎪⎝⎭,则sin cos θθ-的值为( ) A .13-B .13C .2-D .23 4.若sin 3cos 0θθ+=,则2cos sin 2θθ+的值( ) A .2B .2-C .12D .12-5.已知0,2x π⎛⎫∈ ⎪⎝⎭,3cos 45x π⎛⎫+= ⎪⎝⎭,则sin x 的值为( ) A .2-B .2 C .72D .72-6.如下图,圆O 与x 轴的正半轴的交点为A ,点,C B 在圆O 上,且点C 位于第一象限,点B 的坐标为43,,,55AOC α⎛⎫-∠= ⎪⎝⎭若1BC =,则233cos sin cos 222ααα--的值为( )A .45B .35C .45-D .357.已知72cos 410πθ⎛⎫-=⎪⎝⎭,则sin 2θ=( )A .2425-B .1225-C .1225D .24258.已知25cos2cos αα+=,()4cos 25αβ+=,0,2πα⎛⎫∈ ⎪⎝⎭,3,22πβπ⎛⎫∈ ⎪⎝⎭,则cos β的值为( ) A .45-B .44125C .44125-D .459.若α∈(2π,π),且3cos 2α=sin(4π-α),则sin 2α的值为( ) A .-118 B .118C .-1718D .171810.若()tan 804sin 420α+=,则()tan 20α+的值为( )A .5-B .5C D 11.已知()1sin 30cos 3αα︒+=+,则()sin 230α+︒=( )A .79-B .79C D . 12.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形二、填空题13.有下列5个关于三角函数的命题:①0x R ∃∈00cos 3x x +=;②函数22sin cos y x x =-的图像关于y 轴对称; ③x R ∀∈,1sin 2sin x x+≥;④[]π,2πx ∀∈cos 2x=-;⑤当()2sin cos f x x x =+取最大值时,cos 5x =. 其中是真命题的是______.14.给出下列命题:①()72cos 22f x x π⎛⎫=--⎪⎝⎭是奇函数;②若α、β都是第一象限角,且αβ>,则tan tan αβ>;③38x π=-是函数33sin 24y x π⎛⎫=-⎪⎝⎭的图像的一条对称轴;④已知函数()23sin12xf x π=+,使()()f x c f x +=对任意x ∈R 都成立的正整数c 的最小值是2.其中正确命题的序号是______.15.已知函数()2cos cos f x x x x =在区间[]0,m 上单调递增,则实数m 的最大值是______.16.将22sin cos x x x +化简为sin()A x B ωϕ++(0A >,0>ω,π2ϕ<)的形式为______.17.已知函数1()sin 2222f x x x =-+,对于任意的2a ⎡⎫∈⎪⎢⎣⎭,方程()2(0)f x a x m -=≤<仅有一个实数根,则m 的最大值为__________. 18.ABC ∆中,若AC AB >,4A π=,则角C 的取值范围是________. 19.设,(0,)αβπ∈,cos α,cos β是方程26320x x -=-的两根,则sin sin αβ=_________.20.已知sin 46πθ⎛⎫-= ⎪⎝⎭,则sin 2θ=___________. 三、解答题21.(1)求值:4sin 220tan320-︒︒;(2)已知43sin ,4544x x πππ⎛⎫+=--<< ⎪⎝⎭,求22cos sin 2x x +的值. 22.已知3sin 5α=-,且α为第四象限角 (1)求sin sin(2)2tan()cos()παπααππα⎛⎫++ ⎪⎝⎭---+的值; (2)求1sin 2cos 21sin 2cos 2αααα+-++的值.23.已知sin 2α=,()5cos13αβ+=,()0,απ∈,0,2πβ⎛⎫∈ ⎪⎝⎭. (1)求sin 2α的值; (2)求sin β的值.24.已知函数2()2cos sin 1(0)2f x x x x πωωωω⎛⎫=-+-> ⎪⎝⎭,其最小正周期为π.(1)求ω的值及函数()f x 的单调递增区间;(2)将函数()y f x =的图象向右平移3π个单位得到函数()y g x =,求函数()y g x =在区间70,12π⎛⎫ ⎪⎝⎭上的值域.25.已知,2παπ⎛⎫∈⎪⎝⎭,且sin cos 222αα-=. (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 26.已知tan α=(1)求sin α的值;(2)求sin()cos()sin cos 22αππαππαα-+-⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据对称性可得BAC CAP ACP ∠=∠=∠,设1PD =,可计算出AB 的长,利用勾股定理可得BC 的长,在Rt ABC 中,由ABBC可得tan BCA ∠,再利用正切函数的二倍角公式可得答案. 【详解】如图,由题意得BAC CAP ACP ∠=∠=∠. 不妨设1PD =,则3AP CP ==,4AB CD ==, 在Rt APD中,AD ==BC AD == 在Rt ABC中,tan AB BCA BC ∠===.则22tan tan tan 21tan 12BCA BCB BCA BCA ∠'∠=∠===--∠- 故选:A.【点睛】本题考查了利用三角函数解决几何图形问题,关键点是利用对称性找到边长之间的关系然后利用正切函数求解,考查了学生分析问题、解决问题的能力.2.A解析:A 【分析】先把函数解析式化简,然后令cos t x =,利用复合函数单调性求解即可 【详解】 当[]0,x π∈时,22()2cos ||cos 2=2cos (2cos 1)2cos 2cos 1f x x x x x x x =---=-++,令cos [1,1]t x t =∈-,,则cos t x =在[]0,x π∈上为减函数;而2221y t t =-++ 对称轴为12t =, ∴2221y t t =-++在1[1,]2t ∈-上单增,在1[,1]2t ∈上单减, ∴()y f x =在0,3x π⎡⎤∈⎢⎥⎣⎦上为增函数,在,3x ππ⎡⎤∈⎢⎥⎣⎦上为减函数. 又()2cos ||cos 2f x x x =-为偶函数,其图像关于y 轴对称, ∴()y f x =在,3ππ⎡⎤--⎢⎥⎣⎦上为增函数,在,03π⎡⎤-⎢⎥⎣⎦上为减函数. 故()y f x =的单调增区间为,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦. 故选:A 【点睛】复合函数的单调性口诀:同增异减,其具体含义为: 内外函数的单调性相同(同),则复合函数为增函数(增); 内外函数的单调性相反(异),则复合函数为减函数(减).3.D解析:D 【分析】首先根据题意得到72sin cos 9θθ=,再计算()22sin cos 9θθ-=,根据,42ππθ⎛⎫∈ ⎪⎝⎭判断出sin cos θθ-的符号再进行开方计算即可得到答案. 【详解】 因为4sin cos 3θθ+=,所以()216sin cos 12sin cos 9θθθθ+=+=, 所以72sin cos 9θθ=, 所以()22sin cos 12sin cos 9θθθθ-=-=, 因为,42ππθ⎛⎫∈⎪⎝⎭,所以sin cos θθ>,即sin θcos θ0,所以sin cos 3θθ-=. 故选:D . 【点睛】易错点睛:本题求sin cos θθ-的值时,采用的方法是先对其平方而后再开方,再开方时应注意根据θ的取值范围正确判断sin cos θθ-的符号,从而得到正确的答案.4.D解析:D 【分析】先根据题意得tan 3θ=-,再根据正弦的二倍角公式化简得2212tan 1cos sin 21tan 2θθθθ++==-+.【详解】解:由sin 3cos 0θθ+=得tan 3θ=-.所以2222222cos sin 2cos 2sin cos cos sin 2cos sin cos sin θθθθθθθθθθθ+++==++ 22222222cos 2sin cos 12tan 51cos cos cos sin 1tan 102cos cos θθθθθθθθθθθ++-====-++, 故选:D. 【点睛】本题解题的关键是将等式2cos sin 2θθ+变形化简得2212tan cos sin 21tan θθθθ++=+,进而求解,考查运算求解能力,是中档题.5.B解析:B【分析】 先求得πsin 4x ⎛⎫+ ⎪⎝⎭的值,然后利用ππsin sin 44x x ⎛⎫=+-⎪⎝⎭,展开后计算得出正确选项. 【详解】由于πππ3π0,,,2444x x ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭, 所以π4sin 45x ⎛⎫+== ⎪⎝⎭.故ππsin sin 44x x ⎛⎫=+- ⎪⎝⎭ππππsin cos cos sin4444x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭4355=-=,故选B. 【点睛】本小题主要考查同角三角函数的基本关系式,考查化归与转化的数学思想方法,属于基础题.6.B解析:B 【解析】 ∵点B 的坐标为43,55⎛⎫-⎪⎝⎭,设AOB θ∠=, ∴325sinπθ-=-(),425cos πθ-=(), 即35sin θ=,45cos θ=, ∵AOC α∠=,若1BC =,∴3πθα+=,则3παθ=-,则213sincossin cos cos sin 222222625αααππαααθθ⎛⎫⎛⎫--=-=+=-== ⎪ ⎪⎝⎭⎝⎭故选B.点睛:本题主要考查三角函数的化简和求值,利用三角函数的定义以及三角函数的辅助角公式是解决本题的关键;利用降幂公式可将所求表达式化简为关于α的表达式,设AOB θ∠=,当角α的终边与单位圆的交点坐标为(),u v 时,sin v α=,cos u α=,可先求出关于θ的三角函数式,结合等边三角形寻找,αθ之间的关系即可.7.D解析:D 【分析】由2sin 2cos(2)cos[2()]2cos ()1244πππθθθθ=-=-=--,代入即可求解. 【详解】因为cos 410πθ⎛⎫-=⎪⎝⎭, 由24924sin 2cos(2)cos[2()]2cos ()1212445025πππθθθθ=-=-=--=⨯-=. 故选:D. 【点睛】本题主要考查了三角恒等变换的化简、求值,其中解答中熟记余弦的倍角公式,准确运算是解答的关键,着重考查了运算与求解能力.8.B解析:B 【分析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果. 【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B 【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题.9.C解析:C 【分析】按照二倍角的余弦以及两角差的正弦展开可得()3cos sin 2αα+=,对等式平方即可得结果.【详解】 由3cos 2sin 4παα⎛⎫=-⎪⎝⎭, 可得())223cos sin cos sin αααα-=-, 又由,2παπ⎛⎫∈⎪⎝⎭,可知cos sin 0αα-≠, 于是()3cos sin αα+=,所以112sin cos 18αα=+, 故17sin 218α=-, 故选:C. 【点睛】本题主要考查了两角差公式以及二倍角公式的应用,属于中档题.10.D解析:D 【分析】 由()tan804sin 420α+=得:()tan 804sin 4204sin 6023α+===,然后将()tan 20α+化为()tan 8060α⎡⎤+-⎣⎦,用正切的差角公式求解.【详解】 因为()tan804sin 4204sin 6023α+===,则()()()()tan 80tan 6023tan 20tan 80601tan 80tan 6012αααα+-⎡⎤+=+-===⎣⎦++⋅+ 故选:D . 【点睛】本题考查诱导公式、正切的差角公式的运用,难度一般.解答时要注意整体思想的运用,即观察目标式与条件式角度之间的和差关系,然后运用公式求解.11.B解析:B 【分析】根据条件展开化简得到()1sin 303α-︒=,再利用角的变换,得到()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒,再利用二倍角公式化简求值.【详解】 由()1sin 30cos 3αα︒+=+,得11cos cos 23ααα=+,化简得()1sin 303α-︒=; ()()()sin 230sin 26090cos 260ααα+︒=-︒+︒=-︒ ()21712sin 301299α=--︒=-⨯=故选:B . 【点睛】本题考查三角恒等变换,重点考查转化的思想,计算能力,属于基础题型.12.B解析:B 【分析】利用两角和与差公式化简原式,可得答案. 【详解】因为sin 2sin cos B A C =, 所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C += 所以sin cos cos sin 0A C A C -= 所以sin()0A C -=, 所以0A C -=, 所以A C =.所以三角形是等腰三角形. 故选:B. 【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.二、填空题13.②④⑤【分析】本题可通过判断出①错误然后通过判断出②正确再然后通过可以为负值判断出③错误通过以及判断出④正确最后通过将函数转化为根据当时取最大值判断出⑤正确【详解】①:则①错误;②:关于轴对称②正确解析:②④⑤ 【分析】000cos 2sin 6x x x π⎛⎫+= ⎪⎝⎭+判断出①错误,然后通过22sin cos cos 2x x x -=-判断出②正确,再然后通过sin x 可以为负值判断出③错误,=cos02x 判断出④正确,最后通过将函数转化为()()f x x p =+,根据当()22x p k k Z ππ=-++∈时取最大值判断出⑤正确.【详解】①000001cos 2cos 2sin 262x x x x x π+⎫⎛⎫+=+=≤⎪ ⎪⎪⎝⎭⎝⎭,00cos 3x x +≠,①错误;②:()2222sin cos cos sin cos 2y x x x x x =-=--=-,关于y 轴对称,②正确;③:因为sin x 可以为负值,所以1sin 2sin x x+≥错误,③错误; ④:因为[]π,2πx ∈,所以π,π22x ⎡⎤∈⎢⎥⎣⎦,cos 02x ,cos2x ===-,④正确; ⑤:()2sin cos sin cos 55f x x x x x ⎫=+=+⎪⎪⎭()x p =+,(注:5sin p,25cos p ), 当函数()f x 取最大值时,22x p k ππ+=+,即()22x p k k Z ππ=-++∈,此时cos cos n 2si 2=p k x p ππ-++⎛⎫==⎪⎝⎭⑤正确, 故答案为:②④⑤. 【点睛】关键点点睛:本题考查根据三角恒等变换以及三角函数性质判断命题是否正确,考查二倍角公式以及两角和的正弦公式的灵活应用,考查计算能力,考查化归与转化思想,是中档题.14.①③④【分析】对①化简得可判断;对②取特殊值可说明;对③代入求值可判断;对④化简求出其最小正周期即可判断【详解】对①是奇函数故①正确;对②如但故②错误;对③当时取得最大值故③正确;对④则的最小正周期解析:①③④ 【分析】 对①,化简得()()2sin 2f x x =可判断;对②,取特殊值可说明;对③,代入38x π=-求值可判断;对④,化简()f x ,求出其最小正周期即可判断. 【详解】 对①,()()72cos 22sin 22f x x x π⎛⎫=--= ⎪⎝⎭是奇函数,故①正确; 对②,如7,33ππαβ==,但tan tan αβ=,故②错误; 对③,当38x π=-时,333sin 2384y ππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦,取得最大值,故③正确; 对④,()()2353sin1cos 222xf x x ππ=+=-+,则()f x 的最小正周期为22ππ=,则c 的最小值是2,故④正确. 故答案为:①③④. 【点睛】本题考查三角函数奇偶性的判断,考查三角函数的单调性和对称性以及周期性,解题的关键是正确化简,正确理解三角函数的性质.15.【分析】利用辅助角公式进行化简结合函数的单调性进行求解即可【详解】解:当时∵在区间上单调递增∴得即m 的最大值为故答案为:【点睛】本题考查二倍角公式和辅助角公式化简考查三角函数的单调性属于基础题 解析:6π【分析】利用辅助角公式进行化简,结合函数的单调性进行求解即可. 【详解】解:()1cos 212sin 2262x f x x x π+⎛⎫==++ ⎪⎝⎭, 当0x m ≤≤时,266x m ππ≤≤+,∵()f x 在区间[]0,m 上单调递增, ∴262m ππ+≤,得6m π≤,即m 的最大值为6π. 故答案为:6π. 【点睛】本题考查二倍角公式和辅助角公式化简,考查三角函数的单调性,属于基础题.16.【分析】利用正弦二倍角和余弦二倍角公式及辅助角公式化简得解【详解】故答案为:【点睛】本题考查二倍角公式及辅助角公式属于基础题解析:π2sin(2)16x -+【分析】利用正弦二倍角和余弦二倍角公式及辅助角公式化简得解. 【详解】2π2sin cos 1cos 222sin(2)16x x x x x x +=-=-+故答案为:π2sin(2)16x -+ 【点睛】本题考查二倍角公式及辅助角公式,属于基础题.17.【分析】化简原题等价于函数与函数的图象的交点个数为1做出图像数形结合即可得答案【详解】利用辅助角公式化简可得方程仅有一个实数根等价于函数与函数的图象的交点个数为1结合图象可知当时m 的最大值为故答案为 解析:23π 【分析】化简()cos 226f x x π⎛⎫=++ ⎪⎝⎭,原题等价于函数()2y f x =-与函数y a =的图象的交点个数为1,做出图像,数形结合,即可得答案. 【详解】利用辅助角公式,化简可得()cos 226f x x π⎛⎫=++ ⎪⎝⎭, 方程()2(0)f x a x m -=≤<仅有一个实数根,等价于函数()2y f x =-与函数y a =的图象的交点个数为1,结合图象可知,当a ⎡∈⎢⎣⎭时,m 的最大值为23π.故答案为:23π. 【点睛】本题考查辅助角公式的应用,三角函数的图像与性质,考查分析理解,数形结合的能力,属中档题.18.;【分析】由利用正弦定理边角互化以及两角和的正弦公式可得进而可得结果【详解】由正弦定理可得又则即则C 是三角形的内角则故答案为:【点睛】本题注意考查正弦定理以及两角和的正弦公式的应用属于中档题正弦定理解析:04C π<<;【分析】由2AC AB>,利用正弦定理边角互化以及两角和的正弦公式可得11tan C >,进而可得结果.【详解】由正弦定理可得sin 2sin AC BAB C=> 又4A π=,则())2cos sin sin 2sin sin C C A C C C++= 2222tan 2C =+> 即11tan C>,则0tan 1C <<,C 是三角形的内角, 则04C π<<,故答案为:04C π<<.【点睛】本题注意考查正弦定理以及两角和的正弦公式的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.19.【分析】由韦达定理得由平方后化为然后凑配成的代数式再代入求值【详解】由是方程的两根所以从而又由知从而【点睛】关键点睛:本题考查三角函数的平方关系考查韦达定理解题关键是利用平方关系化正弦为余弦解答本题解析:6【分析】由韦达定理得cos cos ,cos cos αβαβ+,由sin sin αβ平方后化为cos ,cos αβ,然后凑配成cos cos ,cos cos αβαβ+的代数式,再代入求值. 【详解】由cos α,cos β是方程26320x x -=-的两根 所以11cos cos ,cos cos 23αβαβ+==-, 从而()()222(sin sin )1cos 1cos αβαβ=--22221cos cos cos cos αβαβ=--+222212cos cos cos cos (cos 2cos cos cos )αβαβααββ=++-++22(1cos cos )(cos cos )αβαβ=+-+22114171329436⎛⎫⎛⎫=--=-= ⎪ ⎪⎝⎭⎝⎭.又由,(0,)αβπ∈知sin sin 0αβ>,从而sin sin 6αβ= 【点睛】关键点睛:本题考查三角函数的平方关系,考查韦达定理,解题关键是利用平方关系化正弦为余弦,解答本题的关键是将()()222(sin sin )1cos 1cos αβαβ=--化为22(1cos cos )(cos cos )αβαβ+-+的形式,属于中档题.20.【分析】根据可得的值将平方结合正弦的二倍角公式即可计算出的值【详解】因为所以所以所以且所以所以故答案为:【点睛】关键点点睛:解答本题的关键是通过展开得到的值再根据与之间的关系:去完成求解解析:23【分析】根据sin 4πθ⎛⎫-= ⎪⎝⎭可得sin cos θθ-的值,将sin cos θθ-平方结合正弦的二倍角公式即可计算出sin 2θ的值. 【详解】因为sin 4πθ⎛⎫-= ⎪⎝⎭)sin cos θθ-=sin cos θθ-=, 所以()21sin cos 3θθ-=且22sin cos 1θθ+=, 所以112sin cos 3θθ-=,所以2sin 23θ=, 故答案为:23. 【点睛】关键点点睛:解答本题的关键是通过展开sin 4πθ⎛⎫-⎪⎝⎭得到sin cos θθ-的值,再根据sin cos θθ-与sin 2θ之间的关系:()2sin cos 1sin 2θθθ-=-去完成求解. 三、解答题21.(1)2)825. 【分析】(1)利用诱导公式,同角三角函数的基本关系,二倍角公式,两角和的正弦与余弦公式以及辅助角公式求解即可;(2)先利用已知条件得到4x π+的范围,进而求出cos 4x π⎛⎫+ ⎪⎝⎭的值,再利用二倍角公式和诱导公式求解即可. 【详解】(1)4sin 220tan320-︒︒()()sin 18040tan 360404︒+︒-︒-=︒ sin 440tan 40︒+=-︒ sin 440sin 40cos 40︒︒=-+︒sin 40cos 40sin 40cos 440︒︒+︒-=︒sin80sin 40co 402s -=︒+︒︒()0sin 3010cos 402cos1︒+︒+︒=-︒0sin 30cos10cos32cos 0sin10co 01s 4︒+︒︒+︒︒=-︒3cos1022cos 40-︒︒︒==(2)344x ππ-<<, 422x πππ∴-<+<,则cos 04x π⎛⎫+>⎪⎝⎭, 所以3cos 45x π⎛⎫+= ⎪⎝⎭, 又2cos 22cos 1x x =-,cos 2sin 2sin 22sin cos 2444x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭432425525⎛⎫=⨯-⨯=- ⎪⎝⎭,则22412cos cos 2112525x x =+=-+=; sin 2cos 2cos 224x x x ππ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭2972cos 12142525x π⎡⎤⎛⎫⎛⎫=-+-=-⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以21782cos sin 2252525x x +=+=; 【点睛】关键点睛:本题主要考查了三角函数与三角恒等变换问题.灵活的运用诱导公式,同角三角函数的基本关系,二倍角公式,两角和的正弦与余弦公式以及辅助角公式是解决本题的关键. 22.(1)45;(2)34-. 【分析】(1)先求出4cos 5α=,再利用诱导公式和同角的三角函数的基本关系化简后可得所求的值.(2)先求出3tan 4α=-,再利用倍角公式和同角的三角函数的基本关系化简后可得所求的值. 【详解】 (1)因为3sin 5α=-,且α为第四象限角,故4cos 5α=. 原式()cos sin cos t 45an cos ααααα===-⋅-.(2)由(1)得4cos 5α=,故3tan 4α=- 原式222sin cos 2sin sin tan =2sin cos 2cos cos 34ααααααααα==+-+=. 【点睛】思路点睛:三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角. 23.(1)2425;(2)1665.【分析】(1)由二倍角公式求得cos α,再由平方关系得sin α,然后由正弦的二倍角公式得sin 2α;(2)确定α的范围,得αβ+范围,从而可求得sin()αβ+,再由两角差的正弦公式计算. 【详解】(1)由已知223cos 12sin 1225αα=-=-⨯=⎝⎭,又(0,)απ∈,∴(0,)2πα∈,∴sin 45α==, ∴4324sin 22sin cos 25525ααα==⨯⨯=; (2)∵(0,)2πβ∈,∴(0,)αβπ+∈,∴12sin()13αβ+=,∴1235416sin sin[()]sin()cos cos()sin 13513565βαβααβααβα=+-=+-+=⨯-⨯=. 【点睛】关键点点睛:本题考查二倍角公式,两角和与差的正弦公式,同角间的三角函数关系,解题关键是确定“已知角”和“未知角”之间的关系,确定选用的公式和应用公式的顺序.在应用三角函数恒等变换公式时注意“单角”和“复角”的相对性.如在sin ,cos αβ,求cos()a β+时,,αβ是单角,αβ+是两个单角的和,但象本题中求sin β时,αβ+作为一个单角,α作为一个单角,()βαβα=+-.由此直接应用公式求解.24.(1)1ω=,单调递增区间为2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦;(2)(2]. 【分析】(1)化简得()2cos 23f x x πω⎛⎫=+ ⎪⎝⎭,再根据最小正周期得1ω=,进而整体代换求解得()f x 的单调递增区间为2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦; (2)根据题意得()2cos 23g x x π⎛⎫=-⎪⎝⎭,由于70,12x π⎛⎫∈ ⎪⎝⎭,故52336x πππ-<-<,故cos 213x π⎛⎫<-≤ ⎪⎝⎭,()2g x <≤,进而得函数值域. 【详解】(1)因为2()2cos sin 1(0)2f x x x x πωωωω⎛⎫=-+-> ⎪⎝⎭22cos 1cos x x x ωωω=--cos 22x x ωω=-12cos 2222x x ωω⎛⎫=- ⎪ ⎪⎝⎭2cos 23x πω⎛⎫=+ ⎪⎝⎭. 所以2|2|T πππωω===,即1ω=, ()2cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222()3k x k k Z ππππ-≤+≤∈,得2()36k x k k Z ππππ-≤≤-∈, 所以()f x 的单调递增区间为2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦. (2)()2cos 23f x x π⎛⎫=+ ⎪⎝⎭向右平移3π个单位得到()2cos 23g x x π⎛⎫=- ⎪⎝⎭,当70,12x π⎛⎫∈ ⎪⎝⎭时,52336x πππ-<-<,所以cos 2123x π⎛⎫-<-≤ ⎪⎝⎭,()2g x <≤,所以函数()y g x =的值域为(2⎤⎦.【点睛】本题考查三角函数恒等变换,三角函数的性质等,考查运算求解能力,是中档题.本题解题的关键在于根据三角恒等变换化简得函数()2cos 23f x x πω⎛⎫=+ ⎪⎝⎭,进而根据三角函数的性质求解.25.(1);(2. 【分析】(1)将已知条件两边平方,求得sin α的值,进而求得cos α的值.(2)先求得()cos αβ-的值,然后利用cos cos[()]βααβ=--,结合两角差的余弦公式,求得cos β的值. 【详解】(1)将sincos22αα-=两边同时平方,得11sin 2α-=,则1sin 2α=,又2παπ∈(,),所以cos 2α==-.(2)由(1)知,1sin ,cos 22αα==-, 因为2παπ∈(,),2βπ∈π(,),所以22ππαβ-<-<.又因为4sin()5αβ-=,所以3cos()5αβ-,所以cos cos[)]βααβ=--( cos cos()sin sin()ααβααβ=-+-314525=+⨯, 【点睛】关键点点睛:对于三角函数给值求值的问题,关键在于运用已知角的和,差,二倍的运算表示待求的角,再选择相关公式得以求值.26.(1)±;(2)3+. 【分析】 (1)根据22sin tan ,sin cos 1cos ααααα=+=,求解出sin α的值; (2)利用诱导公式先化简原式,然后将所得到的分式分子分母同除以cos α,结合tan α=. 【详解】(1)因为22sin tan cos sin cos 1ααααα⎧==⎪⎨⎪+=⎩cos 2αα=, 所以221sin sin 12αα+=,所以22sin 3α=, 当α为第一象限角时,sin 3α=;当α为第三象限角时,sin 3α=-,所以sin α=; (2)原式()()sin cos sin cos sin cos cos sin sin cos sin cos 22παπαααααππαααααα--+---+===--⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭sin cos tan 1cos cos 3sin cos tan 1cos cos αααααααααα++===+--= 【点睛】方法点睛:已知tan α的值,求解形如sin cos sin cos a b c d αααα±±(或sin cos sin cos n n n n a b c d αααα±±)的式子的值的方法:分式的分子、分母同时除以cos α(或cos n α),将原式化简为关于tan α的式子,再根据tan α的值可求解出结果.。

(好题)高中数学必修四第三章《三角恒等变形》测试卷(包含答案解析)(1)

(好题)高中数学必修四第三章《三角恒等变形》测试卷(包含答案解析)(1)

一、选择题1.已知函数44()cos sin f x x x =-在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t 则函数()()()g t M t N t =-的最小值为( ) A1- B .1C.2D.12-2.已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα-=,则cos α的值为( ) A .15BCD3.已知函数2()2sin cos (0)f x x x x ωωωω=->图像的相邻两条对称轴之间的距离为2π,则2f π⎛⎫= ⎪⎝⎭( ) A.1B.1--C .0D.-4.已知tan 2α=,则sin cos 2sin cos αααα+=-( )A .1B .1-C .2D .2-5.已知2π()2sin ()1(0)3f x x ωω=+->,给出下列判断: ①若函数()f x 的图象的两相邻对称轴间的距离为π2,则=2ω; ②若函数()f x 的图象关于点π(,0)12对称,则ω的最小值为5; ③若函数()f x 在ππ[,]63-上单调递增,则ω的取值范围为1(0,]2; ④若函数()f x 在[0,2π]上恰有7个零点,则ω的取值范围为4147[,)2424. 其中判断正确的个数为( ) A .1 B .2C .3D .46.已知3cos 25α=,()0,2απ∈,则sin 4απ+⎛⎫= ⎪⎝⎭( ) AB. CD. 7.已知cos 2π)4αα=+1tan tan αα+等于( )A .92B .29C .9-2D .2-98.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+= ⎪⎝⎭,则sin α的值等于( )A B C D . 9.已知直线3x −y +1=0的倾斜角为α,则1sin22α= A .310 B .35 C .−310D .11010.已知函数22()2sin cos ()sin (0)24x f x x x ωπωωω=-->在区间25[,]36ππ-上是增函数,且在区间[0,]π上恰好取得一次最大值,则ω的范围是( )A .3(0,]5B .13[,]25C .13[,]24D .15[,)2211.已知()4cos 5αβ+=,()1cos 5αβ-=,则tan tan αβ⋅的值为( ) A .12B .35C .310-D .3512.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形二、填空题13.在ABC 中,A ∠,B ,C ∠对应边分别为a ,b ,c ,且5a =,4b =,()31cos 32A B -=,则ABC 的边c =________. 14.已知α满足1sin 3α=,那么ππcos cos 44αα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的值为________. 15.若函数()()()sin cos 2f x x x πϕϕϕ⎛⎫=+++< ⎪⎝⎭为偶函数,则ϕ=______.16.已知cos 25βα⎛⎫-= ⎪⎝⎭,cos 210αβ⎛⎫-= ⎪⎝⎭,且0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭,则2αβ+的值为__________. 17.下列判断正确的有___________.①如果θ是第一象限角,那么恒有sin02θ>;②sin 200a ︒=,则tan 200︒=③若()f x 的定义域为R ,周期为4,且满足()()f x f x -=-,则()f x 在[4,8]x ∈-至少有7个零点; ④若0,,0,66x y ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且cos tan x y x ⋅=,则x y <. 18.在直角三角形ABC 中,C ∠为直角,45BAC ∠>,点D 在线段BC 上,且13CD CB =,若1tan 2DAB ∠=,则BAC ∠的正切值为_____.19.在半径为2的半圆形钢板上截取一块面积最大的矩形,则最大面积是________. 20.设,(0,)αβπ∈,cos α,cos β是方程26320x x -=-的两根,则sin sin αβ=_________.三、解答题21.(1)若3tan =4α-,求sin cos sin cos αααα+-的值;(2)已知锐角,αβ满足11cos()14αβ+=-,若sin()7αβ-=,求cos β的值.22.已知函数21()cos2sin 12sin 22x f x x x ⎛⎫=+⋅- ⎪⎝⎭,3()224g x x π⎛⎫=+ ⎪⎝⎭.(1)对任意的[]12,0,x x t ∈,当12x x <时,均有()()()()1212f x f x g x g x -<-成立,求正实数t 的最大值;(2)在满足(1)的条件时,若方程[()()1]2()2()10a f x g x f x g x ⋅-+-+-=在区间,4t π⎛⎫- ⎪⎝⎭上有解,求实数a 的取值范围.23.设函数2()cos cos 6f x x x x π⎛⎫=⋅-+ ⎪⎝⎭. (1)求()f x 的最小正周期和单调递增区间; (2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.24.已知函数()sin (cos )2f x x x x =+-. (1)求3f π⎛⎫⎪⎝⎭的值及函数()f x 的单调增区间;(2)若,122x ππ⎡⎤∀∈⎢⎥⎣⎦,不等式()2m f x m <<+恒成立,求实数m 的取值集合. 25.已知函数2()sin 22sin 6f x x x π⎛⎫=-+ ⎪⎝⎭. (1)求512f π⎛⎫⎪⎝⎭;(2)求()f x 的单调递增区间及最小正周期.(3)若(0,)2πα∈,且()22f α=,求sin α.(4)若tan 2β=,求3()cos 22f ββ+的值.26.已知函数()4sin cos 3f x x x π⎛⎫=-⎪⎝⎭(1)求函数()f x 的最小正周期和单调递增区间; (2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的最值及取到最值时x 的值; (3)若函数()()g x f x m =-在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,求实数m 的取值范围,并求()12tan x x +的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用平方差公式、同角三角函数关系以及二倍角公式将函数变形为()cos 2f x x =,然后发现区间长度刚好是四分之一个周期,从而利用余弦函数的对称性,得到当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小,求出此时的最大值和最小值,即可得到答案. 【详解】 函数44222222()cos sin (cos sin )(cos sin )cos sin cos 2f x x x x x x x x x x =-=+-=-=,所以函数()f x 的周期为22T ππ==,区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦的区间长度刚好是函数()f x 的四分之一个周期, 因为()f x 在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t ,由函数cos 2y x =的对称性可知,当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于2y cos x =的对称轴对称时,此时最大值与最小值的差值最小,即函数()()()g t M t N t =-取最小值,区间,4t t π⎡⎤-⎢⎥⎣⎦,的中点为428t tt t ππ-+==-,此时()f t 取得最值±1, 不妨()f t 取得最大值()=1M t , 则有cos 2()18t π-=,解得224t k ππ-=,所以,,8t k k Z ππ=+∈所以()cos 2cos 2cos 44N t t k πππ⎛⎫==+==⎪⎝⎭故()()()g t M t N t =-取最小值为12-. 故选:D . 【点睛】关键点睛:本题考查了三角函数的最值,涉及了二倍角公式的应用、同角三角函数关系的应用、三角函数的周期性、对称性的应用,解题的关键是分析出当区间,4t t π⎡⎤-⎢⎥⎣⎦关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小.2.D解析:D 【分析】利用二倍角公式化简得到2sin cos ,αα=再利用同角的平方关系求解. 【详解】由题得24sin cos 12cos 1,ααα+-= 所以24sin cos 2cos ,ααα=因为0,2πα⎛⎫∈ ⎪⎝⎭,所以2sin cos ,αα=因为22221sin cos 1,cos cos 14αααα+=∴+=,所以24cos ,(0,),cos 52πααα=∈∴= 故选:D 【点睛】方法点睛:三角函数求值常用的方法有:三看(看角、看名、看式)三变(变角、变名、变式).3.D解析:D 【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定1ω=,再求2f π⎛⎫⎪⎝⎭. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω-=-=- πsin 222sin 23x x x ωωω⎛⎫=+=+- ⎪⎝⎭由题意知()f x 的最小正周期为π22π⨯=,所以2π2πω=,即1ω=,所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭π2sin 23f ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭.故选:D. 【点睛】本题考查了三角函数的性质,关键点是根据已知条件先化简正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.4.A解析:A 【分析】已知正切值要求正余弦值,可以利用商的关系将“弦化切”,代入数值即可. 【详解】原式分子分母同除以cos α得 原=tan 12112tan 141αα++==--故选:A. 【点睛】已知正切值求正余弦值,通常有两种做法:一是将所求式子分子分母同除cos α或2cos α,化为tan α求解;二是利用sin tan cos ααα=得sin tan cos ααα=代入消元即可. 5.C解析:C 【分析】先将()f x 化简,对于①,由条件知,周期为π,然后求出ω;对于②,由条件可得2()612k k Z ωπππ+=∈,然后求出16()k k Z ω=-+∈,即可求解;对于③,由条件,得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩,然后求出ω的范围;对于④,由条件,得74221212πππππωωωω-<-,然后求出ω的范围;,再判断命题是否成立即可. 【详解】解:2π2ππ()2sin ()1=-cos(2)=sin(2)336f x x x x ωωω=+-++, ∴周期22T ππωω==. ①.由条件知,周期为π,1w ∴=,故①错误;②.函数()f x 的图象关于点π(,0)12对称,则2()612k k Z ωπππ+=∈, 16()k k Z ω∴=-+∈,(0)>ω∴ω的最小值为5, 故②正确;③.由条件,ππ[,]63x ∈-,ππ2π236636x πωπωω-+≤+≤+ 由函数()f x 在ππ[,]63-上单调递增得2362()22362k k Z k ωππππωππππ⎧-+-+⎪⎪∈⎨⎪++⎪⎩, 12ω∴≤, 又0>ω,102ω∴<, 故③正确.④.由()sin(2)06f x x πω=+=得2()6x k k Z πωπ+=∈,解得()212k x k Z ππωω=-∈ ()sin(2)6f x x πω=+且()f x 在[0,2]π上恰有7个零点,可得74221212πππππωωωω-<-, ∴41472424ω<, 故④正确; 故选:C 【点睛】本题考查了三角函数的图象与性质,考查了转化思想和推理能力,属中档题.关键点点睛:利用整体思想,结合正弦函数的图像和性质是根据周期,对称,单调性,零点个数求求解参数的关键.6.C解析:C 【分析】 根据2α是4α的二倍角求出sin α的值,再求cos 4α和sin 4απ+⎛⎫⎪⎝⎭的值. 【详解】因为2α是4α的二倍角,所以2311cos 152sin 4225αα--===, 又()0,2απ∈,所以0,42a π⎛⎫∈ ⎪⎝⎭,所以sin 4545αα===cos ;所以sin sin sin cos cos sin 4444445252104απαπαπαπ+⎛⎫⎛⎫=+=+=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C. 【点睛】 本题考查了二倍角的余弦公式,考查了同角公式,考查了两角和的正弦公式,属于中档题.7.A解析:A 【分析】先利用cos 2sin 22παα⎛⎫=+ ⎪⎝⎭结合cos 2π3)4αα=+得出cos 46πα⎛⎫+= ⎪⎝⎭的值,然后利用二倍角公式得到24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭,即4sin 29α=,又12tan tan sin 2ααα+=,将4sin 29α=代入便可解出答案. 【详解】因为sin 22sin cos cos 2244π4)444πππααααπαππααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+ ⎪⎛⎫⎛⎫⎝⎭+++ ⎪ ⎪⎝⎭⎝⎭,43πα⎛⎫+= ⎪⎝⎭,则cos 46πα⎛⎫+= ⎪⎝⎭, 所以24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭, 又4cos 2sin 229παα⎛⎫+=-=- ⎪⎝⎭,所以4sin 29α=, 所以1sin cos 1229tan 4tan cos sin sin cos sin 229ααααααααα+=+====.故选:A. 【点睛】本题考查诱导公式,考查正弦、余弦的二倍角公式及其应用,难度一般,解答时公式的变形运用是关键.8.C解析:C 【分析】 求出sin 6απ⎛⎫+⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+==⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1132=-⨯=故选:C .【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.9.A解析:A 【分析】由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值. 【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,∴2221133sin222219110sin cos tan a sin cos sin cos tan αααααααα=⋅====+++, 故选A . 【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.10.B解析:B 【分析】先化简函数,根据()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数,则为函数含有零的增区间的子集,再根据区间[]0,π上恰好取得一次最大值,则取得最大值时对应的最小正数解属于[]0,π,最后取交集.【详解】因为()222sin cos sin 24x f x x x ωπωω⎛⎫=-- ⎪⎝⎭,()2sin 1sin sin x x x ωωω=+-,22sin sin sin x x x ωωω=+-,sin x ω=,令22,22k x k k Z πππωπ-+≤≤+∈,则22,22k k x k Z ππππωωωω-+≤≤+∈, 因为()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数, 25,23,2262,k k k Z ππππωωωωππ⎡⎤∴-++∈⎢⎥⎣⎦⎡⎤-⊆⎢⎥⎣⎦所以223562ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解得35ω≤,令2,2x k k Z πωπ=+∈,因为在区间[]0,π上恰好取得一次最大值, 所以02ππω≤≤,所以12ω≥, 所以ω的取值范围是1325ω≤≤. 故选:B. 【点睛】本题主要考查三角函数的单调性和最值以及二倍角公式的应用,还考查了运算求解的能力,属于中档题.11.B解析:B 【分析】根据两角和与差的余弦函数的公式,联立方程组,求得13cos cos ,sin sin 210αβαβ==-,再结合三角函数的基本关系式,即可求解.【详解】由4cos()cos cos sin sin 5αβαβαβ+=-=,1cos()cos cos sin sin 5αβαβαβ-=+=,联立方程组,可得13cos cos ,sin sin 210αβαβ==-, 又由sin sin 3tan tan cos()cos cos 5αβαβαβαβ=+==-.故选:B. 【点睛】本题主要考查了两角和与差的余弦函数,以及三角函数的基本关系式的化简、求值,其中解答中熟记三角恒等变换的公式,准确运算是解答的关键,着重考查运算与求解能力.12.B解析:B 【分析】利用两角和与差公式化简原式,可得答案. 【详解】因为sin 2sin cos B A C =, 所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C += 所以sin cos cos sin 0A C A C -= 所以sin()0A C -=, 所以0A C -=, 所以A C =.所以三角形是等腰三角形. 故选:B. 【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.二、填空题13.6【分析】由可知然后由可求再由正弦定理三角函数恒等变换的应用可求由可求结合同角平方关系可求代入进而可求进而根据余弦定理可求的值【详解】解:可知由正弦定理于是可得又可得可得由余弦定理可得故答案为:6【解析:6 【分析】由a b >可知A B >,然后由cos()A B -可求sin()A B -,再由正弦定理,三角函数恒等变换的应用可求cos B ,由cos cos[()]cos()cos sin()sin A A B B A B B A B B =-+=---可求cos A ,结合同角平方关系可求sin A ,代入cos()cos cos sin sin A B A B A B +=-,进而可求cos C ,进而根据余弦定理可求c 的值.【详解】解:a b >, A B ∴>,31cos()32A B -=, ∴可知(0,)2A B π-∈,sin()A B ∴-==, 由正弦定理,sin 5sin 4A aB b ==, 于是可得5sin 31sin sin[()]sin()cos sin cos()sin 432B A A B B A B B B A B B B ==-+=-+-=+,3sin B B ∴,sin cos 22B B 1+=,又B A <,可得3cos 4B =,3139cos cos[()]cos()cos sin()sin 32416A AB B A B B A B B ∴=-+=---⨯=,可得sin A ,931cos cos()cos cos sin sin 1648C A B A B A B ∴=-+=-+=⨯=,∴由余弦定理可得6c .故答案为:6. 【点睛】本题主要考查了正弦定理、同角三角函数的基本关系及和差角的三角公式的综合应用,同时考查了运算的能力,属于中档题.14.【分析】化简原式为即得解【详解】由题得故答案为:【点睛】本题主要考查和角差角的余弦考查二倍角的余弦意在考查学生对这些知识的理解掌握水平 解析:718【分析】 化简原式为21(12sin )2α-,即得解. 【详解】 由题得cos()cos()sin )+sin )4422ππαααααα+-=-⋅222111(cos sin )cos 2(12sin )222αααα=-==- 117(12)2918=-⨯=. 故答案为:718【点睛】本题主要考查和角差角的余弦,考查二倍角的余弦,意在考查学生对这些知识的理解掌握水平.15.【分析】先用辅助角公式函数化简为由偶函数的条件可知是函数的对称轴则又由求得的值【详解】由得因为是偶函数故为其对称轴则又因为所以故答案为:【点睛】本题考查了三角函数的恒等变换三角函数的奇偶性对称性属于解析:4π【分析】先用辅助角公式函数化简为())4f x x πϕ=++,由偶函数的条件可知,0x =是函数的对称轴,则()42k k Z ππϕπ+=+∈,又由2πϕ<求得ϕ的值.【详解】由()()()sin cos ()2f x x x πϕϕϕ=+++<得())4f x x πϕ=++,因为()f x 是偶函数,故0x =为其对称轴,()42k k Z ππϕπ+=+∈,则()4k k ϕπ=π+∈Z , 又因为2πϕ<,所以4πϕ=.故答案为:4π. 【点睛】本题考查了三角函数的恒等变换,三角函数的奇偶性,对称性,属于中档题.16.【分析】求出和再由两角和余弦公式求得然后可得角的大小【详解】∵且∴同理∴又由得∴故答案为:【点睛】本题考查已知三角函数值求角一般要求角可先这个角的某个三角函数值最好先确定这个角的范围选用在此范围内三解析:4π. 【分析】求出sin()2βα-和sin()2αβ-,再由两角和余弦公式求得cos 2αβ+,然后可得角的大小. 【详解】∵cos 2βα⎛⎫-= ⎪⎝⎭,cos 2αβ⎛⎫-= ⎪⎝⎭,且0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭,∴sin()25βα-==sin()2αβ-=,∴coscos[()()]cos()cos()sin()sin()2222222αββαβαβααβαβαβ+=-+-=-----==, 又由0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭得(0,)2αβπ+∈,∴2αβ+4π=. 故答案为:4π. 【点睛】本题考查已知三角函数值求角.一般要求角可先这个角的某个三角函数值,最好先确定这个角的范围,选用在此范围内三角函数是单调的函数求函数值后再确定角的大小.17.③【分析】①利用来判断;②利用来判断;③通过来判断;④通过当时有恒成立来判断【详解】解:①由已知则此时在第一或第三象限有可能小于零错误;②是第三象限角所以则与矛盾错误;③由已知为奇函数故则又所以则有解析:③ 【分析】 ①利用24k k θπππ来判断;②利用sin 2000a ︒=<来判断;③通过(0)0f =,(2)0f =来判断; ④通过当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立来判断. 【详解】 解:①由已知22,2k k k Z ππθπ,则,24k k kZ θπππ,此时2θ在第一或第三象限,sin2θ有可能小于零,错误;②200︒是第三象限角,所以sin 2000a ︒=<, 则tan 2000︒=<,与tan 2000︒>矛盾,错误;③由已知()f x 为奇函数,故(0)0f =,则(4)(4)(8)(0)0f f f f -====, 又(2)(24)(2)(2)f f f f =-=-=-,所以(2)0f =,则有(2)(2)(6)0f f f =-==, 则()f x 在[4,8]x ∈-至少有7个零点,正确; ④当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立,证明:单位圆中当0,2πα⎛⎫∈ ⎪⎝⎭时,如图点P 为角α的终边与单位圆的交点,由图可知OPA 的面积小<扇形OPA 的面积小<OTA 的面积 则211111sin 111tan 222ααα⋅⋅⋅<⋅⋅<⋅⋅⋅,整理得tan sin ααα>>. 若0,,0,66x y ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,tan cos tan tan x x x y y >=⋅>,所以x y >,故错误. 故答案为:③ 【点睛】本题考查函数周期性的应用,考查当0,2πα⎛⎫∈ ⎪⎝⎭时,有tan sin ααα>>恒成立这个性质的灵活应用,考查角所在象限和三角函数值符号的关系,是中档题.18.3【分析】在直角三角形中设利用两角差的正切公式求解【详解】设则故故答案为:3【点睛】此题考查在直角三角形中求角的正切值关键在于合理构造角的和差关系其本质是利用两角差的正切公式求解解析:3 【分析】在直角三角形中设3BC =,3AC x =<,1tan tan()2DAB BAC DAC ∠=∠-∠=,利用两角差的正切公式求解. 【详解】设3BC =,3AC x =<, 则31tan ,tan BAC DAC x x∠=∠= 22221tan tan()13321x x DAB BAC DAC x x x ∠=∠-∠===⇒=++, 故tan 3BAC ∠=. 故答案为:3 【点睛】此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解.19.4【分析】做出图像由三角函数定义设其中一个顶点坐标从而表示矩形的长与宽进而表示面积求出最大值【详解】由题可构建图像根据三角函数的定义可知所以矩形的面积当时故答案为:4【点睛】本题考查三角函数定义的实解析:4 【分析】做出图像,由三角函数定义设其中一个顶点坐标,从而表示矩形的长与宽,进而表示面积,求出最大值. 【详解】 由题可构建图像根据三角函数的定义,可知()2cos ,2sin A αα 所以矩形的面积4cos 2sin 4sin2S ααα=⋅= 当4πα=时,max 4sin 244S π⎛⎫=⋅= ⎪⎝⎭故答案为:4 【点睛】本题考查三角函数定义的实际应用,注意建模,再借助三角函数求最值,属于中档题.20.【分析】由韦达定理得由平方后化为然后凑配成的代数式再代入求值【详解】由是方程的两根所以从而又由知从而【点睛】关键点睛:本题考查三角函数的平方关系考查韦达定理解题关键是利用平方关系化正弦为余弦解答本题 7【分析】由韦达定理得cos cos ,cos cos αβαβ+,由sin sin αβ平方后化为cos ,cos αβ,然后凑配成cos cos ,cos cos αβαβ+的代数式,再代入求值. 【详解】由cos α,cos β是方程26320x x -=-的两根 所以11cos cos ,cos cos 23αβαβ+==-, 从而()()222(sin sin )1cos 1cos αβαβ=--22221cos cos cos cos αβαβ=--+222212cos cos cos cos (cos 2cos cos cos )αβαβααββ=++-++22(1cos cos )(cos cos )αβαβ=+-+22114171329436⎛⎫⎛⎫=--=-= ⎪ ⎪⎝⎭⎝⎭.又由,(0,)αβπ∈知sin sin 0αβ>,从而sin sin 6αβ= 【点睛】关键点睛:本题考查三角函数的平方关系,考查韦达定理,解题关键是利用平方关系化正弦为余弦,解答本题的关键是将()()222(sin sin )1cos 1cos αβαβ=--化为22(1cos cos )(cos cos )αβαβ+-+的形式,属于中档题.三、解答题21.(1)17-;(2)2【分析】(1)原式可变形,上下同时除以cos α,代入3tan =4α-后,计算结果;(2)利用角的变换,先求()()cos2cos βαβαβ=+--⎡⎤⎣⎦,展开后代入三角函数值,化简求值,最后求cos β的值. 【详解】(1)原式上下同时除以cos α,变形为31tan 1143tan 1714αα-++==----; (2)0,022ππαβ<<<<,0αβπ∴<+<,22αβππ∴-<-<,()11cos 14αβ+=-,()sin 14αβ∴+==()sin 7αβ-=,()1cos 7αβ∴-=, ()()cos2cos βαβαβ=+--⎡⎤⎣⎦()()()()cos cos sin sin αβαβαβαβ=+-++-111147⎛⎫=-⨯ ⎪⎝⎭ 12=,()20,βπ∈,236ππββ∴=⇒=,cos 2β∴=【点睛】思路点睛:本题第一问是关于sin ,cos αα的齐次分式,上下都是一次形式,则上下同时除以cos α,若上下都是二次形式,则上下同时除以2cos α,第二问是角的变换,将条件中的角看成一个整体,表示结论中的角,再求三角函数值. 22.(1)4π;(2)32a <.【分析】(1)构造()()()h x f x g x =-,由单调性的定义得出()h x 在区间[0,]t 上为增函数,结合正弦型函数的单调性,得出正实数t 的最大值.(2)方程[()()1]2()2()10a f x g x f x g x ⋅-+-+-=有解,可分离参数为2()112()1()1h x a h x h x +==-++,在,44ππ⎛⎫- ⎪⎝⎭上有解,再根据()h x 的值域,求解实数a 的取值范围. 【详解】解:(1)依题可知:1()cos 2sin cos 2f x x x x =+sin 224x π⎛⎫=+ ⎪⎝⎭, 又∵()()()()1212f x f x g x g x -<-,∴()()()()1122f x g x f x g x -<-, 令()()()h x f x g x =-,则3()222424h x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222424x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ sin 2x =.∵()()12h x h x <,∴()h x 在[]0,t 上单调递增, ∵22222k x k ππππ-≤≤+,∴()44k x k k Z ππππ-≤≤+∈,∴4t π≤,即t 的最大值为4π. (2)∵[()()1]2()2()10a f x g x f x g x ⋅-+-+-=,∴(2)[()()]10a f x g x a --+-=, ∴2()112()1()1h x a h x h x +==-++,即12sin 21a x =-+在,44ππ⎛⎫- ⎪⎝⎭上有解,∵1sin 21x -<<,∴32a <. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.23.(1)T π=,单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)最大值为12,最小值为14-. 【分析】(1)本题首先可通过三角恒等变换将函数解析式转化为()1sin 223f x x π⎛⎫=- ⎪⎝⎭,然后通过周期计算公式即可求出最小正周期,通过正弦函数的单调性即可求出单调递增区间;(2)本题可根据,122x ππ⎡⎤∈⎢⎥⎣⎦得出22,363x πππ⎡⎤-∈-⎢⎥⎣⎦,然后根据正弦函数的性质即可求出最值. 【详解】(1)2()cos cos 64f x x x x π⎛⎫=⋅-- ⎪⎝⎭21cos sin 2x x x x ⎫=++-⎪⎪⎝⎭221sin cos 2x x x x =++))2212cos 1sin 22sin 14x x x =-+-+112sin 22sin 2244x x x x x =+=111sin 22sin 22223x x x π⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭, 即()1sin 223f x x π⎛⎫=- ⎪⎝⎭,则最小正周期22T ππ==, 当222232k x k πππππ-+≤-≤+, 即()51212k x k k Z ππππ-+≤≤+∈,函数()f x 单调递增, 函数()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (2)()1sin 223f x x π⎛⎫=- ⎪⎝⎭, 因为,122x ππ⎡⎤∈⎢⎥⎣⎦,所以22,363x πππ⎡⎤-∈-⎢⎥⎣⎦, 由正弦函数的性质易知, 当236x ππ-=-,即12x π=时,函数()f x 取最小值,最小值为14-; 当232x ππ-=,即512x π=时,函数()f x 取最大值,最大值为12. 【点睛】 关键点点睛:本题考查结合三角恒等变换判断三角函数性质,能否根据三角恒等变换将函数转化为()1sin 223f x x π⎛⎫=- ⎪⎝⎭是解决本题的关键,考查三角函数周期性、单调性以及最值的求法,是中档题.24.(1)2,单调增区间5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)11,2⎛⎫-- ⎪⎝⎭. 【分析】(1)根据三角恒等变换化简函数()f x ,代值求3f π⎛⎫⎪⎝⎭,用整体代换法求单调递增区间; (2)求出函数在,122ππ⎡⎤⎢⎥⎣⎦上的值域,原不等式等价于函数()f x 在,122ππ⎡⎤⎢⎥⎣⎦上的值域是(),2m m +的子集,列出不等式组化简即可.【详解】解:(1))21()sin (cos )sin 22sin 1222f x x x x x x =+-=+-1sin 22sin 223x x x π⎛⎫==- ⎪⎝⎭所以sin 2s 3in 333f ππππ⎛⎛⎫= ⎫⎛⎫⨯-== ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭ 由222()232k x k k Z πππππ-≤-≤+∈得5()1212k x k k Z ππππ-≤≤+∈, 故函数的单调增区间为5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,22,363x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1(),12f x ⎡⎤∈-⎢⎥⎣⎦, 因为,122x ππ⎡⎤∀∈⎢⎥⎣⎦不等式()2m f x m <<+恒成立 所以1112212m m m ⎧<-⎪⇒-<<-⎨⎪<+⎩ 所以实数m 的取值集合11,2⎛⎫--⎪⎝⎭. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.25.(11(2)5[,],1212k k k Z ππππ-+∈,π(3)6(41+ 【分析】(1)化简函数解析式代入直接求值即可;(2)由正弦型函数的性质求解即可; (3)先求出cos()3πα-,sin()3πα-再利用33ππαα=-+求解即可; (4)由两角差的正弦化简后再利用弦化切求解.【详解】 (1)2()sin 22sin 6f x x x π⎛⎫=-+= ⎪⎝⎭ sin2cos cos2sin 1cos 266x x x ππ⋅-⋅+-1cos21cos22x x x =-+-3sin2cos2122x x =-+213x π⎛⎫=-+ ⎪⎝⎭,故55sin()111263f πππ⎛⎫=-+= ⎪⎝⎭.(2)由(1)知()213f x x π⎛⎫=-+ ⎪⎝⎭, 令222,232k x k k Z πππππ-≤-≤+∈, 解得5,1212k x k k Z ππππ-≤≤+∈, 所以函数()f x 的单调递增区间为5[,],1212k k k Z ππππ-+∈, 函数()f x 的周期为22T ππ==. (3)(0,)2πα∈,且()22f α=,())1223f απα=-+=,即sin()33πα-=, 因为(0,)2πα∈,所以cos()33πα-=, 故sin sin[()]sin()cos cos()sin 333333ππππππαααα=-+=-+-12=+=(4)33()cos 2)1cos 2232f πββββ+=-++3221cos 22βββ=-++sin 2112β=+=+1=+15=+ 【点睛】关键点点睛:涉及三角函数的求值化简问题,关键要根据式子结构特征,选择合适的公式,正用、逆用公式,并结合切化弦、弦化切思想,角的变换技巧,灵活运用公式,熟练运算,属于中档题.26.(1)最小正周期π,单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)4x π=时,()f x 取得最大值1;12x π=-时,()f x 取得最小值2-;(3))m ∈,()12tan x x +=. 【分析】 (1)利用和与差以及辅助角公式基本公式将函数化为()sin y A ωx φ=+的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;(2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,利用正弦函数的定义域和值域,求得()f x 的最大值和最小值,并指出()f x 取得最值时对应的x 的值.(3)函数()()g x f x m =-所在0,2π⎡⎤⎢⎥⎣⎦匀上有两个不同的零点1x ,2x ,转化为函数()f x 与函数y m =有两个交点;可求m 的范围,结合三角函数的图象可知,1x ,2x ,关于对称轴是对称的,可知12x x +,即可求()12tan x x +的值.【详解】解:(1)函数()4sin cos 3f x x x π⎛⎫=-+ ⎪⎝⎭化简可得:()2112sin cos sin 2cos 222f x x x x x x ⎫=-=-++⎪⎭sin 222sin 23x x x π⎛⎫=-=- ⎪⎝⎭, 所以函数的最小正周期22T ππ==, 由222232k x k πππππ-≤-≤+,解得:1212k x k π5ππ-≤≤π+, 所以函数的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(2)由于64x ππ-≤≤,可得22336x πππ-≤-≤, 当236x ππ-=,即4x π=时,()f x 取得最大值1; 当232x ππ-=-,即12x π=-时,()f x 取得最小值2-.(3)函数()()g x f x m =-所在0,2π⎡⎤⎢⎥⎣⎦匀上有两个不同的零点1x ',2x ',转化为函数()f x 与函数y m =有两个交点,令23u x π=-,∵ 0,2x π⎡⎤∈⎢⎥⎣⎦,∴2,33u ππ⎡⎤∈-⎢⎥⎣⎦, 可得sin y u =的图象(如图).从图可知:)3,2m ⎡∈⎣时,函数sin y u =与函数y m =有两个交点,其横坐标分别为1x ',2x '. 故得实数m 的取值范围是)3,2m ⎡∈⎣, 由题意可知1x ',2x '是关于对称轴是对称的: 那么函数在0,2π⎡⎤⎢⎥⎣⎦的对称轴512x π=, 所以1256x x π''+=, 所以()1253tan tan63x x π''+==-.【点睛】本题第三问解题的关键在于将问题转化为函数()f x 与函数y m =有两个交点,进而讨论函数在0,2x π⎡⎤∈⎢⎥⎣⎦上的图象,根据数形结合思想求解,考查运算求解能力,化归转化思想,是中档题.。

(好题)高中数学必修四第三章《三角恒等变形》测试(答案解析)

(好题)高中数学必修四第三章《三角恒等变形》测试(答案解析)

一、选择题1.已知sin cos sin cos θθθθ-=,则角θ所在的区间可能是( ).A .0,4π⎛⎫⎪⎝⎭B .,42ππ⎛⎫⎪⎝⎭C .3,24ππ⎛⎫⎪⎝⎭D .3,4ππ⎛⎫⎪⎝⎭2.若sin 3cos 0θθ+=,则2cos sin 2θθ+的值( ) A .2B .2-C .12D .12-3.在ABC中,cos A =,1tan 3B =,则()tan A B -=( )A .2-B .12-C .12D .24.函数2()sin 2f x x x =+-()cos(2)2 3 (0)6g x m x m m π=--+>,若对任意1[0,]4x π∈,存在2[0,]4x π∈,使得12()()g x f x =成立,则实数m 的取值范围是( ) A .4(1,)3B .2(,1]3C .2[,1]3D .4[1,]35.设等差数列{}n a 满足:()22222222272718sin cos cos cos sin sin 1sin a a a a a a a a -+-=+,公差()1,0d ∈-.若当且仅当11n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( ) A .9,10ππ⎛⎫⎪⎝⎭B .11,10ππ⎡⎤⎢⎥⎣⎦C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫⎪⎝⎭6.已知()2020cos2020f x x x =+的最大值为A ,若存在实数1x ,2x ,使得对任意的实数x ,总有()()()12f x f x f x ≤≤成立,则12A x x -的最小值为( ) A .2020πB .1010π C .505π D .4040π 7.函数12log (sin cos )y x x =的单调增区间是( )A .(,)()44k k k Z ππππ-+∈ B .3(,)()44k k k Z ππππ++∈ C .(,)()4k k k Z πππ+∈D .(,)()42k k k Z ππππ++∈8.已知cos 2π3)4αα=+,则1tan tan αα+等于( ) A .92B .29C .9-2D .2-99.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .8310.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7B .17C .-17D .-711.已知直线3x −y +1=0的倾斜角为α,则1sin22α= A .310 B .35 C .−310D .11012.若0||4πα<<,则下列说法①sin2α>sinα,②cos2α<cosα,③tan2α>tanα,正确的是( ) A .①B .②C .③D .①③二、填空题13.已知函数()2x f x a -=-0a >且1a ≠)过定点P ,且点P 在角6πα⎛⎫+⎪⎝⎭的终边上cos α=_______. 14.已知1sin cos 5θθ+=,(0,)θπ∈,则tan θ=________. 15.已知α、0,2πβ⎛⎫∈ ⎪⎝⎭,10sin α=,()cos 5αβ+=,则()cos 2αβ+=______.16.已知(0,)θπ∈,且sin 410πθ⎛⎫-= ⎪⎝⎭,则sin 2θ=__________.17.已知tanα=2tan 8π,则3cos 8sin 8αππα⎛⎫- ⎪⎝⎭⎛⎫- ⎪⎝⎭=_____.18.若tan 30,2tan 10αβ-=-=,则()tan αβ+=________. 19.如果函数sin 2cos 2y x a x =+的图象关于直线12x π=对称,那么该函数在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值为_______________. 20.在ABC 中,已知tansin 2A BC +=,给出以下四个论断: ①tan tan A B =,②1sin sin A B <+≤22sin cos 1A B +=,④222cos cos sin A B C +=,其中正确的是__________.三、解答题21.已知cosα5=,sin (α﹣β)10=,且α、β∈(0,2π).求:(Ⅰ)cos (2α﹣β)的值; (Ⅱ)β的值. 22.已知3sin 5α=-,且α为第四象限角 (1)求sin sin(2)2tan()cos()παπααππα⎛⎫++ ⎪⎝⎭---+的值; (2)求1sin 2cos 21sin 2cos 2αααα+-++的值.23.在下列三个条件中任选一个,补充在下面问题中,并进行解答. ①函数()2sin(2)f x x ωϕ=+(0>ω,||2ϕπ<)的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②函数())cos(2)(0)f x x x ωπωω=-->; ③函数()4cos sin 1(0)6f x x x πωωω⎛⎫=+-> ⎪⎝⎭; 问题:已知________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (Ⅰ)求()f x 的单调递增区间; (Ⅱ)若0,2πα⎛⎫∈ ⎪⎝⎭,()f α=α的值.24.已知函数2())2cos1(0,0)2x f x x ωϕωϕωϕπ+=++-><<为偶函数,且()f x 图象的相邻两个最高点的距离为π.(1)当5,66x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的单调递增区间; (2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来12(纵坐标不变),得到函数()y g x =的图象.求函数()g x 在区间,126ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.25.已知函数2()2sin cos f x x x x =--. (1)求函数()f x 的最小正周期; (2)当,04x π⎡⎤∈-⎢⎥⎣⎦时,不等式()3f x m <+恒成立,求实数m 的取值范围. 26.已知sin α、cos α分别是方程2255120x x +-=的两根,且α是第二象限角. (1)求cos2α的值; (2)求2sin cos sin 3cos αααα-+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先化简已知得sin24πθθ⎛⎫-= ⎪⎝⎭,然后根据各个选项确定等式两端的取值范围从而得到答案. 【详解】由sin cos sin cos θθθθ-=得,sin24πθθ⎛⎫-= ⎪⎝⎭, 对于A , 当0,4πθ⎛⎫∈ ⎪⎝⎭时,,044ππθ⎛⎫-∈- ⎪⎝⎭,sin 04πθ⎛⎫-< ⎪⎝⎭, 而0,22θπ⎛⎫⎪⎝⎭∈,sin20θ>,两个式子不可能相等,故错误;对于B ,当,42ππθ⎛⎫∈⎪⎝⎭时,0,44ππθ⎛⎫-∈ ⎪⎝⎭,sin 4πθ⎛⎛⎫-∈ ⎪ ⎝⎭⎝⎭,()0,24πθ⎛⎫-∈ ⎪⎝⎭ ,22,ππθ∈⎛⎫⎪⎝⎭,()sin20,1θ∈,存在θ使得sin24πθθ⎛⎫-= ⎪⎝⎭,故正确;对于C , 3,24ππθ⎛⎫∈⎪⎝⎭时,42,4πππθ⎛⎫-∈ ⎪⎝⎭,sin 4πθ⎫⎛⎫-∈⎪ ⎪⎪⎝⎭⎝⎭,(2,4πθ⎛⎫-∈ ⎪⎝⎭,而3,22πθπ⎛∈⎫⎪⎝⎭,()sin21,0θ∈-,不可能相等,所以错误;对于D , 当3,4πθπ⎛⎫∈⎪⎝⎭时,3,424πππθ⎛⎫-∈ ⎪⎝⎭,sin 42πθ⎛⎫⎛⎫-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,(2,4πθ⎛⎫-∈ ⎪⎝⎭,而3,222ππθ⎛∈⎫⎪⎝⎭,()sin21,0θ∈-,不可能相等,所以错误 故选:B. 【点睛】本题主要考查了三角恒等式的应用,三角函数在各象限内的符号,关键点是根据各个选项确定等号两端式子的取值范围,考查了学生分析问题、解决问题的能力.2.D解析:D 【分析】先根据题意得tan 3θ=-,再根据正弦的二倍角公式化简得2212tan 1cos sin 21tan 2θθθθ++==-+.【详解】解:由sin 3cos 0θθ+=得tan 3θ=-.所以2222222cos sin 2cos 2sin cos cos sin 2cos sin cos sin θθθθθθθθθθθ+++==++ 22222222cos 2sin cos 12tan 51cos cos cos sin 1tan 102cos cos θθθθθθθθθθθ++-====-++, 故选:D. 【点睛】本题解题的关键是将等式2cos sin 2θθ+变形化简得2212tan cos sin 21tan θθθθ++=+,进而求解,考查运算求解能力,是中档题.3.A解析:A 【分析】根据已知条件计算出tan A 的值,然后根据两角差的正切公式结合tan ,tan A B 的值计算出()tan A B -的值.【详解】因为cos 2A =-且()0,A π∈,所以34A π=,所以tan 1A =-,所以()()11tan tan 3tan 211tan tan 113A BA B A B ----===-++-⨯,故选:A. 【点睛】关键点点睛:解答本题的关键是根据特殊角的余弦值求出其正切值以及两角差的正切公式的熟练运用.4.D解析:D 【解析】222221f x sin x x sin x cos x =+-=+-())1222222223sin x x sin x x sin x π==+=+()(), 当0,4x π⎡⎤∈⎢⎥⎣⎦时,552[]21[12]3366min x f x sin f x ππππ+∈∴==∴∈,,(),(),, 对于22306g x mcos x m m π=--+()()(>),2[]2[]36662m x mcos x m ππππ-∈--∈,,(),,3[33]2g x m m ∴∈-+-(),, ∵对任意10,4x π⎡⎤∈⎢⎥⎣⎦,存在20,4x π⎡⎤∈⎢⎥⎣⎦,使得()()12g x f x =成立,331232m m ⎧-+≥⎪∴⎨⎪-≤⎩ ,解得实数m 的取值范围是41,3⎡⎤⎢⎥⎣⎦.故选D .【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,5.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 6.B解析:B 【分析】化简函数()f x 的解析式可得周期与最大值,对任意的实数x ,总有()()()12f x f x f x ≤≤成立,即12x x -半周期的整数倍,代入求最小值即可.【详解】()2020cos 20202sin 20206f x x x x π⎛⎫=+=+ ⎪⎝⎭,则220201010T ππ==,2A = 1212210101010A x x ππ-≥⨯⨯=故选:B 【点睛】本题考查正弦函数的性质,考查三角恒等变换,考查周期与最值的求法,属于中档题.7.D解析:D 【分析】先利用二倍角公式化简整理,再根据对数函数的定义域及复合函数单调性的性质求解单调递增区间即可. 【详解】由11221log (sin cos )log (sin 2)2y x x x ==, 得1sin 2022222x k x k k x k ππππππ>⇒<<+⇒<<+, 故函数的定义域为(,)()2k k k z πππ+∈,又求函数12log (sin cos )y x x =的单调增区间,利用复合函数单调性的性质, 可得222242k x k k x k ππππππππ+<<+⇒+<<+.故选:D. 【点睛】本题主要考查了复合函数单调性的性质及应用,对数函数定义域的特殊要求.属于中档题.8.A解析:A 【分析】先利用cos 2sin 22παα⎛⎫=+ ⎪⎝⎭结合cos 2π3)4αα=+得出cos 46πα⎛⎫+= ⎪⎝⎭的值,然后利用二倍角公式得到24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭,即4sin 29α=,又12tan tan sin 2ααα+=,将4sin 29α=代入便可解出答案. 【详解】因为sin22sin coscos2244π4)444πππααααπαππααα⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+⎪⎛⎫⎛⎫⎝⎭+++⎪ ⎪⎝⎭⎝⎭,4πα⎛⎫+=⎪⎝⎭,则cos4πα⎛⎫+=⎪⎝⎭所以24cos22cos1249ππαα⎛⎫⎛⎫+=+-=-⎪ ⎪⎝⎭⎝⎭,又4cos2sin229παα⎛⎫+=-=-⎪⎝⎭,所以4sin29α=,所以1sin cos1229tan4tan cos sin sin cos sin229ααααααααα+=+====.故选:A.【点睛】本题考查诱导公式,考查正弦、余弦的二倍角公式及其应用,难度一般,解答时公式的变形运用是关键.9.C解析:C【分析】利用辅助角公式将函数()y f x=的解析式化简为()2sin3f x xπω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Zπππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin2sin3f x x x xπωωω⎛⎫=+=+⎪⎝⎭,由于该函数的图象关于直线8xπ=对称,则()832k k Zπππωπ+=+∈,得()483k k Zω=+∈,ω>,当0k=时,ω取得最小值43.故选:C.【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.10.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】 由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.11.A解析:A 【分析】由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值. 【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,∴2221133sin222219110sin cos tan a sin cos sin cos tan αααααααα=⋅====+++, 故选A . 【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.12.B解析:B 【分析】 取6πα=-判断①③,根据余弦函数的性质结合二倍角公式判断②.【详解】当6πα=-时,1sin 2sin sin ,sin 2sin 362ππαααα⎛⎫⎛⎫=-==-=-< ⎪ ⎪⎝⎭⎝⎭tan 2tan tan tan ,tan 2tan 363ππαααα⎛⎫⎛⎫=-==-=-< ⎪ ⎪⎝⎭⎝⎭,则①③错误;0||4πα<<,cos cos ||2αα⎛⎫∴=∈ ⎪ ⎪⎝⎭2cos 2cos 2cos cos 1(cos 1)(2cos 1)0αααααα∴-=--=-+<即cos2cos αα<,②正确; 故选:B 【点睛】本题主要考查了求余弦函数的值域以及二倍角的余弦公式的应用,属于中档题.二、填空题13.【分析】由指数为0时可得定点进而可得和利用展开即可得解【详解】由所以函数(且)过定点所以所以故答案为:【点睛】关键点点睛:本题解题的关键是利用展开求解【分析】由指数为0时可得定点P ,进而可得sin 6πα⎛⎫+ ⎪⎝⎭和cos 6πα⎛⎫+ ⎪⎝⎭,利用cos cos[()]66ππα=α+-展开即可得解.【详解】由(012f a =-=,所以函数()2x f x a -=-0a >且1a ≠)过定点P ,所以1sin 63πα⎛⎫+== ⎪⎝⎭,cos 63πα⎛⎫+== ⎪⎝⎭. 所以cos cos[()]cos()cossin()sin 666666ππππππα=α+-=α++α+11132326=+⨯=.. 【点睛】关键点点睛:本题解题的关键是利用cos cos[()]66ππα=α+-展开求解.14.【分析】把已知等式两边平方求出的值再利用完全平方公式求出的值联立求解再结合同角三角函数间的基本关系可求得的值【详解】已知平方得得解得故答案为:【点睛】本题考查同角三角函数间的基本关系齐次方程的求解属解析:43-【分析】把已知等式两边平方,求出sin cos θθ的值,再利用完全平方公式求出sin cos θθ-的值,联立求解再结合同角三角函数间的基本关系可求得tan θ的值. 【详解】已知1sin cos 5θθ+=,平方得()2221sin cos sin cos 2sin cos 25θθθθθθ+=++=,得12sin cos 25θθ=-, ∴()222sin cos sin cos 2sin cos 125252449θθθθθθ-=+-=+=,(0,)θπ∈,sin 0,cos 0θθ><,7sin cos 5θθ∴-=,7ta sin cos 1sin cos n 571t n 51a θθθθθθ=-=-+=+,解得4tan 3θ=-. 故答案为:43-【点睛】本题考查同角三角函数间的基本关系,齐次方程的求解,属于中档题.15.【分析】利用同角三角函数的平方关系求得的值然后利用两角和的余弦公式可求得的值【详解】因为则又所以所以故答案为:【点睛】本题考查利用两角和的余弦公式求值同时也考查了同角三角函数基本关系的应用考查计算能解析:2【分析】利用同角三角函数的平方关系求得cos α、()sin αβ+的值,然后利用两角和的余弦公式可求得()cos 2αβ+的值. 【详解】 因为α、0,2πβ⎛⎫∈ ⎪⎝⎭,则0αβ<+<π, 又10sin10,()cos 5αβ+=,所以,cos 10α==,()sin αβ+==所以()()()()cos 2cos cos cos sin sin αβααβααβααβ+=++=+-+⎡⎤⎣⎦-=故答案为:2. 【点睛】本题考查利用两角和的余弦公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于中等题.16.【分析】根据利用诱导公式和二倍角公式转化为求解【详解】因为所以故答案为:【点睛】本题主要考查二倍角公式及诱导公式的应用还考查了转化求解问题的能力属于中档题 解析:2425【分析】根据sin 410πθ⎛⎫-= ⎪⎝⎭,利用诱导公式和二倍角公式转化为2sin 2cos 2122sin 4πθθπθ⎛⎫=-=- ⎪⎛⎫- ⎪⎝⎝⎭⎭求解.【详解】因为sin 410πθ⎛⎫-= ⎪⎝⎭, 所以224sin 4sin 2cos 2co 25s 21224πππθθθθ⎡⎤⎛⎫⎛⎫=-=-=- ⎪⎛⎫-= ⎪⎝⎭ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故答案为:2425【点睛】本题主要考查二倍角公式及诱导公式的应用,还考查了转化求解问题的能力,属于中档题.17.3【分析】由诱导公式对原式化简用两角和差公式展开分子分母同除即可得结果【详解】故答案为:3【点睛】本题考查了三角函数的诱导公式三角恒等变换等基本数学知识考查了运算求解能力属于基础题目解析:3 【分析】由诱导公式对原式化简3cos()sin()88sin()sin()88ππααππαα-+=--,用两角和差公式展开,分子分母同除cos cos8πα,即可得结果.【详解】3cos()sin()sin cos cos sin tan tan 888883sin()sin()sin cos cos sin tan tan88888πππππαααααπππππααααα-+++====---- 故答案为:3【点睛】本题考查了三角函数的诱导公式、三角恒等变换等基本数学知识,考查了运算求解能力,属于基础题目.18.【分析】由题得再利用两角和公式求解即可【详解】因为所以所以故答案为:【点睛】本题考查正切函数的两角和公式属于基础题 解析:7-【分析】由题得tan 3α=,1tan 2β=,再利用两角和公式求解即可. 【详解】因为tan 30,2tan 10αβ-=-=, 所以tan 3α=,1tan 2β=, 所以()1t 32731n 2a αβ++==--, 故答案为:7-. 【点睛】本题考查正切函数的两角和公式,属于基础题.19.【分析】根据三角公式得辅助角公式结合三角函数的对称性求出值再利用的取值范围求出函数的最小值【详解】解:令则则因为函数的图象关于直线对称所以即则平方得整理可得则所以函数因为所以当时即函数有最小值为故答解析:【分析】根据三角公式得辅助角公式,结合三角函数的对称性求出a 值,再利用x 的取值范围求出函数的最小值. 【详解】解:sin 2cos 2sin 2cos 2y x a x x x ⎫=+=+,令cos θ=,则sin θ=则)()sin 2cos cos 2sin 2y x x x θθθ=⋅+⋅=+. 因为函数sin 2cos 2y x a x =+的图象关于直线12x π=对称,所以sin 2cos 21212a ππ⎛⎫⎛⎫⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,即sin cos 66a ππ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭则12=平方得2213144a a ++=+.整理可得(20a -=,则a =所以函数1sin 222sin 222sin 223y x x x x x π⎛⎫⎛⎫==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦ , 当4233x ππ+=时,即2x π=,函数有最小值为故答案为:. 【点睛】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.20.②④【分析】已知式子变形可得逐个选项判定即可【详解】解:因为所以整理得所以①中:因为所以不一定等于故①不正确;②中:因为又因为所以所以故②正确;③中:不一定成立故③不正确;④中:所以故④正确【点睛】解析:②④ 【分析】已知式子变形可得2A B π+=,逐个选项判定即可.【详解】 解:因为tansin 2A BC += 所以sin22sin cos 22cos 2A BA B A B A B +++=+ 整理得()cos 0A B += . 所以2A B π+=.①中:因为2A B π+=,所以tan A 不一定等于tan B ,故①不正确;②中:因为sin sin sin cos 4A B A A A π⎛⎫+=+=+ ⎪⎝⎭又因为3444A πππ<+<,所以sin 124A π⎛⎫<+≤ ⎪⎝⎭所以1sin sin A B <+≤故②正确;③中:22222sin cos sin si n 12n si A B A A A ==+=+,不一定成立,故③不正确; ④中:2222cos cos cos sin 1A A B A +==+,22sin si 1n 2C π==,所以222cos cos sin A B C +=.故④正确. 【点睛】本题考查两角和与差的三角函数公式,命题的真假的判断,属基础题.三、解答题21.(Ⅰ)10;(Ⅱ)4π.【分析】(Ⅰ)由α,β的范围求出α﹣β的范围,由题意和平方关系求出sin α和cos (α﹣β),由两角和的余弦公式求出cos (2α﹣β)=cos[(α﹣β)+α]的值;(Ⅱ)由两角差的余弦公式求出cos β=cos[α﹣(α﹣β)]的值,再由β的范围求出β的值. 【详解】(Ⅰ)∵02παβ⎛⎫∈ ⎪⎝⎭,,,∴α﹣β∈(2π-,2π),∵cos 5α=,()sin 10αβ-=,∴sin α5==,cos (α﹣β)10==, ∴cos (2α﹣β)=cos[(α﹣β)+α]=cos (α﹣β)cosα﹣sin (α﹣β)sin α=-=(Ⅱ)由(Ⅰ)得,cos β=cos[α﹣(α﹣β)]=cos α cos (α﹣β)+ sinα sin (α﹣β)2=+=, 又∵02πβ⎛⎫∈ ⎪⎝⎭,,∴β4π=.【点睛】关键点点睛:拆角2()αβαβα-=-+,()βααβ=--是本题解题关键. 22.(1)45;(2)34-. 【分析】(1)先求出4cos 5α=,再利用诱导公式和同角的三角函数的基本关系化简后可得所求的值.(2)先求出3tan 4α=-,再利用倍角公式和同角的三角函数的基本关系化简后可得所求的值. 【详解】 (1)因为3sin 5α=-,且α为第四象限角,故4cos 5α=. 原式()cos sin cos t 45an cos ααααα===-⋅-.(2)由(1)得4cos 5α=,故3tan 4α=- 原式222sin cos 2sin sin tan =2sin cos 2cos cos 34ααααααααα==+-+=. 【点睛】思路点睛:三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角.23.(Ⅰ)()2sin(2)6f x x π=+(Ⅱ)12πα=或4πα=【分析】分别选择①,②,③求出函数()2sin(2)6f x x π=+, (Ⅰ)根据正弦函数的增区间列式可求出()f x 的递增区间; (Ⅱ)代入()f α,根据α的范围可求出结果. 【详解】因为函数()f x 的图象相邻两条对称轴之间的距离为2π.所以22T ππ=⨯=, 选择①,则22ππω=,得1ω=,所以()2sin(2)f x x ϕ=+, 所以()()2sin 2()1212g x f x x ππϕ⎡⎤=-=-+⎢⎥⎣⎦2sin(2)6x πϕ=-+,因为()g x 的图象关于原点对称,所以()g x 为奇函数,所以(0)0g =, 所以2sin()06πϕ-=,所以6k πϕπ-=,k Z ∈,所以6k πϕπ=+,k Z ∈,因为||2ϕπ<,所以0,6k πϕ==,所以()2sin(2)6f x x π=+, 选择②,())cos(2)f x x x ωπω=--(0)ω>=()()2cos 2x x ωω+2sin(2)6x πω=+,所以22ππω=,所以1ω=,所以()2sin(2)6f x x π=+, 选择③,()4cos sin 1(0)6f x x x πωωω⎛⎫=+-> ⎪⎝⎭4cos sin cos cos sin 66x x x ππωωω⎛⎫=+ ⎪⎝⎭1-=14cos cos 12x x x ωωω⎫+-⎪⎪⎝⎭2cos 2cos 1x x x ωωω=+-2cos 2x x ωω=+2sin 26x πω⎛⎫=+ ⎪⎝⎭,所以22ππω=,所以1ω=,所以()2sin(2)6f x x π=+, (Ⅰ)由222262k x k πππππ-+≤+≤+,k Z ∈,得36k x k ππππ-+≤≤+,k Z ∈,所以()f x 的单调递增区间为[,]36ππk πk π-++,k Z ∈.(Ⅱ)若0,2πα⎛⎫∈ ⎪⎝⎭,()f α=2sin(2)6πα+=sin(2)62πα+=, 因为02πα<<,所以72666πππα<+<, 所以263ππα+=或2263ππα+=,得12πα=或4πα=.【点睛】关键点点睛:根据三角函数的性质求出()f x 的解析式是解题关键.24.(1)单调递增区间为,06π⎡⎤-⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦;(2)最大值为2,最小值1-. 【分析】(1)首先利用二倍角公式和辅助角公式对()f x 化简,再利用偶函数求出ϕ的值,再利用T π=求出ω的值,即可得()f x 的解析式,再利用余弦函数的单调递增区间即可求解;(2)利用三角函数图象变换的规律求出()g x 的解析式,再利用余弦函数的性质即可求值域. 【详解】(1)由题意函数2())2cos12x f x x ωϕωϕ+=++-)cos()2sin 6x x x πωϕωϕωϕ⎛⎫=+++=++ ⎪⎝⎭,因为函数()f x 图象的相邻两个最高点的距离为π, 所以T π=,可得2ω=.又由函数()f x 为偶函数可得(0)2sin 26f πϕ⎛⎫=+=± ⎪⎝⎭, 所以62k ππϕπ+=+,k ∈Z ,则3k πϕπ=+,k ∈Z .因为0ϕπ<<,所以3πϕ=,所以函数()2cos2f x x =,令222k x k πππ-≤≤,k ∈Z ,解得2k x k πππ-≤≤,k ∈Z ,当0k =时,02x ;当1k =时,2x ππ≤≤,又5,66x ππ⎡⎤∈-⎢⎥⎣⎦, 可得函数()f x 的单调递增区间为,06π⎡⎤-⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦. (2)将函数()f x 的图象向右平移6π个单位长度可得2cos 23y x π⎛⎫=- ⎪⎝⎭的图象,再把各点的横坐标缩小为原来的12,得到函数()2cos 43g x x π⎛⎫=- ⎪⎝⎭的图象, 当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,24,333x πππ⎡⎤-∈-⎢⎥⎣⎦. 当2433x ππ-=-,即12x π=-时, 函数()g x 取得最小值,最小值为1-; 当403x π-=,即12x π=时,函数()g x 取得最大值,最大值为2. 所以函数()g x 在区间,126ππ⎡⎤-⎢⎥⎣⎦上的最大值是2,最小值是1-. 【点睛】方法点睛:已知三角函数的解析式求单调区间先将解析式化为()()sin 0y A x A ωϕω=+>>0,或()()cos 0,0y A x A ωϕω=+>>的形式,然后将x ωϕ+看成一个整体,根据sin y x =与cos y x =的单调区间列不等式求解. 25.(1)π;(2)1m >- 【分析】(1)利用二倍角公式和辅助角公式将()f x 化简,再利用周期公式即可求解; (2)不等式()3f x m <+对于,04x π⎡⎤∈-⎢⎥⎣⎦恒成立,转化为()max 3m f x +>,利用正弦函数的性质求()f x 在,04π⎡⎤-⎢⎥⎣⎦的最大值即可求解. 【详解】2()2sin cos f x x x x =--1cos 2sin 22sin 22sin 223x x x x x π+⎛⎫=-=-=- ⎪⎝⎭所以()f x 的最小正周期22T ππ==-, (2)不等式()3f x m <+对于,04x π⎡⎤∈-⎢⎥⎣⎦恒成立,则()max 3m f x +>, 因为,04x π⎡⎤∈-⎢⎥⎣⎦时,所以20,2x π⎡⎤-∈⎢⎥⎣⎦,52,336x πππ⎡⎤-∈⎢⎥⎣⎦,所以1sin 2,132x π⎛⎫⎡⎤-∈⎪⎢⎥⎝⎭⎣⎦,可得()[]2sin 21,23f x x π⎛⎫=-∈ ⎪⎝⎭,所以()max 2f x =,即 32m +>,解得:1m >- 所以实数m 的取值范围是1m >- 【点睛】关键点点睛:对于恒成立问题求参数,常采用分离参数的方法,不等式()3f x m <+对于,04x π⎡⎤∈-⎢⎥⎣⎦恒成立,等价于()max 3m f x +>,,04x π⎡⎤∈-⎢⎥⎣⎦,只需要求()f x 在,04π⎡⎤-⎢⎥⎣⎦的最大值即可. 26.(1)725;(2)109-.【分析】(1)由韦达定理及α是第二象限角可以求得sin α和cos α的值, 再由22cos 2cos sin ααα=-计算即可;(2)由(1)可知sin α和cos α的值,然后代值计算即可.【详解】(1)因为sin α、cos α分别是方程2255120x x +-=的两根, 所以有1sin cos 512sin cos 25αααα⎧+=-⎪⎪⎨⎪=-⎪⎩, 又α是第二象限角,所以sin 0α>,cos 0α<,3sin 5α∴=,4cos 5α=-, 2222437cos 2cos sin 5525ααα⎛⎫⎛⎫∴=-=--= ⎪ ⎪⎝⎭⎝⎭; (2)由(1)知,3sin 5α=,4cos 5α=-, 3422sin cos 21055934sin 3cos 93555αααα⎛⎫⨯-- ⎪-⎝⎭∴===-+⎛⎫-+⨯- ⎪⎝⎭. 【点睛】易错点睛:本题易忽略角α的范围,从而导致错解sin α和cos α的值,最后结果错误.。

(好题)高中数学必修四第三章《三角恒等变形》检测题(含答案解析)

(好题)高中数学必修四第三章《三角恒等变形》检测题(含答案解析)

一、选择题1.已知函数44()cos sin f x x x =-在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t 则函数()()()g t M t N t =-的最小值为( ) A1-B .1C.2D.12-2.已知tan α,tan β是方程2506x x a -+=的两个实数根,且()tan 1αβ+=,则实数a =( )A .16B .116C .512D .7123.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )A.10 B. CD.-4.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ).A .ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=- ⎪⎝⎭C .π4f x ⎛⎫-⎪⎝⎭是偶函数 D .π4f x ⎛⎫+⎪⎝⎭是奇函数 5.设等差数列{}n a 满足:()22222222272718sin cos cos cos sin sin 1sin a a a a a a a a -+-=+,公差()1,0d ∈-.若当且仅当11n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A .9,10ππ⎛⎫⎪⎝⎭ B .11,10ππ⎡⎤⎢⎥⎣⎦C .9,10ππ⎡⎤⎢⎥⎣⎦ D .11,10ππ⎛⎫ ⎪⎝⎭6.角α的终边与单位圆的交点坐标为1,)22,将α的终边绕原点顺时针旋转34π,得到角β,则cos()αβ+=( ) ABCD .07.函数()sin sin 22f x x x π⎛⎫=++⎪⎝⎭的最大值为( )A .2B .1C .18D .988.已知角α满足1cos()63πα+=,则sin(2)6πα-=( ) A .429-B .429C .79-D .799.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫-= ⎪⎝⎭( )A .4-B .4C .13-D .1310.已知函数22()2sin cos ()sin (0)24x f x x x ωπωωω=-->在区间25[,]36ππ-上是增函数,且在区间[0,]π上恰好取得一次最大值,则ω的范围是( )A .3(0,]5B .13[,]25C .13[,]24D .15[,)2211.求sin10°sin50°sin70°的值( ) A .12B .32C .18D .33812.若,则的值为( )A .B .C .D .二、填空题13.已知函数2()23sincos2cos (0)222xxxf x ωωωω=+>的周期为23π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k =+恰有两个不同的零点,则实数k 的取值范围是__________.14.已知函数()2cos 3sin cos f x x x x =在区间[]0,m 上单调递增,则实数m 的最大值是______.15.函数2cos sin y x x =+的最大值为____________. 16.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____.17.已知A 、B 、C 为△ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为______. 18.若1tan 20201tan αα+=-,则1tan 2cos 2αα+=____________.19.如图,在边长为1的正方形ABCD 中,P ,Q 分别在边BC ,CD 上,且PB QD PQ +=,则PAQ ∠的大小为__________.20.在ABC 中,已知tansin 2A BC +=,给出以下四个论断: ①tan tan A B =,②1sin sin 2A B <+≤22sin cos 1A B +=,④222cos cos sin A B C +=,其中正确的是__________.三、解答题21.已知cos α5=,sin (α﹣β)10=,且α、β∈(0,2π).求:(Ⅰ)cos (2α﹣β)的值; (Ⅱ)β的值.22.设函数()2cos 22sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 取得最大值时的自变量x 的值; (2)求函数()f x 的单调递增区间.23.已知函数()cos23f x x =-,()2cos 4g x a x a =-. (1)求函数()()3sin 2h x x f x =+的最大值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,求a 的取值范围. 24.已知函数()2133sin cos 1224f x x x x =-+-(x ∈R ) (1)求()f x 的最小正周期; (2)求()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值,并分别写出相应的x 的值. 25.已知02πα<<,02πβ-<<,310cos 10α=,3cos()42πβ-=.(1)求cos()4πα+的值;(2)求sin()2+βα的值.26.如图,设单位圆与x 轴的正半轴相交于点(1,0)Q ,当2()k k απβ≠+∈Z 时,以x 轴非负半轴为始边作角α,β,它们的终边分别与单位圆相交于点1(cos ,sin )P αα,1(cos ,sin )Q ββ.(1)叙述并利用上图证明两角差的余弦公式;(2)利用两角差的余弦公式与诱导公式.证明:sin()sin cos cos sin αβαβαβ-=-. (附:平面上任意两点()111,P x y ,()222,P x y 间的距离公式()()22122121PP x x y y =-+-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用平方差公式、同角三角函数关系以及二倍角公式将函数变形为()cos 2f x x =,然后发现区间长度刚好是四分之一个周期,从而利用余弦函数的对称性,得到当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小,求出此时的最大值和最小值,即可得到答案. 【详解】 函数44222222()cos sin (cos sin )(cos sin )cos sin cos 2f x x x x x x x x x x =-=+-=-=,所以函数()f x 的周期为22T ππ==,区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦的区间长度刚好是函数()f x 的四分之一个周期, 因为()f x 在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t ,由函数cos 2y x =的对称性可知,当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于2y cos x =的对称轴对称时,此时最大值与最小值的差值最小,即函数()()()g t M t N t =-取最小值,区间,4t t π⎡⎤-⎢⎥⎣⎦,的中点为428t tt t ππ-+==-,此时()f t 取得最值±1, 不妨()f t 取得最大值()=1M t , 则有cos 2()18t π-=,解得224t k ππ-=,所以,,8t k k Z ππ=+∈所以()cos 2cos 2cos 44N t t k πππ⎛⎫==+==⎪⎝⎭故()()()g t M t N t =-取最小值为12-. 故选:D . 【点睛】关键点睛:本题考查了三角函数的最值,涉及了二倍角公式的应用、同角三角函数关系的应用、三角函数的周期性、对称性的应用,解题的关键是分析出当区间,4t t π⎡⎤-⎢⎥⎣⎦关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小.2.A解析:A 【分析】首先利用韦达定理求得5tan tan 6αβ+=,tan tan a αβ⋅=,再结合()tan 1αβ+=,利用两角和正切公式得到关于a 的等量关系式,求得结果. 【详解】因为tan α,tan β是方程2506x x a -+=的两个实数根, 所以有5tan tan 6αβ+=,tan tan a αβ⋅=, 因为()tan 1αβ+=,所以有5611a=-,所以16a =,故选:A. 【点睛】思路点睛:该题考查的是有关两角和正切公式,解题思路如下: (1)先利用韦达定理,写出两根和与两根积;(2)利用两角和正切公式,结合题中条件,得到等量关系式,求得结果.3.D解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题. 【详解】 因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下: (1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.4.B解析:B 【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立知π4f a ⎛⎫==⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan b aϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 444f b a ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<,当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B :sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C :sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确;对于选项D :si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确, 故选:B 【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x 的最值,π4f ⎛⎫== ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.5.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 6.A解析:A 【分析】先求α的正余弦三角函数,再求β的正余弦三角函数,然后根据余弦的两角和与差的公式计算即可得到答案. 【详解】由角α的终边经过点1)2,得1sin ,cos 2αα==, 因为角β的终边是由角α的终边顺时针旋转34π得到的,所以3331sin sin()sin cos cos sin (4442πππβααα=-=-=⨯=3331cos cos()cos cos sin sin (4442πππβααα=-=+=+=1cos()cos cos sin sin 2αβαβαβ+=-==, 故选:A. 【点睛】本题主要考查了三角函数的定义以及两角和与差的正余弦公式的应用,属于中档题.7.D解析:D 【分析】利用诱导公式与二倍角的余弦公式化简,再结合二次函数配方法求解即可. 【详解】因为()sin sin 2sin cos 22f x x x x x π⎛⎫=++=+ ⎪⎝⎭,2219sin 12sin 2sin 48x x x ⎛⎫=+-=--+ ⎪⎝⎭所以()f x 的最大值为98, 故选:D. 【点睛】本题主要考查诱导公式与二倍角的余弦公式的应用,考查了二次函数的性质,属于基础题.8.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.9.C解析:C 【解析】 因为cos()2cos()2παπα+=-,所以sin 2cos tan 2ααα-=-⇒=,所以1tan 1tan()41tan 3πααα--==-+,故选C. 10.B解析:B 【分析】先化简函数,根据()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数,则为函数含有零的增区间的子集,再根据区间[]0,π上恰好取得一次最大值,则取得最大值时对应的最小正数解属于[]0,π,最后取交集.【详解】因为()222sin cos sin 24x f x x x ωπωω⎛⎫=--⎪⎝⎭, ()2sin 1sin sin x x x ωωω=+-,22sin sin sin x x x ωωω=+-,sin x ω=,令22,22k x k k Z πππωπ-+≤≤+∈,则22,22k k x k Z ππππωωωω-+≤≤+∈, 因为()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数, 25,23,2262,k k k Z ππππωωωωππ⎡⎤∴-++∈⎢⎥⎣⎦⎡⎤-⊆⎢⎥⎣⎦ 所以223562ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解得35ω≤,令2,2x k k Z πωπ=+∈,因为在区间[]0,π上恰好取得一次最大值, 所以02ππω≤≤,所以12ω≥, 所以ω的取值范围是1325ω≤≤. 故选:B. 【点睛】本题主要考查三角函数的单调性和最值以及二倍角公式的应用,还考查了运算求解的能力,属于中档题.11.C解析:C 【分析】由诱导公式可转化为cos20cos40cos80︒︒︒,利用二倍角公式正弦公式求解即可. 【详解】sin10sin50sin70cos20cos40cos80︒︒︒=︒︒︒ 1sin160sin 20cos 20cos 40cos8018sin 20sin 208︒∴︒︒︒︒==︒︒ 即1sin10sin 50sin 708︒︒︒= 故选:C 【点睛】本题主要考查了诱导公式,二倍角的正弦公式,考查了运算能力,属于中档题.12.C解析:C 【解析】 试题分析:因,故应选C .考点:同角三角函数的关系及运用.二、填空题13.【分析】先利用二倍角公式和辅助角公式结合周期为求得然后将时函数恰有两个不同的零点转化为时恰有两个不同的根在同一坐标系中作出函数的图象利用数形结合法求解【详解】函数因为函数的周期为所以因为时函数恰有两 解析:(3,2]--【分析】先利用二倍角公式和辅助角公式,结合周期为23π求得()2sin316f xxπ⎛⎫=++⎪⎝⎭,然后将0,3xπ⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k=+恰有两个不同的零点,转化为0,3xπ⎡⎤∈⎢⎥⎣⎦时,()f x k=-恰有两个不同的根,在同一坐标系中作出函数(),y f x y k==-的图象,利用数形结合法求解.【详解】函数2()23sin cos2cos222x x xf xωωω=+,3sin cos1x xωω=++,2sin16xπω⎛⎫=++⎪⎝⎭,因为函数()f x的周期为,所以2323πωπ==,()2sin316f x xπ⎛⎫=++⎪⎝⎭因为0,3xπ⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k=+恰有两个不同的零点,所以0,3xπ⎡⎤∈⎢⎥⎣⎦时,()f x k=-恰有两个不同的根,在同一坐标系中作出函数(),y f x y k==-的图象如图所示:由图象可知:23k≤-<,即2k-3<≤-,所以实数k的取值范围是(3,2]--,故答案为:(3,2]--【点睛】方法点睛:函数零点个数问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.14.【分析】利用辅助角公式进行化简结合函数的单调性进行求解即可【详解】解:当时∵在区间上单调递增∴得即m 的最大值为故答案为:【点睛】本题考查二倍角公式和辅助角公式化简考查三角函数的单调性属于基础题 解析:6π【分析】利用辅助角公式进行化简,结合函数的单调性进行求解即可. 【详解】解:()1cos 212sin 22262x f x x x π+⎛⎫=+=++ ⎪⎝⎭, 当0x m ≤≤时,266x m ππ≤≤+,∵()f x 在区间[]0,m 上单调递增, ∴262m ππ+≤,得6m π≤,即m 的最大值为6π. 故答案为:6π. 【点睛】本题考查二倍角公式和辅助角公式化简,考查三角函数的单调性,属于基础题.15.【分析】将函数解析式变形为且有利用二次函数的基本性质可求出该函数的最大值【详解】且因此当时函数取得最大值故答案为:【点睛】本题考查二次型三角函数的最值利用二倍角余弦公式将问题转化为二次函数的最值问题解析:98【分析】将函数解析式变形为22sin sin 1y x x =-++,且有1sin 1x -≤≤,利用二次函数的基本性质可求出该函数的最大值. 【详解】2219cos 2sin 12sin sin 2sin 48y x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,且1sin 1x -≤≤,因此,当1sin 4x =时,函数2cos sin y x x =+取得最大值98.故答案为:98. 【点睛】本题考查二次型三角函数的最值,利用二倍角余弦公式将问题转化为二次函数的最值问题是解题的关键,考查计算能力,属于中等题.16.【分析】先根据配角公式将函数化为基本三角函数再根据正弦函数对称轴确定φ满足条件解得φ的值【详解】因为f(x)=sin2x+cos2x=sin 所以y=fsin 则有φ++kπ因此φ=+kπ(k ∈Z)当k解析:π4【分析】先根据配角公式将函数化为基本三角函数,再根据正弦函数对称轴确定φ满足条件,解得φ的值. 【详解】因为f (x )=sin 2x+cos 2sin π24x ⎛⎫+ ⎪⎝⎭,所以y=f 2x ϕ⎛⎫+= ⎪⎝⎭π24x ϕ⎛⎫++ ⎪⎝⎭,则有φ+ππ42=+k π,因此φ=π4+k π(k ∈Z),当k=0时,φ=π4. 【点睛】本题考查正弦函数对称性,考查基本分析求解能力.17.【分析】由三角形内角的性质结合可得由目标函数式并利用基本不等式即可求得其最小值注意基本不等式的使用条件一正二定三相等其中为锐角【详解】为△的三内角为锐角∴故有即可得∴当且仅当时等号成立∴的最小值为故解析:23【分析】由三角形内角的性质结合tan 2tan B A =,可得23tan tan tan 2BC B =-,由目标函数式11tan tan B C+并利用基本不等式即可求得其最小值,注意基本不等式的使用条件“一正二定三相等”,其中A 为锐角,tan 2tan 0B A => 【详解】A 、B 、C 为△ABC 的三内角,A 为锐角,tan 2tan 0B A => ∴tan 2tan[()]2tan()B B C B C π=-+=-+故有2(tan tan )tan tan tan 1B C B B C +=-,即可得23tan tan tan 2BC B =-∴2111tan 2tan 12tan tan tan 3tan 33tan 3B B BC B B B -+=+=+≥=,当且仅当tan 1B =时等号成立 ∴11tan tan B C +的最小值为23故答案为:23【点睛】本题考查了由三角形内角间的函数关系,利用三角恒等变换以及基本不等式求目标三角函数的最值,注意两角和正切公式、基本不等式(使用条件要成立)的应用18.2020【分析】由条件求出化简待求式为的形式即可求解【详解】因为解得所以故答案为:2020【点睛】本题主要考查了同角三角函数的基本关系考查了运算能力属于中档题解析:2020 【分析】由条件求出tan α,化简待求式为tan α的形式即可求解. 【详解】 因为1tan 20201tan αα+=-,解得2019tan 2021α=, 所以222222221cos sin 2tan 1tan 2tan tan 2cos 2cos sin 1tan 1tan 1tan αααααααααααα+++=+=+---- 2220191(1tan )1tan 2021=202020191tan 1tan 12021αααα+++===---, 故答案为:2020 【点睛】本题主要考查了同角三角函数的基本关系,考查了运算能力,属于中档题.19.【分析】先分别设则在中由勾股定理得再分别表示出之后利用正切的和角公式求即可解决【详解】解:设则因为是直角三角形所以由勾股定理得:化简得在中在中所以又因为所以故答案为:【点睛】本题主要考查正切的和角公解析:4π【分析】先分别设PB x =,DQ y =,则在PCQ △中,由勾股定理得1xy x y -=+,再分别表示出tan BAP ∠,tan DAQ ∠,之后利用正切的和角公式求()tan BAP DAQ ∠+∠即可解决.【详解】解:设PB x =,DQ y =,则1CP x =-,1CQ y =-,因为PCQ △是直角三角形,PB QD PQ +=,所以由勾股定理得:()()()22211x y x y -+-=+,化简得1xy x y -=+, 在ABP △中,tan BPBAP x AB ∠==, 在ADQ △中,tan DQDAQ y AD∠==, 所以()tan tan tan 11tan tan 1BAP DAQ x yBAP DAQ DAQ BAP xy∠+∠+∠+∠===-∠∠-,又因为02BAP DAQ π<∠+∠<,所以,=4PAQ π∠故答案为:4π 【点睛】本题主要考查正切的和角公式,数据处理能力与运算能力,是中档题.20.②④【分析】已知式子变形可得逐个选项判定即可【详解】解:因为所以整理得所以①中:因为所以不一定等于故①不正确;②中:因为又因为所以所以故②正确;③中:不一定成立故③不正确;④中:所以故④正确【点睛】解析:②④ 【分析】已知式子变形可得2A B π+=,逐个选项判定即可.【详解】 解:因为tansin 2A BC += 所以sin22sin cos 22cos 2A BA B A B A B +++=+整理得()cos 0A B += . 所以2A B π+=.①中:因为2A B π+=,所以tan A 不一定等于tan B ,故①不正确;②中:因为sin sin sin cos 4A B A A A π⎛⎫+=+=+ ⎪⎝⎭又因为3444A πππ<+<,所以sin 124A π⎛⎫<+≤ ⎪⎝⎭所以1sin sin A B <+≤故②正确;③中:22222sin cos sin si n 12n si A B A A A ==+=+,不一定成立,故③不正确; ④中:2222cos cos cos sin 1A A B A +==+,22sin si 1n 2C π==,所以222cos cos sin A B C +=.故④正确. 【点睛】本题考查两角和与差的三角函数公式,命题的真假的判断,属基础题.三、解答题21.(Ⅰ)10;(Ⅱ)4π.【分析】(Ⅰ)由α,β的范围求出α﹣β的范围,由题意和平方关系求出sin α和cos (α﹣β),由两角和的余弦公式求出cos (2α﹣β)=cos[(α﹣β)+α]的值;(Ⅱ)由两角差的余弦公式求出cos β=cos[α﹣(α﹣β)]的值,再由β的范围求出β的值. 【详解】(Ⅰ)∵02παβ⎛⎫∈ ⎪⎝⎭,,,∴α﹣β∈(2π-,2π),∵cos α=,()sin αβ-=∴sin α==cos (α﹣β)==, ∴cos (2α﹣β)=cos[(α﹣β)+α]=cos (α﹣β)cosα﹣sin (α﹣β)sin α=-=(Ⅱ)由(Ⅰ)得,cos β=cos[α﹣(α﹣β)]=cos α cos (α﹣β)+ sinα sin (α﹣β)=+=又∵02πβ⎛⎫∈ ⎪⎝⎭,,∴β4π=.【点睛】关键点点睛:拆角2()αβαβα-=-+,()βααβ=--是本题解题关键. 22.(1)π3x k π=-,k Z ∈时,()f x 取得最大值;(2)()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 【分析】(1)利用两角和的余弦公式、二倍角公式、辅助角公式对()f x 化简,再利用三角函数性质即可求解;(2)由(1)知()sin 216f x x π⎛⎫=-++ ⎪⎝⎭,解不等式3222262k x k πππππ+≤+≤+,k Z ∈即可求解.【详解】(1)()1cos 221cos 222f x x x x =-+-sin 216x π⎛⎫=-++ ⎪⎝⎭,所以当sin 216x π⎛⎫+=- ⎪⎝⎭,即2262x k πππ+=-,k Z ∈,即π3x k π=-,k Z ∈时,()f x 取得最大值.(2)由(1)知,()sin 216f x x π⎛⎫=-++ ⎪⎝⎭, 要求其单调单增区间,只需求sin 26y x π⎛⎫=+ ⎪⎝⎭的单调递减区间,令3222262k x k πππππ+≤+≤+,k Z ∈, 解得:263k x k ππππ+≤≤+,k Z ∈ 所以()f x 的单调递增区间为()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 【点睛】方法点睛:已知三角函数的解析式求单调区间先将解析式化为()sin y A ωx φ=+或()cos y A x ωϕ=+()0,0A ω>>的形式,然后将x ωϕ+看成一个整体,根据sin y x =与cos y x =的单调区间列不等式求解.23.(1)-1;(2)()4-+∞ 【分析】(1)易得()2sin 233h x x π⎛⎫=+- ⎪⎝⎭,再利用正弦函数的性质求解. (2)将0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,转化为0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立,令[]cos 0,1t x =∈,利用二次函数的性质求()22244r t t at a =-+-的最小值即可.【详解】(1)因为函数()cos23f x x =-,所以()2cos 232sin 233h x x x x π⎛⎫=+-=+- ⎪⎝⎭, 当22,32x k k Z πππ+=+∈,即 ,12x k k Z ππ=+∈时, sin 213x π⎛⎫+= ⎪⎝⎭,所以()h x 的最大值是-1; (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,cos232cos 4x a x a >--恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立, 令[]cos 0,1t x =∈ ()22244r t t at a =-+-当02a≤,即 0a ≤时, ()()min 0440r t r a ==->,解得 1a >,此时无解; 当012a <<,即 02a <<时, ()2min 44022a a r t r a ⎛⎫==-+-> ⎪⎝⎭,解得44-<+,此时42a -<;当12a≥,即 2a ≥时, ()()min 1220r t r a ==->,解得 1a >,此时2a ≥;综上:a 的取值范围是()4-+∞ 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.24.(1)π;(2)当3x π=时,()max14f x =-;当12x π=-时,()min 32f x =-.【分析】(1)利用二倍角公式和辅助角公式,将函数转化为()1sin 2123f x x π⎛⎫=-- ⎪⎝⎭求解.. (2)根据,63x ππ⎡⎤∈-⎢⎥⎣⎦,得到22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,再利用正弦函数的性质求解.【详解】(1)()21sin cos 12f x x x x =+,1sin 2214x x =--, 1sin 2123x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期为22T ππ==. (2)∵,63x ππ⎡⎤∈-⎢⎥⎣⎦, ∴22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,当233x ππ-=,即3x π=,()max14f x =-, 当232x ππ-=-,12x π=-时,()()min 131122f x =⨯--=-. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.25.(1;(2. 【分析】(1)根据02πα<<,cos 10α=sin α=,再利用两角和的余弦公式求解..(2)由(1)求得sin()45+=πα,再由02πβ-<<,求得sin()42πβ-=,然后由sin()sin[()()]2442+=+--βππβαα,利用两角差的正弦公式求解.【详解】(1)因为02πα<<,cos 10α=所以10sin α=, 所以cos()cos cos sin sin 444πππααα+=-,22==. (2)因为02πα<<, 所以3444πππα<+<,所以sin()45+=πα, 因为02πβ-<<, 所以4422ππβπ<-<,所以sin()42πβ-=, 所以sin()sin[()()]2442+=+--βππβαα, sin()cos()cos()sin()442442=+--+-ππβππβαα,== 【点睛】 方法点睛:三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.26.(1)两角差的余弦公式为:cos()cos cos sin sin αβαβαβ-=+,证明见解析;(2)证明见解析.【分析】(1)先构造向量()()11cos ,sin ,cos ,sin OP OQ ααββ==,再利用数量积111111cos OP OQ OP AQ POQ ⋅=⋅∠代入计算即得结果;(2)利用诱导公式知()sin cos 2παβαβ⎛⎫-=-+-⎪⎝⎭,再结合两角差的余弦公式展开即得结论.【详解】解:(1)两角差的余弦公式为:cos()cos cos sin sin αβαβαβ-=+. 证明:依题意,()()11cos ,sin ,cos ,sin OP OQ ααββ==, 则11cos cos sin sin OP OQ αβαβ⋅=+,11111,OP AQ POQ αβ==∠=- 故由111111cos OP OQ OP AQ POQ ⋅=⋅∠得,()cos cos sin sin 11cos αβαβαβ+=⨯⨯-, 即cos()cos cos sin sin αβαβαβ-=+,当()2k k απβ=+∈Z 时,容易证明上式仍然成立. 故cos()cos cos sin sin αβαβαβ-=+成立; (2)证明:由诱导公式可知,()sin cos 2παβαβ⎛⎫-=-+- ⎪⎝⎭. 而cos cos 22ππαβαβ⎡⎤⎛⎫⎛⎫+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos sin sin 22ππαβαβ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭ sin cos cos sin αβαβ=-+,故[]sin()sin cos cos sin sin cos cos sin αβαβαβαβαβ-=--+=-. 即证结论.【点睛】本题解题关键在于构造向量,综合运用数量积的定义法运算和坐标运算,即突破难点.。

(好题)高中数学必修四第三章《三角恒等变形》测试卷(答案解析)(4)

(好题)高中数学必修四第三章《三角恒等变形》测试卷(答案解析)(4)

一、选择题1.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()3f π()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .142.已知0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,且4cos 5α=,2sin()3αβ+=,则( )A .0,3πβ⎛⎫∈ ⎪⎝⎭ B .,32ππβ⎛⎫∈⎪⎝⎭ C .2,23ππβ⎛⎫∈⎪⎝⎭D .2,3πβπ⎛⎫∈⎪⎝⎭3.若()π,2πα∈,πcos sin 042αα⎛⎫+-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭( )A .B .0CD .或04.已知cos 4πθ⎛⎫-=⎪⎝⎭,则sin 2θ=( ) A .2425-B .1225-C .1225D .24255.已知25cos2cos αα+=,()4cos 25αβ+=,0,2πα⎛⎫∈ ⎪⎝⎭,3,22πβπ⎛⎫∈⎪⎝⎭,则cos β的值为( ) A .45-B .44125C .44125-D .456.函数()log 42a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则2sin 2θ=( ) A .1213-B .1213C .2413-D .24137.已知()sin 2cos x x x ϕ+=+对x ∈R 恒成立,则cos 2ϕ=( ) A .25-B .25C .35D .358.已知,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7C .17-D .-79.在斜三角形ABC 中,sin A cos B·cos C ,且tan B·tan C =1,则角A 的值为( )A .4π B .3π C .2π D .34π 10.若,则的值为( )A .B .C .D .11.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( ) A .3-B .3C .13-D .1312.若5sin 25α=,()10sin 10βα-=,且,4απ⎡⎤∈π⎢⎥⎣⎦,3,2βπ⎡⎤∈π⎢⎥⎣⎦,则αβ+的值是( ) A .74π B .94πC .54π或74πD .54π或94π 二、填空题13.已知函数()222x f x a -=-0a >且1a ≠)过定点P ,且点P 在角6πα⎛⎫+⎪⎝⎭的终边上cos α=_______.14.4cos50tan40-=______. 15.已知10cos 0,4102ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭______ 16.已知A 、B 、C 为△ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为______. 17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且222A Bsin +=1﹣cos 2C ,cos (B +C )>0,则ab的取值范围为_____.18.已知1cos cos 2αβ+=,1sin sin 3αβ+=,则cos()αβ-=______. 19.化简4cos803tan10︒︒+=________. 20.已知6sin 46πθ⎛⎫-= ⎪⎝⎭,则sin 2θ=___________. 三、解答题21.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()2sin f x x =. (1)求0x <时,函数()f x 的解析式; (2)已知f (4π-α)=65,f (54π+β)=-2413,α∈(4π,34π),β∈(0,4π),求()f αβ+的值.22.如图,在扇形OPQ 中,半径2OP =,圆心角3POQ π∠=,B 是扇形弧上的动点,矩形ABCD 内接于扇形.记BOC α∠=,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大值.23.已知02πα<<,4sin 5α. (1)求tan2α的值; (2)求cos 24πα⎛⎫+ ⎪⎝⎭的值; (3)若02πβ<<且1cos()3αβ+=-,求sin β的值.24.①角α的终边上有一点()2,4M ;②角α的终边与单位圆的交点在第一象限且横坐标为13;③2α为锐角且22sin 42cos 22sin 2ααα=-.在这三个条件中任选一个,补充在下面问题中的横线上,并加以解答.问题:已知角α的顶点在原点O ,始边在x 轴的非负半轴上,___________.求cos 23πα⎛⎫+ ⎪⎝⎭的值.注:如果选择多个条件分别解答,则按第一个解答记分.25.如图,角θ的顶点与平面直角坐标系xOy 的原点重合,始边与x 轴的非负半轴重合,终边与单位圆交于点P ,若点P 的坐标为04(,)5y -.(1)求tan sin 2θθ-的值;(2)若将OP 绕原点O 按逆时针方向旋转40︒,得到角α,设tan m α=,求()tan 85θ+︒的值.26.(1)化简:(cos 20tan 203sin 40-⋅°°°;(2)证明:()()21tan 31sin 21tan 312sin πx xπx x+--=---.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用辅助角公式,求得()f x 的解析式,根据题意,可求得ϕ的表达式,根据tan a ϕ=,可求得1tan 6a πω⎛⎫=⎪⎝⎭,又根据()33f π=,可求得23cos 61a πω⎛⎫= ⎪+⎝⎭sin 6πω⎛⎫⎪⎝⎭的值,根据同角三角函数的关系,可求得a 的值,即可求得ω的表达式,根据ω的范围,即可求得答案.【详解】()2sin cos 1sin(),tan f x x a x a x a ωωωϕϕ=+=++=,因为22T ππω=<,所以1ω>,因为()f x 在6x π=处取得最大值,所以2,62k k Z πωπϕπ+=+∈,即2,26k k Z ππωϕπ=+-∈,所以1tan tan 2tan 2626tan 6k a ππωππωϕππω⎛⎫⎛⎫=+-=-== ⎪ ⎪⎛⎫⎝⎭⎝⎭ ⎪⎝⎭, 所以1tan 6aπω⎛⎫=⎪⎝⎭,因为()3f π3πωϕ⎛⎫+=⎪⎝⎭sin 3πωϕ⎛⎫+= ⎪⎝⎭,所以sin sin 2sin cos 3326266k πωπωππωππωπωϕπ⎛⎫⎛⎫⎛⎫⎛⎫+=++-=+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以sin tan cos 666πωπωπω⎛⎫⎛⎫⎛⎫=⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又2222sin cos 166πωπω⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, 解得23a =,又0a >,所以a =1sin 62πω⎛⎫=⎪⎝⎭, 所以2,66k k Z πωππ=+∈或52,66k k Z πωππ=+∈,解得121,k k Z ω=+∈或125,k k Z ω=+∈,又1ω>,所以ω的最小值为13. 故选:C 【点睛】解题的关键是根据题意,求得ϕ的表达式,代入求得tan 6πω⎛⎫⎪⎝⎭,cos 6πω⎛⎫⎪⎝⎭的表达式,再结合同角三角函数关系进行求解,计算量大,考查分析理解,计算化简的能力,属中档题.2.C解析:C 【分析】 由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,可得()0,βπ∈,再由()βαβα=+-展开式结合同角三角函数关系可得1cos (,0)2β=-,从而得解. 【详解】由0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈⎪⎝⎭,,02πα⎛⎫-∈- ⎪⎝⎭,可得()0,βπ∈.又4cos 5α=,2sin()3αβ+=,且0,2πα⎛⎫∈ ⎪⎝⎭,,2παβπ⎛⎫+∈ ⎪⎝⎭,所以3sin 5α==,cos()αβ+==. 所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++4236(0353515-=-⨯+⨯=<.102+=>,所以1cos (,0)2β∈-所以2,23ππβ⎛⎫∈ ⎪⎝⎭. 故选:C. 【点睛】方法点睛:在利用两角和与差的三角函数公式求值或化简时,常根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论的差异,使问题获解,常见角的变换方式有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-等.3.B解析:B 【分析】根据题意,化简得到cossin222αα+=-,所以3,24αππ⎛⎫∈⎪⎝⎭,取得1sin 2α=-,再利用三角函数的基本关系式和两角和的正弦函数公式,即可求解. 【详解】由cos sin 042παα⎛⎫+-= ⎪⎝⎭,可得22cos sin cos sin 02222αααα⎫-+-=⎪⎝⎭,即cos sin cos sin 022222αααα⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭, 因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,所以cos sin 022αα-≠,解得cos sin 222αα+=-,所以3,24αππ⎛⎫∈ ⎪⎝⎭,所以11sin 2α+=,所以1sin 2α=-,又3,22παπ⎛⎫∈⎪⎝⎭,所以cos 2α==,所以π11sin 0622α⎛⎫+=-= ⎪⎝⎭. 【点睛】三角函数的化简求值的规律总结:1、给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题;2、给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系;3、给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围).4.D解析:D 【分析】由2sin 2cos(2)cos[2()]2cos ()1244πππθθθθ=-=-=--,代入即可求解.【详解】因为cos 410πθ⎛⎫-=⎪⎝⎭, 由24924sin 2cos(2)cos[2()]2cos ()1212445025πππθθθθ=-=-=--=⨯-=. 故选:D. 【点睛】本题主要考查了三角恒等变换的化简、求值,其中解答中熟记余弦的倍角公式,准确运算是解答的关键,着重考查了运算与求解能力.5.B解析:B 【分析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果. 【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B 【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题.6.C解析:C 【分析】先根据对数函数性质得()3,2A -,进而根据正弦的二倍角公式和三角函数的定义求解即可得答案. 【详解】解:根据对数函数的性质得函数()log 42a y x =++(0a >,且1a ≠)的图象恒过()3,2A -,由三角函数的定义得:13r ==,sinθθ==, 所以根据二倍角公式得:242sin 24sin cos 413θθθ⎛===- ⎝. 故选:C. 【点睛】本题考查对数函数性质,三角函数定义,正弦的二倍角公式,考查运算能力,是中档题.7.D解析:D 【分析】利用两角和的正弦公式进行展开,结合恒成立可得cos ϕ,最后根据二倍角公式得结果. 【详解】由题可知,cos sin sin 2cos x x x x ϕϕ+=+, 则cosϕ=,sin ϕ=, 所以283cos22cos 1155ϕϕ=-=-=,故选:D. 【点睛】本题主要考查了两角和的余弦以及二倍角公式的应用,通过恒成立求出cos ϕ是解题的关键,属于中档题.8.A解析:A 【分析】根据角的范围以及平方关系求出4cos ,5α=-再利用商的关系求出3tan 4α=-,最后由两角和的正切公式可得答案. 【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以24cos 1sin ,5αα=--=-sin 3tan cos 4ααα==-, tan tan4tan 41tan tan 4παπαπα+⎛⎫+== ⎪⎝⎭-⋅17 故选:A. 【点睛】本题主要考查平方关系、商的关系以及两角和的正切公式,属于基础题.9.A解析:A 【详解】由tan tan 12B C =-可得sin sin (12)cos cos B C B C =-, 进而得cos 2cos cos A C B =-,由于sin 2cos cos A B C =-, 所以sin cos A A =,可得4A π=,故选A.10.C解析:C 【解析】 试题分析:因,故应选C .考点:同角三角函数的关系及运用.11.A解析:A 【分析】首先根据三角函数诱导公式,可由等式()cos 2cos 2παπα⎛⎫+=-⎪⎝⎭求出tan 2α=;再由两角和的正切公式可求出tan 4απ⎛⎫+ ⎪⎝⎭. 【详解】 解:()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭, ∴由三角函数诱导公式化简得:sin 2cos αα-=-,即得tan 2α=,tantan 124tan()34121tan tan 4παπαπα++∴+===---⋅.故选:A. 【点睛】本题主要考查三角函数的诱导公式、两角和的正切公式,考查运算求解能力,属于基础题型.12.A解析:A 【分析】先计算2α和βα-的取值范围,根据取值范围解出cos2α和()cos βα-的值,再利用()()()()cos cos 2cos 2cos sin 2sin αβαβααβααβα+=+-=---⎡⎤⎣⎦求解()cos αβ+的值.【详解】∵,4απ⎡⎤∈π⎢⎥⎣⎦,∴2,22απ⎡⎤∈π⎢⎥⎣⎦.∵sin 2α=∴2,2απ⎡⎤∈π⎢⎥⎣⎦,∴,42ππα⎡⎤∈⎢⎥⎣⎦,cos 25α=-. ∵3,2βπ⎡⎤∈π⎢⎥⎣⎦,∴5,24βαππ⎡⎤-∈⎢⎥⎣⎦, ∴()cos 10βα-=-, ∴()()()()cos cos 2cos 2cos sin 2sin αβαβααβααβα+=+-=---⎡⎤⎣⎦5105102⎛⎛=-⨯--= ⎝⎭⎝⎭.又∵5,24αβπ⎡⎤+∈π⎢⎥⎣⎦, ∴74αβπ+=. 故选:A. 【点睛】本题考查三角恒等变换中和差角公式的运用,难度一般.解答时,要注意三角函数值的正负问题,注意目标式与条件式角度之间的关系,然后通过和差角公式求解.二、填空题13.【分析】由指数为0时可得定点进而可得和利用展开即可得解【详解】由所以函数(且)过定点所以所以故答案为:【点睛】关键点点睛:本题解题的关键是利用展开求解【分析】由指数为0时可得定点P ,进而可得sin 6πα⎛⎫+ ⎪⎝⎭和cos 6πα⎛⎫+ ⎪⎝⎭,利用cos cos[()]66ππα=α+-展开即可得解.【详解】由(012f a =-=,所以函数()2x f x a -=-0a >且1a ≠)过定点P ,所以1sin 63πα⎛⎫+== ⎪⎝⎭,cos 63πα⎛⎫+== ⎪⎝⎭. 所以cos cos[()]cos()cossin()sin 666666ππππππα=α+-=α++α+11132326=+⨯=.. 【点睛】关键点点睛:本题解题的关键是利用cos cos[()]66ππα=α+-展开求解.14.【详解】故答案为考点:三角函数诱导公式切割化弦思想【详解】4sin 40cos 40sin 404cos50tan 40cos 40--=2cos10sin 30cos10sin10cos30cos 40--=,1cos10sin1022cos 40⎫-⎪⎝⎭=40340==.考点:三角函数诱导公式、切割化弦思想.15.【分析】先由求得的值进而求得的值再根据两角差的正弦公式求得的值【详解】依题意即故由于而所以故因此所以【点睛】本小题主要考查二倍角公式考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数 【分析】先由cos 4πθ⎛⎫+ ⎪⎝⎭求得πcos 22θ⎛⎫+ ⎪⎝⎭的值,进而求得sin 2,cos 2θθ的值,再根据两角差的正弦公式,求得sin 23πθ⎛⎫- ⎪⎝⎭的值. 【详解】 依题意πcos 22θ⎛⎫+⎪⎝⎭2π42cos 145θ⎛⎫=+-=- ⎪⎝⎭,即4sin 25θ-=-,故4sin 25θ=,由于πππ3π0,,,2444θθ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭,而πcos 04θ⎛⎫+> ⎪⎝⎭,所以πππ,442θ⎛⎫+∈ ⎪⎝⎭,故ππ0,,20,42θθ⎛⎫⎛⎫∈∈ ⎪⎪⎝⎭⎝⎭,因此3cos 25θ===.所以ππsin 2sin 2cos cos 2sin 333πθθθ⎛⎫-=- ⎪⎝⎭410-=【点睛】本小题主要考查二倍角公式,考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于中档题.16.【分析】由三角形内角的性质结合可得由目标函数式并利用基本不等式即可求得其最小值注意基本不等式的使用条件一正二定三相等其中为锐角【详解】为△的三内角为锐角∴故有即可得∴当且仅当时等号成立∴的最小值为故3【分析】由三角形内角的性质结合tan 2tan B A =,可得23tan tan tan 2BC B =-,由目标函数式11tan tan B C+并利用基本不等式即可求得其最小值,注意基本不等式的使用条件“一正二定三相等”,其中A 为锐角,tan 2tan 0B A => 【详解】A 、B 、C 为△ABC 的三内角,A 为锐角,tan 2tan 0B A => ∴tan 2tan[()]2tan()B B C B C π=-+=-+故有2(tan tan )tan tan tan 1B C B B C +=-,即可得23tan tan tan 2BC B =-∴2111tan 2tan 12tan tan tan 3tan 33tan 3B B BC B B B -+=+=+≥=,当且仅当tan 1B =时等号成立 ∴11tan tan B C +的最小值为23故答案为:23【点睛】本题考查了由三角形内角间的函数关系,利用三角恒等变换以及基本不等式求目标三角函数的最值,注意两角和正切公式、基本不等式(使用条件要成立)的应用17.(2+∞)【分析】由已知结合二倍角公式及诱导公式可求然后结合正弦定理及同角基本关系可求【详解】∵21﹣cos2C ∴1﹣2cos2C ∴cos (A+B )=2cos2C ﹣1即﹣cosC =2cos2C ﹣1整解析:(2,+∞) 【分析】由已知结合二倍角公式及诱导公式可求C ,然后结合正弦定理及同角基本关系可求. 【详解】 ∵222A Bsin+=1﹣cos 2C , ∴1﹣222A Bsin+=cos 2C , ∴cos (A +B )=2cos 2C ﹣1, 即﹣cosC =2cos 2C ﹣1,整理可得,(2cosC ﹣1)(cosC +1)=0, ∵cosC ≠﹣1,20C π<<∴C 13π=,∵cos (B +C )>0, ∴11032B ππ+<<, ∴06B π<<,由正弦定理可得13sin B a sinA b sinB sinBπ+==(),2sinB sinB +=,12=+, ∵06B π<<,∴03tanB <∴1tanB122, 故ab的范围(2,+∞). 故答案为:(2,)+∞【点睛】本题考查三角形的正弦定理和内角和定理的运用,考查运算能力,属于中档题.18.【分析】把两个条件平方相加再利用两角差的余弦公式求得的值【详解】将两式平方可得:①②将①和②相加可得:即解得故答案为:【点睛】本题考查同角三角函数间的基本关系和两角差的余弦公式的应用考查逻辑思维能力 解析:5972-【分析】把两个条件平方相加,再利用两角差的余弦公式求得cos()αβ-的值. 【详解】1cos cos 2αβ+=,1sin sin 3αβ+=,将两式平方可得:221cos 2cos cos cos 4ααββ++=①, 221sin 2sin sin sin 9ααββ++=②, 将①和②相加可得:1322cos cos 2sin sin 36αβαβ++=, 即1322cos()36αβ+-=,解得59cos()72αβ-=-. 故答案为:5972-. 【点睛】本题考查同角三角函数间的基本关系和两角差的余弦公式的应用,考查逻辑思维能力和运算能力,属于常考题.19.1【分析】利用诱导公式得到通分整理后由利用两角差的正弦公式展开化简后得到答案【详解】故答案为:【点睛】本题考查诱导公式进行化简求值利用两角差的正弦公式进行化简求值属于中档题解析:1 【分析】利用诱导公式,得到cos80sin10︒︒=,通分整理后,由()sin 20sin 3010︒︒︒=-,利用两角差的正弦公式,展开化简后,得到答案. 【详解】4cos80︒︒2sin 20cos10︒︒︒+= ()2sin 3010cos10︒︒︒︒-=2sin 30cos102sin10cos30cos10︒︒︒︒︒︒-+=cos10cos110︒︒︒︒+==. 故答案为:1. 【点睛】本题考查诱导公式进行化简求值,利用两角差的正弦公式进行化简求值,属于中档题.20.【分析】根据可得的值将平方结合正弦的二倍角公式即可计算出的值【详解】因为所以所以所以且所以所以故答案为:【点睛】关键点点睛:解答本题的关键是通过展开得到的值再根据与之间的关系:去完成求解解析:23【分析】根据sin 4πθ⎛⎫-= ⎪⎝⎭可得sin cos θθ-的值,将sin cos θθ-平方结合正弦的二倍角公式即可计算出sin 2θ的值. 【详解】因为sin 4πθ⎛⎫-= ⎪⎝⎭,所以()sin cos 2θθ-=sin cos θθ-=, 所以()21sin cos 3θθ-=且22sin cos 1θθ+=, 所以112sin cos 3θθ-=,所以2sin 23θ=, 故答案为:23. 【点睛】关键点点睛:解答本题的关键是通过展开sin 4πθ⎛⎫-⎪⎝⎭得到sin cos θθ-的值,再根据sin cos θθ-与sin 2θ之间的关系:()2sin cos 1sin 2θθθ-=-去完成求解. 三、解答题21.(1)()2sin f x x =-;(2)12665. 【分析】(1)根据偶函数定义求解析式;(2)代入已知条件,确定角的范围,由平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,5sin 4πβ⎛⎫+⎪⎝⎭,然后结合诱导公式、两角差的正弦公式计算. 【详解】解:(1)设0x <,则0x ->, 故()2sin()2sin f x x x -=-=-, 又()f x 是定义在R 上的偶函数,当0x <时,()2sin f x x =-. (2)344ππα⎛⎫∈ ⎪⎝⎭,,04πβ⎛⎫∈ ⎪⎝⎭,,,042ππα⎛⎫∴-∈- ⎪⎝⎭,553442πππβ⎛⎫+∈ ⎪⎝⎭,,,4παβπ⎛⎫+∈ ⎪⎝⎭,6()2sin()445f ππαα∴-=--=,化简得3sin 45πα⎛⎫-=- ⎪⎝⎭,则4cos 45πα⎛⎫-= ⎪⎝⎭.5524()2sin()4413f ππββ+=+=-,化简得512sin 413πβ⎛⎫+=-⎪⎝⎭,则55cos 413πβ⎛⎫+=- ⎪⎝⎭.512435126()2sin()2sin ()2()4413551365f ππαβαββα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=+=-+--=--⨯--⨯-=⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.【点睛】关键点点睛:本题考查由奇偶性求解析式,考查两角差的正弦公式,同角间的三角函数关系,诱导公式等.解题关键是确定已知角和未知角的关键,以确定选用的公式.在用平方关系求值时需确定角的范围,从而确定函数值的正负.22.当6πα=时,矩形ABCD . 【分析】由题意可得2cosCD αα=-,2sin BC α=,从而可得矩形ABCD 的面积为S CD BC =⋅(2cos )2sinααα=⋅)6πα=+-,再由03πα<<可得52666πππα<+<,由此可得262ππα+=时,S 取得最大值 【详解】在Rt OBC 中,2sin BC α=,2cos OC α=.在Rt ADO 中,tan 3AD OD π==, 所以OD AD α===, 所以2cosCD OC OD αα=-=. 设矩形ABCD 的面积为S ,则S CD BC =⋅(2cos )2sinααα=⋅ 24sin cosααα= 2sin 22αα=-)6πα=+.由03πα<<,得52666πππα<+<,所以当262ππα+=,即6πα=时,max S == 因此,当6πα=时,矩形ABCD【点睛】关键点点睛:此题考查三角函数的应用,解题的关键是将四边形ABCD 的面积表示为S CD BC =⋅(2cos )2sin ααα=⋅)6πα=+-,再利用三角函数的性质可求得其最大值,属于中档题 23.(1)247-,(2),(3)415【分析】(1)由02πα<<,4sin 5α,可求出35cos α=,从而可求出4tan 3α=,进而利用正切的二倍角公式可求得答案;(2)先利用两角和的余弦公式展开,再利用二倍角公式求解;(3)先由已知条件求出sin()3αβ+=,再利用sin sin[()]βαβα=+-展开代值可求得结果 【详解】解:(1)因为02πα<<,4sin 5α,所以3cos 5α===, 所以4sin 45tan 3cos 35ααα===, 所以22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭, (2)cos 2cos 2cos sin 2sin 444πππααα⎛⎫+=- ⎪⎝⎭(cos 2sin 2)2αα=-2(12sin 2sin cos )2ααα=--164322)2555=-⨯-⨯⨯=, (3)因为02πα<<,02πβ<<,所以0αβ<+<π,因为1cos()3αβ+=-,所以sin()αβ+===, 所以sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+3144()353515=⨯--⨯=【点睛】关键点点睛:此题考查三角函数恒等变换公式的应用,考查计算能力,考查同角三角函数的关系的应用,角的变换公是解题的关键,属于中档题 24.答案见解析 【分析】选条件①,则根据三角函数定义得cosα=,sin α=,进而根据二倍角公式得3cos25α=-,4sin 25α=,再结合余弦的和角公式求解即可;选条件②,由三角函数单位圆的定义得1cos 3α=,sin 3α=,进而根据二倍角公式得7cos 29α=-,sin 29α=,再结合余弦的和角公式求解即可; 选条件③,由二倍角公式得222sin 42tan 22cos 22sin 212tan 2ααααα==--,并结合题意得1tan 22α=,故cos 2α=,sin 2α=【详解】解:方案一:选条件①. 由题意可知2cos ||OM α===4sin ||OM α===. 所以23cos 22cos15αα=-=-,4sin 22sin cos 5ααα==.所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭3145252=-⨯-⨯= 方案二:选条件②.因为角α的终边与单位圆的交点在第一象限且横坐标为13,所以1cos 3α=,sin 3α==.所以27cos 22cos 19αα=-=-,sin 22sin cos 9ααα==.所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭7192=-⨯-=. 方案三:选条件③.22222sin 42sin 2cos 22tan 22cos 22sin 2cos 22sin 212tan 2ααααααααα===---, 结合2α为锐角,解得1tan 22α=, 所以cos 2α=,sin 2α=. 所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭122=10=. 【点睛】本题解题的关键在于根据三角函数的定义求得cos ,sin αα,进而根据三角恒等变换求解,考查运算求解能力,是基础题. 25.(1)21100;(2)11m m+-.【分析】(1)由三角函数定义求得cos θ,再由同角间三角函数关系求得sin θ,tan θ,用二倍角公式得sin 2θ后可得结论;(2)由角的关系得8545θα+︒=+︒,利用两角和的正切公式可求得tan(85)θ+︒.【详解】解:(1)由题意得:4cos 5θ=-,且角θ为第二象限的角则3sin 5θ==,3tan 4θ=- ∴tan sin 2tan 2sin cos θθθθθ-=-334324212455425100⎛⎫=--⨯⨯-=-+= ⎪⎝⎭ (2)由题意知40αθ=+︒,则40θα=-︒则()()tan 85tan 45θα+︒=+︒tan tan 451tan tan 45αα+︒=-︒ 11m m+=-. 【点睛】关键点点睛:本题考查三角函数的定义,两角和与差的正切公式,二倍角公式,同角韹三角函数关系.解题确定角的关系是关键.由旋转得40αθ=+︒,则40θα=-︒,从而有8545θα+︒=+︒,再结合已知条件柯得结论.确定已知角和未知角的关系选用恰当的公式也是解题关键.26.(1)2-;(2)详见解析.【分析】(1)首先变形sin 20tan 20cos 20=,再通分变形,利用辅助角公式化简求值;(2)利用诱导公式化简正切,即sin tan cos x x x =,代入后化简证明. 【详解】 (1)原式sin 20cos 203cos 20sin 40⎛⎫=-⋅ ⎪⎝ sin 203cos 20cos 20cos 20sin 40⎛⎫-=⋅ ⎪ ⎪⎝⎭ ()2sin 2060cos 20cos 20sin 40-=⋅2sin 40cos 20cos 20sin 40-=⋅ 2=- ;(2)原式sin 11tan cos sin 1tan 1cos xx x xx x --==++ ()()()2cos sin cos sin cos sin cos sin cos sin x x x x x x x x x x --==++- ()222222cos sin sin 21sin 2cos sin 1sin sin x x x x x x x x +--==--- 21sin 212sin x x -=- 【点睛】思路点睛:三角函数化简求值或证明,如果有正切,正弦和余弦时,第一步先正切化为正弦和余弦公式,第一题通分后利用辅助角公式化简;第二题,也可以左右都化简,证明等于同一个式子.。

高中数学必修4三角恒等变换测试题7含答案

高中数学必修4三角恒等变换测试题7含答案

2.已知△ ABC的内角 B 满足 2cos 2B 8cos B 5 0, ,若 BC a , CA b 且
a,b 满足: a b 9 , a 3, b 5 , 为 a, b 的夹角 . 求 sin( B ) 。
3.已知 0 x ,sin( x) 5 , 求 cos 2x 的值。
44
13
cos( x)
4
4.已知函数 f ( x) a sin x cos x
3a cos2 x
3 a b (a 0)
2
(1> 写出函数的单调递减区间;
(2> 设 x [0, ] , f (x) 的最小值是 2 ,最大值是 3 ,求实数 a, b 的
2
值.
参考答案 一、选择题
-2-/5
个人收集整理资料,
仅供交流学习,
勿作商业用途
2
3 cos x
3 的图象的一个对称中心是 <

A. ( 2 ,
3 )
B.
5 (,
3) C. (
2
,
3 )
D. ( ,
3)
32
62
32
3
4.△ ABC中, C 900 ,则函数 y sin 2 A 2sin B 的值的情况 < )
A.有最大值,无最小值
B .无最大值,有最小值
C.有最大值且有最小值
D .无最大值且无最小值
cos cos
对于③, y sin 2x y sin 2(x ) sin(2x )
4
2
2.
1 cosx 1
cosx
1
y
sin x sin x sin x tan x
3. 59 (sin cos )2 (sin cos )2 13 , 2sin(

(好题)高中数学必修四第三章《三角恒等变形》测试(包含答案解析)

(好题)高中数学必修四第三章《三角恒等变形》测试(包含答案解析)

一、选择题1.已知3sin cosx x+=,则1tantanxx+=()A.6-B.7-C.8-D.9-2.设等差数列{}n a满足:()22222222272718sin cos cos cos sin sin1sina a a a a aa a-+-=+,公差()1,0d∈-.若当且仅当11n=时,数列{}n a的前n项和n S取得最大值,则首项1a的取值范围是()A.9,10ππ⎛⎫⎪⎝⎭B.11,10ππ⎡⎤⎢⎥⎣⎦C.9,10ππ⎡⎤⎢⎥⎣⎦D.11,10ππ⎛⎫⎪⎝⎭3.如下图,圆O与x轴的正半轴的交点为A,点,C B在圆O上,且点C位于第一象限,点B的坐标为43,,,55AOCα⎛⎫-∠=⎪⎝⎭若1BC=,则233cos sin cos2222ααα--的值为()A.45B.35C.45-D.354.函数12log(sin cos)y x x=的单调增区间是()A.(,)()44k k k Zππππ-+∈B.3(,)()44k k k Zππππ++∈C.(,)()4k k k Zπππ+∈D.(,)()42k k k Zππππ++∈5.已知,22ππα⎛⎫∈-⎪⎝⎭,1cos63πα⎛⎫+=⎪⎝⎭,则sinα=()A126-B223-C.261+D261-6.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos63πα⎛⎫+=⎪⎝⎭,则sinα的值等于()A .6B .6C .16D .16-7.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .838.已知α为锐角,且3cos()65πα+=,则sin α=( )A B C D 9.已知直线3x −y +1=0的倾斜角为α,则1sin22α= A .310 B .35 C .−310D .11010.若0||4πα<<,则下列说法①sin2α>sinα,②cos2α<cosα,③tan2α>tanα,正确的是( ) A .①B .②C .③D .①③11.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若3,44ππα⎛⎫∈ ⎪⎝⎭,且3sin 45πα⎛⎫+= ⎪⎝⎭,则0x 的值为( )A B C .D .12.已知()0,απ∈,sin cos αα+=cos2=α( )A .BC .9-D .9二、填空题13.有下列5个关于三角函数的命题:①0x R ∃∈00cos 3x x +=;②函数22sin cos y x x =-的图像关于y 轴对称;③x R ∀∈,1sin 2sin x x+≥; ④[]π,2πx ∀∈cos 2x=-; ⑤当()2sin cos f x x x =+取最大值时,cos x =. 其中是真命题的是______.14.222cos 402cos 50cos35cos65cos55cos155︒-︒=︒︒+︒︒_________.15.若tan 30,2tan 10αβ-=-=,则()tan αβ+=________. 16.已知α,β均为锐角,()5cos 13αβ+=-,π3sin 35β⎛⎫+= ⎪⎝⎭,则πsin 3α⎛⎫-= ⎪⎝⎭______.17.在△ABC 中,cosA 35=,cosB 45=,则cosC =_____. 18.已知()()sin 2sin 223cos cos 2πθπθπθπθ⎛⎫--- ⎪⎝⎭=⎛⎫+++ ⎪⎝⎭,则22sin 2sin cos cos θθθθ+-=___________.19.设)sin17cos172a =︒+︒,22cos 131b =︒-,c =则a ,b ,c 的大小关系是______.20.在半径为2的半圆形钢板上截取一块面积最大的矩形,则最大面积是________.三、解答题21.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()2sin f x x =. (1)求0x <时,函数()f x 的解析式; (2)已知f (4π-α)=65,f (54π+β)=-2413,α∈(4π,34π),β∈(0,4π),求()f αβ+的值.22.已知函数2()cos 2cos 1(0)f x x x x ωωωω=-+>,且()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π. (1)求函数()f x 的最小正周期和单调递减区间; (2)将函数()f x 图象上的所有点向左平移6π个单位,得到函数()g x 的图象,当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于x 的方程()g x a =有两个不相等的实数根,求实数a 的取值范围. 23.设函数2()cos 22sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 的最大值及取得最大值时x 的集合; (2)若,42⎛⎫∈⎪⎝⎭ππα,且2()5f α=,求sin 2α.24.已知函数()212sin 26f x x x π⎛⎫=-+- ⎪⎝⎭. (1)求函数()f x 的对称中心和最小正周期;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值及取得最大值时自变量x 的集合. 25.已知函数()2sin 22cos 1f x a x x =+-,再从条件①、②、③这三个条件中选择一个作为已知,求:(Ⅰ)()f x 的最小正周期; (Ⅱ)()f x 的单调递增区间.条件①:()f x 图像的对称轴为8x π=;条件②:14f π⎛⎫=⎪⎝⎭;条件③:a =注:如果选择多个条件分别解答,按第一个解答计分.26.已知函数2()[2sin()sin ]cos 3f x x x x x π=++.(1)求函数()f x 的最小正周期和单调递减区间;(2)若函数()f x 的图象关于点(,)m n 对称,求正数m 的最小值;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将等式sin cos x x +=sin cos x x 的值,利用切化弦可求得1tan tan x x+的值. 【详解】由sin cos x x +=,可得()23sin cos 12sin cos 4x x x x +=+=,得1sin cos 8x x =-,因此,221sin cos sin cos 1tan 8tan cos sin sin cos sin cos x x x x x x x x x x x x++=+===-.故选:C. 【点睛】方法点睛:应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二.2.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 3.B解析:B【解析】 ∵点B 的坐标为43,55⎛⎫-⎪⎝⎭,设AOB θ∠=, ∴325sinπθ-=-(),425cos πθ-=(), 即35sin θ=,45cos θ=, ∵AOC α∠=,若1BC =,∴3πθα+=,则3παθ=-,则213sincossin cos cos sin 222222625αααππαααθθ⎛⎫⎛⎫--=-=+=-== ⎪ ⎪⎝⎭⎝⎭故选B.点睛:本题主要考查三角函数的化简和求值,利用三角函数的定义以及三角函数的辅助角公式是解决本题的关键;利用降幂公式可将所求表达式化简为关于α的表达式,设AOB θ∠=,当角α的终边与单位圆的交点坐标为(),u v 时,sin v α=,cos u α=,可先求出关于θ的三角函数式,结合等边三角形寻找,αθ之间的关系即可.4.D解析:D 【分析】先利用二倍角公式化简整理,再根据对数函数的定义域及复合函数单调性的性质求解单调递增区间即可. 【详解】由11221log (sin cos )log (sin 2)2y x x x ==, 得1sin 2022222x k x k k x k ππππππ>⇒<<+⇒<<+, 故函数的定义域为(,)()2k k k z πππ+∈,又求函数12log (sin cos )y x x =的单调增区间,利用复合函数单调性的性质, 可得222242k x k k x k ππππππππ+<<+⇒+<<+.故选:D. 【点睛】本题主要考查了复合函数单调性的性质及应用,对数函数定义域的特殊要求.属于中档题.5.D解析:D 【分析】结合同角三角函数基本关系计算sin 6πα⎛⎫+ ⎪⎝⎭的值,再利用两角差的正弦公式进行求解即可.【详解】 由,22ππα⎛⎫∈-⎪⎝⎭可得2,633πππα⎛⎫+∈- ⎪⎝⎭, 又11cos cos 6323ππα⎛⎫+=<= ⎪⎝⎭,所以2,633πππα⎛⎫+∈ ⎪⎝⎭所以sin 63πα⎛⎫+== ⎪⎝⎭, sin sin sin cos cos sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11132326-=⨯-⨯=. 故选:D 【点睛】本题主要考查两角和与差的正余弦公式与同角三角函数基本关系,解题的关键是熟练运用公式.6.C解析:C 【分析】求出sin 6απ⎛⎫+ ⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 63πα⎛⎫+== ⎪⎝⎭, ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1132=-⨯=故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.7.C解析:C 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.8.B解析:B 【分析】由同角三角函数可得in (α6π+)4=5,再利用两角差的正弦公式展开sinα=sin[(α6π+)6π-]即可. 【详解】∵cos (α6π+)3=5(α为锐角),∴α6π+为锐角,∴sin (α6π+)4=5,∴sinα=sin[(α6π+)6π-]=sin (α6π+)cos 6πcos (α6π+)sin 6π431552=-⋅=, 故选:B . 【点睛】本题考查了三角函数的同角公式和两角差的正弦公式,考查了计算能力和逻辑推理能力,属于基础题目.9.A解析:A 【分析】由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值. 【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,∴2221133sin222219110sin cos tan a sin cos sin cos tan αααααααα=⋅====+++, 故选A . 【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.10.B解析:B 【分析】 取6πα=-判断①③,根据余弦函数的性质结合二倍角公式判断②.【详解】当6πα=-时,1sin 2sin ,sin sin ,sin 2sin 3262ππαααα⎛⎫⎛⎫=-=-=-=-< ⎪ ⎪⎝⎭⎝⎭tan 2tan tan tan tan 2tan 36ππαααα⎛⎫⎛⎫=-==-=< ⎪ ⎪⎝⎭⎝⎭,则①③错误;0||4πα<<,cos cos ||αα⎫∴=∈⎪⎪⎝⎭2cos 2cos 2cos cos 1(cos 1)(2cos 1)0αααααα∴-=--=-+<即cos2cos αα<,②正确; 故选:B 【点睛】本题主要考查了求余弦函数的值域以及二倍角的余弦公式的应用,属于中档题.11.C解析:C 【分析】利用两角和差的余弦公式以及三角函数的定义进行求解即可. 【详解】3,44ππα⎛⎫∈⎪⎝⎭, ,42ππαπ⎛⎫∴+∈ ⎪⎝⎭, 3sin 45πα⎛⎫+= ⎪⎝⎭,4cos 45πα⎛⎫∴+=- ⎪⎝⎭,则0cos cos cos cos sin sin 444444x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦43525210=-⨯+⨯=-, 故选C . 【点睛】本题主要考查两角和差的三角公式的应用,结合三角函数的定义是解决本题的关键.12.A解析:A 【分析】在等式sin cos 3αα+=两边同时平方可求得cos sin αα-的值,然后利用二倍角的余弦公式可求得cos2α的值. 【详解】()0,απ∈,sin cos αα+=两边平方后得:112sin cos 3αα+=,即1sin cos 3αα=-,sin 0α∴>,cos 0α<,()215cos sin 12sin cos 1233αααα⎛⎫-=-=-⨯-= ⎪⎝⎭,cos sin αα∴-=,则()()22cos 2cos sin cos sin cos sin ααααααα=-=-+== 故选:A. 【点睛】本题考查利用二倍角的余弦公式求值,同时也考查了同角三角函数平方关系的应用,考查计算能力,属于中等题.二、填空题13.②④⑤【分析】本题可通过判断出①错误然后通过判断出②正确再然后通过可以为负值判断出③错误通过以及判断出④正确最后通过将函数转化为根据当时取最大值判断出⑤正确【详解】①:则①错误;②:关于轴对称②正确解析:②④⑤ 【分析】000cos 2sin 6x x x π⎛⎫+= ⎪⎝⎭+判断出①错误,然后通过22sin cos cos 2x x x -=-判断出②正确,再然后通过sin x 可以为负值判断出③错误,=cos02x 判断出④正确,最后通过将函数转化为()()f x x p =+,根据当()22x p k k Z ππ=-++∈时取最大值判断出⑤正确.【详解】①000001cos 2cos 2sin 262x x x x x π+⎫⎛⎫+=+=≤⎪ ⎪⎪⎝⎭⎝⎭,00cos 3x x +≠,①错误;②:()2222sin cos cos sin cos 2y x x x x x =-=--=-,关于y 轴对称,②正确;③:因为sin x 可以为负值,所以1sin 2sin x x+≥错误,③错误; ④:因为[]π,2πx ∈,所以π,π22x ⎡⎤∈⎢⎥⎣⎦,cos 02x ,cos2x ===-,④正确; ⑤:()2sin cos sin cos 55f x x x x x ⎫=+=+⎪⎪⎭()x p =+,(注:5sin 5p,25cos 5p ), 当函数()f x 取最大值时,22x p k ππ+=+,即()22x p k k Z ππ=-++∈,此时cos cos n 52si 2=p k x p ππ-++⎛⎫==⎪⎝⎭,故⑤正确, 故答案为:②④⑤. 【点睛】关键点点睛:本题考查根据三角恒等变换以及三角函数性质判断命题是否正确,考查二倍角公式以及两角和的正弦公式的灵活应用,考查计算能力,考查化归与转化思想,是中档题.14.【分析】用诱导公式降次公式两角和与差的正余弦公式化简求值得到答案【详解】原式故答案为:【点睛】本题考查了三角关系的化简与求值诱导公式转化角两角和与差公式二倍角公式属于中档题 解析:2-【分析】用诱导公式、降次公式、两角和与差的正余弦公式化简求值,得到答案. 【详解】原式()()22222cos 40cos 502cos 402cos 50sin 55cos 65cos55sin 65sin 5565︒-︒︒-︒==︒︒-︒︒︒-︒. ()2cos80sin 10︒=-︒2sin10sin10︒=-︒2=-故答案为:2-. 【点睛】本题考查了三角关系的化简与求值,诱导公式转化角,两角和与差公式,二倍角公式,属于中档题.15.【分析】由题得再利用两角和公式求解即可【详解】因为所以所以故答案为:【点睛】本题考查正切函数的两角和公式属于基础题 解析:7-【分析】由题得tan 3α=,1tan 2β=,再利用两角和公式求解即可. 【详解】因为tan 30,2tan 10αβ-=-=, 所以tan 3α=,1tan 2β=, 所以()1t 32731n 2a αβ++==--, 故答案为:7-. 【点睛】本题考查正切函数的两角和公式,属于基础题.16.【分析】先求出再由并结合两角和与差的正弦公式求解即可【详解】由题意可知则又则或者因为为锐角所以不成立即成立所以故故答案为:【点睛】本题考查两角和与差的正弦公式的应用考查同角三角函数基本关系的应用考查 解析:3365-【分析】先求出()sin αβ+,πcos 3β⎛⎫+⎪⎝⎭,再由()ππsin sin 33ααββ⎡⎤⎛⎫⎛⎫-=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,并结合两角和与差的正弦公式求解即可. 【详解】由题意,可知0,παβ,则()sin 1213αβ+===,又π31sin 352β⎛⎛⎫+=∈ ⎪ ⎝⎭⎝⎭,则πππ,364β⎛⎫+∈ ⎪⎝⎭,或者π3π5π,346β⎛⎫+∈ ⎪⎝⎭, 因为β为锐角,所以πππ,364β⎛⎫+∈ ⎪⎝⎭不成立,即π3π5π,346β⎛⎫+∈ ⎪⎝⎭成立,所以π4cos 35β⎛⎫+===- ⎪⎝⎭.故()ππsin sin 33ααββ⎡⎤⎛⎫⎛⎫-=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()ππsin cos cos sin 33αββαββ⎛⎫⎛⎫=++-++ ⎪ ⎪⎝⎭⎝⎭533311245651533⎛⎫-⨯=- ⎪⎛⎫=⨯--⎝ ⎪⎝⎭⎭.故答案为:3365-. 【点睛】本题考查两角和与差的正弦公式的应用,考查同角三角函数基本关系的应用,考查学生的计算求解能力,属于中档题.17.0【分析】计算得到再利用和差公式计算得到答案【详解】则故答案为:【点睛】本题考查了同角三角函数关系和差公式意在考查学生的计算能力解析:0 【分析】 计算得到43sin ,sin 55A B ==,再利用和差公式计算得到答案. 【详解】34cos ,cos 55A B ==,则43sin ,sin 55A B ==.()()cos cos cos sin sin cos cos 0C A B A B A B A B π=--=-+=-=.故答案为:0. 【点睛】本题考查了同角三角函数关系,和差公式,意在考查学生的计算能力.18.【分析】利用诱导公式结合弦化切的思想求出的值然后在代数式上除以并在所得分式的分子和分母中同时除以可得出关于的分式代值计算即可【详解】解得因此故答案为:【点睛】本题考查诱导公式和同角三角函数的商数关系 解析:75【分析】利用诱导公式结合弦化切的思想求出tan θ的值,然后在代数式22sin 2sin cos cos θθθθ+-上除以22sin cos θθ+,并在所得分式的分子和分母中同时除以2cos θ可得出关于tan θ的分式,代值计算即可. 【详解】()()sin 2sin sin cos tan 1223sin cos tan 1cos cos 2πθπθθθθπθθθθπθ⎛⎫--- ⎪++⎝⎭===--⎛⎫+++ ⎪⎝⎭,解得tan 3θ=.因此,22222222sin 2sin cos cos tan 2tan 1sin 2sin cos cos sin os tan 1θθθθθθθθθθθθθ+-+-+-==++2232317315+⨯-==+. 故答案为:75.【点睛】本题考查诱导公式和同角三角函数的商数关系化简求值,解题的关键就是求出tan θ的值,考查运算求解能力,属于中等题.19.【分析】根据两角和的正弦公式二倍角公式诱导公式即可将化简再根据正弦函数的单调性即可比较出大小关系【详解】所以故答案为:【点睛】本题主要考查两角和的正弦公式二倍角公式诱导公式的应用以及正弦函数的单调性 解析:c a b <<【分析】根据两角和的正弦公式,二倍角公式,诱导公式,即可将,a b 化简,再根据正弦函数的单调性即可比较出大小关系. 【详解】)sin17cos17sin17cos 45cos17sin 45sin 62a =︒+︒=︒+︒=, 22cos 131cos 26sin 64b =︒-==,sin 60c ==, 所以,c a b <<. 故答案为:c a b <<. 【点睛】本题主要考查两角和的正弦公式,二倍角公式,诱导公式的应用,以及正弦函数的单调性的应用,属于基础题.20.4【分析】做出图像由三角函数定义设其中一个顶点坐标从而表示矩形的长与宽进而表示面积求出最大值【详解】由题可构建图像根据三角函数的定义可知所以矩形的面积当时故答案为:4【点睛】本题考查三角函数定义的实解析:4 【分析】做出图像,由三角函数定义设其中一个顶点坐标,从而表示矩形的长与宽,进而表示面积,求出最大值. 【详解】 由题可构建图像根据三角函数的定义,可知()2cos ,2sin A αα 所以矩形的面积4cos 2sin 4sin2S ααα=⋅=当4πα=时,max 4sin 244S π⎛⎫=⋅= ⎪⎝⎭故答案为:4 【点睛】本题考查三角函数定义的实际应用,注意建模,再借助三角函数求最值,属于中档题.三、解答题21.(1)()2sin f x x =-;(2)12665. 【分析】(1)根据偶函数定义求解析式;(2)代入已知条件,确定角的范围,由平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,5sin 4πβ⎛⎫+⎪⎝⎭,然后结合诱导公式、两角差的正弦公式计算. 【详解】解:(1)设0x <,则0x ->, 故()2sin()2sin f x x x -=-=-, 又()f x 是定义在R 上的偶函数,当0x <时,()2sin f x x =-. (2)344ππα⎛⎫∈ ⎪⎝⎭,,04πβ⎛⎫∈ ⎪⎝⎭,,,042ππα⎛⎫∴-∈- ⎪⎝⎭,553442πππβ⎛⎫+∈ ⎪⎝⎭,,,4παβπ⎛⎫+∈ ⎪⎝⎭, 6()2sin()445f ππαα∴-=--=,化简得3sin 45πα⎛⎫-=- ⎪⎝⎭,则4cos 45πα⎛⎫-= ⎪⎝⎭.5524()2sin()4413f ππββ+=+=-,化简得512sin 413πβ⎛⎫+=-⎪⎝⎭,则55cos 413πβ⎛⎫+=- ⎪⎝⎭.512435126()2sin()2sin ()2()4413551365f ππαβαββα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=+=-+--=--⨯--⨯-=⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.【点睛】关键点点睛:本题考查由奇偶性求解析式,考查两角差的正弦公式,同角间的三角函数关系,诱导公式等.解题关键是确定已知角和未知角的关键,以确定选用的公式.在用平方关系求值时需确定角的范围,从而确定函数值的正负.22.(1)最小正周期为π,单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)1,12⎡⎫⎪⎢⎣⎭【分析】(1)化简可得()2sin 26f x x πω⎛⎫=-⎪⎝⎭,由题可得T π=,则可解出1ω=,令3222,262k x k k Z πππππ+≤-≤+∈可求出单调递减区间; (2)可得()2sin 26g x x π⎛⎫=+⎪⎝⎭,题目等价于找出()g x 有两个点相等的区间,即可求出a 的范围.【详解】(1)()2cos 22sin 26f x x x x πωωω⎛⎫=-=-⎪⎝⎭, ()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π,T π∴=,则22ππω=,解得1ω=, ()2sin 26f x x π⎛⎫∴=- ⎪⎝⎭,令3222,262k x k k Z πππππ+≤-≤+∈, 解得5,36k x k k Z ππππ+≤≤+∈, 故()f x 的单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)可得()2sin 22sin 26666g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,672,66x πππ⎡⎤⎢⎥⎣⎦-∈,()1,12g x ⎡⎤∈-⎢⎥⎣⎦, 要使关于x 的方程()g x a =有两个不相等的实数根, 只需找出()g x 有两个点相等的区间即可, 当2,662x πππ⎡⎫-∈⎪⎢⎣⎭和52,626x πππ⎛⎤-∈ ⎥⎝⎦时满足题意,此时()1,12g x ⎡⎫∈⎪⎢⎣⎭,1,12a ⎡⎫∴∈⎪⎢⎣⎭.【点睛】本题考查三角函数与方程的应用,解题的关键是得出题目等价于找出()g x 有两个点相等的区间.23.(1),3x xx k k Z ππ⎧⎫∈=-+∈⎨⎬⎩⎭∣时,max ()2f x =;(2)410. 【分析】(1)利用两角和的余弦展开和正弦的降幂公式化简,再利用两角和的正弦写成()()sin f x A x ωϕ=+形式可求最值及对应的x 的值;(2)由3sin 265πα⎛⎫+= ⎪⎝⎭和α的范围利用平方关系求出cos 26πα⎛⎫+ ⎪⎝⎭,再利用凑角sin 2sin 266ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦可得答案.【详解】(1)1()cos 221cos 22f x x x x =+-1sin 26x π⎛⎫=-+ ⎪⎝⎭,当2262x k πππ+=-+,即,3x xx k k Z ππ⎧⎫∈=-+∈⎨⎬⎩⎭∣时,max ()2f x =. (2)21sin 265πα⎛⎫-+= ⎪⎝⎭,3sin 265πα⎛⎫∴+= ⎪⎝⎭,,42ππα⎛⎫∈ ⎪⎝⎭,272,636πππα⎛⎫∴+∈ ⎪⎝⎭,4cos 265πα⎛⎫∴+==- ⎪⎝⎭3414sin 2sin 266525210ππαα⎡⎤-⎛⎫=+-=⨯-⨯=⎪⎢⎥⎝⎭⎣⎦. 【点睛】本题考查了三角函数的性质、三角函数的化简求值,关键点是正用两角和的余弦、正弦公式和逆用两角和的正弦公式,利用凑角求三角函数值,考查了学生的基础知识、基本运算能力.24.(1)最小正周期T π=;对称中心为,0122k k Z ππ⎛⎫+∈ ⎪⎝⎭,;(2)()max 1f x =,自变量x 的集合为3π⎧⎫⎨⎬⎩⎭. 【分析】(1)先利用两角和与差的余弦公式及辅助角公式将函数化成标准形式11()sin 2262f x x π⎛⎫=-+ ⎪⎝⎭,再利用周期公式计算周期,整体代入法计算对称中心即可;(2)利用整体代入法,由0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,根据正弦函数最值的特征得到何时取最值即可. 【详解】解:(1)()212sin 6f x x x π⎛⎫=+- ⎪⎝⎭31cos 21cos 22442xx x -=-+-11112cos 2sin 242262x x x π⎛⎫=-+=-+ ⎪⎝⎭ 故最小正周期22T ππ==,令2,6x k k π-=π∈Z ,解得,122k x k Z ππ=+∈,故对称中心为,0122k k Z ππ⎛⎫+∈⎪⎝⎭,; (2)∵02x π≤≤,∴52666x πππ-≤-≤,当226x ππ-=时,max sin 216πx ⎛⎫-= ⎪⎝⎭,故()max 111122f x =⨯+=,此时3x π=,即自变量x 的集合为3π⎧⎫⎨⎬⎩⎭. 【点睛】 方法点睛:求三角函数性质问题时,通常先利用两角和与差的三角函数公式、二倍角公式及辅助角公式将函数化简成基本形式()()sin f x A x b ωϕ=++,再利用整体代入法求解单调性、对称性,最值等性质.25.(Ⅰ)答案见解析;(Ⅱ)答案见解析. 【分析】选① (Ⅰ)逆用余弦的二倍角公式降幂后,使用辅助角公式化简得())f x x ϕ=+ ,根据对称轴求得ϕ的值,进而求得a 的值,得到函数的解析式,求得最小正周期;(Ⅱ) 根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.选② (Ⅰ)逆用余弦的二倍角公式降幂得到()f x sin2cos2a x x =+,根据选择的条件求得a 的值,得到函数的解析式,并利用辅助角公式化简,然后求得()f x 的最小正周期; (Ⅱ)根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间.选③逆用余弦的二倍角公式降幂后,使用辅助角公式化简得到()f x 2sin(2)6x π=+然后求得()f x 的最小正周期;(Ⅱ)根据正弦函数的单调性,利用整体代换法求得()f x 的递增区间. 【详解】选① (()f x 图像的一条对称轴为8x π=)解:(Ⅰ) ()2sin 22cos 1f x a x x =+-sin2cos2a x x =+22x x ⎛⎫=+⎪⎭)x ϕ=+(其中1tan aϕ=) 因为()f x 图像的一条对称轴为8x π=所以()1sin()84f ππϕ=+=即有,42k k Z ππϕπ+=+∈所以,4k k Z πϕπ=+∈所以1tan tan()tan 144k aππϕπ=+===1a故())4f x x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,242k x k k Z πππππ-≤+≤∈3+22+2,44k x k k Z ππππ∴-≤≤∈ 3++,88k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为3[+],k 88k Z ππππ-∈+k , 选② (()1)4f π=解:(Ⅰ)()2sin 22cos 1f x a x x =+-sin2cos2a x x =+()sin cos 1422f a πππ∴=+=1a()sin 2cos 2f x x x =+22)x x =)4x π=+所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,242k x k k Z πππππ-≤+≤∈3+22+2,44k x k k Z ππππ∴-≤≤∈ 3++,88k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为3[+],k 88k Z ππππ-∈+k ,选③(a =解:(I )()222cos 1f x x x =+-2cos2x x =+ 312(sin 2cos 2)2x x 2sin(2)6x π=+ 所以()f x 的最小正周期为:22||2T πππω=== (Ⅱ) +22+2,262k x k k Z πππππ-≤+≤∈ 2+22+2,33k x k k Z ππππ∴-≤≤∈ ++,36k x k k Z ππππ∴-≤≤∈ 所以()f x 的递增区间为[+],k 36k Z ππππ-∈+k , 【点睛】本题考查三角函数的恒等变形和三角函数的性质,关键是逆用余弦的二倍角公式降幂后,并使用辅助角公式化简.26.(1)T π=,7[,],1212++∈k k k Z ππππ;(2)3π. 【分析】(1)先利用三角恒等变换,将函数转化为()2sin(2)3f x x π=+,再利用正弦函数的性质求解.(2)根据函数()f x 的图象关于点(,)m n 对称,令2()3m k k Z ππ+=∈求解. 【详解】(1)2()[2sin()sin ]cos 3=++f x x x x x π2(sin sin )cos =++-x x x x x2(2sin )cos =+x x x x222sin cos sin )x x x x =+-sin 222sin(2)3x x x π==+, T π=, 由3222232k x k πππππ+≤+≤+, 解得71212k x k ππππ+≤≤+, 则()f x 的单调递减区间是7[,],1212++∈k k k Z ππππ. (2)2()3+=∈m k k Z ππ,,26∴=-∈k m k Z ππ 又0m >m ∴的最小值为3π. 【点睛】 方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
三角恒等变换单元测试题(含答案)
一、选择题(本大题共12个小题,每小题5分,共60分)
1、cos24cos36cos66cos54的值为( )

A 0 B 12 C 32 D 12
2.3cos5,,2,12sin13,是第三象限角,则)cos(( )
A、3365 B、6365 C、5665 D、1665
3. tan20tan403tan20tan40的值为( )
A 1 B 33 C -3 D 3
4. 已知tan3,tan5,则tan2的值为( )
A 47 B 47 C 18 D 18
5.,都是锐角,且5sin13,4cos5,则sin的值是( )
A、3365 B、1665 C、5665 D、6365

6.,)4,43(x且3cos45x则cos2x的值是( )
A、725 B、2425 C、2425 D、725
7. 函数44sincosyxx的值域是( )

A 0,1 B 1,1 C 13,22 D 1,12
8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为( )
2

A 1010 B 1010 C 10103 D 10103
9.要得到函数2sin2yx的图像,只需将xxy2cos2sin3的图像( )
A、向右平移6个单位B、向右平移12个单位C、向左平移6个单位D、向左平移12个单位
10. 函数sin3cos22xxy的图像的一条对称轴方程是 ( )
A、x113 B、x53 C、53x D、3x
11. 已知1cossin21cossinxxxx,则xtan的值为 ( )
A、34 B、34 C、43 D、43

12.若0,40,且1tan2,1tan7,则2 ( )
A、56 B、23 C、 712 D、34
二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)
13. .在ABC中,已知tanA ,tanB是方程23720xx的两个实根,则tanC
14. 已知tan2x,则3sin22cos2cos23sin2xxxx的值为
15. 已知直线12//ll,A是12,ll之间的一定点,并且A点到12,ll的距离分别为12,hh,B是直线2l上一
动点,作ACAB,且使AC与直线1l交于点C,则ABC面积的最小值为 。
16. 关于函数cos223sincosfxxxx,下列命题:

①若存在1x,2x有12xx时,12fxfx成立;②fx在区间,63上是单调递增;

③函数fx的图像关于点,012成中心对称图像;
④将函数fx的图像向左平移512个单位后将与2sin2yx的图像重合.
其中正确的命题序号 (注:把你认为正确的序号都填上)
3

一、选择题:(每小题5分共计60分)
二、填空题:(每小题5分,共计20分)
13、______________14、_______________15、____________________ 16、_______________

三、解答题:

17. 已知02,15tan22tan2,试求sin3的值.(12分)

18. 求)212cos4(12sin312tan30200的值.(12分)

19. 已知α为第二象限角,且 sinα=,415求12cos2sin)4sin(的值.(12分)

题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
4
20.已知函数22sinsin23cosyxxx,求
(1)函数的最小值及此时的x的集合。
(2)函数的单调减区间

(3)此函数的图像可以由函数2sin2yx的图像经过怎样变换而得到。(12分)

21.已知在△ABC中,A,B,C为其内角,若CBAsincossin2,判断三角形的形状。(12分)
5

22.四边形ABCD是一个边长为100米的正方形地皮,其中ATPS是一半径为90米的扇形小山,其余部
分都是平地,P是弧TS上一点,现有一位开发商在平地上建造一个两边落在BC与CD上的长方形停车
场PQCR.求长方形停车场PQCR面积的最大值与最小值.(14分)
.
6

三角恒等变换测试题参考答案
一、选择题:(每小题5分共计60分)

二、填空题:(每小题5分,共计20分)
13、-7 14、-52 15、21hh 16、①③
三、解答题:

17.10334 18.34 19.2

20.(1)最小值为22,x的集合为Zkkxx,85|
(2) 单调减区间为)(85,8Zkkk
(3)先将xy2sin2的图像向左平移8个单位得到)42sin(2xy的图像,然后将
)42sin(2xy的图像向上平移2个单位得到)42sin(2xy
+2的图像。

21.等腰三角形
22.最小值为950米2,最大值为290014050米2

题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 D A B A C B D C D C A D

相关文档
最新文档