高一数学必修一单元测试题
高一数学必修一第一章测试题

高一数学必修一第一章测试题一、选择题1.C.{1,2,3,4,5}2.D.a≤23.A.y=(x)24.D.[-1,2]5.C.2m6.B.2二、填空题7.328.[3,6)9.k≥210.{(x,y)|-1≤y≤2-x2+2x。
y≥2x+1}11.f(2)=-2.x=4三、解答题12.1) A(BC)={x|x∈Z。
|x|≤6.3≤x≤6 or x=1}2) AC={3,4,5,6}A(BC)={x|x∈Z。
|x|≤6.3≤x≤6 or x=1}={(x,y)|-6≤x≤-3 or1≤x≤6.-2≤y≤2}13.Ⅰ) 函数f(x)为偶函数。
证明:对于任意x∈R,有f(-x)=(-x)2-2|-x|=x2-2|x|=f(x),即f(x)为偶函数。
Ⅱ) 函数f(x)在(-1,0)上单调递增,在(0,1)上单调递减。
证明:当x∈(-1,0)时,f(x)=x2+2x,f'(x)=2x+2>0,故f(x)在(-1,0)上单调递增;当x∈(0,1)时,f(x)=x2-2x,f'(x)=2x-2<0,故f(x)在(0,1)上单调递减。
14.f(x)=x2+2ax+2,f'(x)=2x+2a当x=-a时,f'(x)=0,故f(x)在x=-a处取得极小值,且f(-5)=f(5),故f(x)在x=5处也取得极小值。
由于f(x)为开口向上的抛物线,故当x∈[-5,-a)或(x,a]时,f(x)单调递增;当x∈[-a,a]时,f(x)单调递减;当x∈(a,5]时,f(x)单调递增。
综上可得,f(x)在[-5,-a)∪(a,5]上单调递增,在[-a,a]上单调递减。
1.当a=-1时,求函数f(x)=a-1/(x^2+1)的最大值和最小值。
2.求实数a的取值范围,使得函数y=f(x)=a-1/(x^2+1)在区间[-5,5]上是单调函数。
3.求证:不管a为何实数,函数f(x)=a-1/(x^2+1)总是为增函数。
高一数学必修一第一章测试题及答案

1.1集合的概念专项练习解析版一、单选题1.若1∈{x ,x 2},则x =( )A .1B .1-C .0或1D .0或1或1- 【答案】B【分析】根据元素与集合关系分类讨论,再验证互异性得结果【详解】根据题意,若1∈{x ,x 2},则必有x =1或x 2=1,进而分类讨论:∈、当x =1时,x 2=1,不符合集合中元素的互异性,舍去,∈、当x 2=1,解可得x =-1或x =1(舍),当x =-1时,x 2=1,符合题意,综合可得,x =-1,故选B .【点睛】本题考查元素与集合关系以及集合中元素互异性,考查基本分析求解能力,属基础题.2.已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 的值为( )A .-2B .2C .4D .2或4 【答案】A【分析】根据元素和集合的关系以及集合元素的互异性确定正确选项.【详解】依题意2A ∈,若2a =,则2=a ,不满足集合元素的互异性,所以2a ≠; 若2=a ,则2a =-或2a =(舍去),此时{}2,2,4A =--,符合题意;若22a -=,则4a =,而4a =,不满足集合元素的互异性,所以4a ≠.综上所述,a 的值为2-.故选:A【点睛】本小题主要考查元素与集合的关系,考查集合元素的互异性,属于基础题.3.下列关系中,正确的有( ) ∈1R 2;5Q ;∈3N ;∈2Q ∈.A .1个B .2个C .3个D .4个【分析】根据元素与集合之间的关系判断可得答案.【详解】12|3|3-=是非负整数,2是有理数.因此,∈∈∈∈正确,故选:D .4.考查下列每组对象,能组成一个集合的是( )∈一中高一年级聪明的学生;∈直角坐标系中横、纵坐标相等的点;∈不小于3的正整数;值.A .∈∈B .∈∈C .∈∈D .∈∈ 【答案】C【分析】利用集合中的元素满足确定性判断可得出结论.【详解】∈“一中高一年级聪明的学生”的标准不确定,因而不能构成集合;∈“直角坐标系中横、纵坐标相等的点”的标准确定,能构成集合;∈“不小于3的正整数”的标准确定,能构成集合;”的标准不确定,不能构成集合.故选:C.5.下列各组对象不能构成集合的是( )A .参加运动会的学生B 的正整数C .2022年高考数学试卷上的难题D .所有有理数【答案】C【分析】根据集合的基本概念辨析即可.【详解】解:对于A 选项,参加运动会的学生,是确定的,没有重复的,所以能构成集合;对于B 对于C 选项,2022年高考数学试卷上的难题,多难的题才算是难题,有一定的不确定性,不符合集合中元素的确定性,故不能构成集合;对于D 选项,所有有理数,所研究的有理数,是确定的,没有重复的,所以能构成集合;故选:C.6.已知集合{}21,2,22A a a a =---,若1A -∈,则实数a 的值为( ) A .1B .1或12-C .12-D .1-或12-【分析】由题可知21a -=-或2221a a --=-,即求.【详解】∈1A -∈,∈21a -=-或2221a a --=-,∈1a =或12a =-, 经检验得12a =-.故选:C.7.已知集合A ={x |ax 2﹣3x +2=0}只有一个元素,则实数a 的值为( )A .98B .0C .98或0D .1【答案】C 【分析】根据a 是否为0分类讨论.【详解】0a =时,2{|320}{}3A x x =-+==,满足题意; 0a ≠时,980a ∆=-=,98a =,此时294|320}83A x x x ⎧⎧⎫=-+==⎨⎨⎬⎩⎭⎩,满足题意. 所以0a =或98.故选:C二、多选题8.已知{}21|A y y x ==+,(){}21|,B x y y x ==+ ,下列关系正确的是( )A .=A BB .()1,2A ∈C .1B ∉D .2A ∈【答案】CD 【分析】根据集合A 、B 的特征,结合元素与集合的关系进行判断.【详解】∈{}2|1{|1}A y y x y y ==+=是数集;{}2(,)|1B x y y x ==+为点集,∈2A ∈,2B ∉,1B ∉,故A 错误,C 、D 正确;由21y x =+知,=1x 时=2y ,∈(1,2)B ∈,(1,2)A ∉,故B 错误.故选:CD .9.下列选项正确的有( )A .()R Q π∈B .13Q ∈C .0*N ∈D 4Z【答案】ABD【分析】根据常见集合的意义和元素的性质可判断各选项中的属于关系是否成立,从而可得正确的选项.【详解】因为π为无理数,故()R Q π∈,故A 正确. 因为13为有理数,故13Q ∈,故B 正确. 因为*N 为正整数集,但*0N ∉,故C 不正确.2=Z ,故D 成立.故选:ABD.【点睛】考查常见集合的表示,注意正确区分各字母表示的常见集合,不要混淆,本题属于基础题.10.下列各组中M 、P 表示不同..集合的是( ) A .{3,1}M =-,{13}P =-,B .{}{(31)},(1,3)M P ==, C .{}21,R M y y x x ==+∈,{}t t 1P =≥D .{}21,R M y y x x ==-∈,2{(,)|1,R}P x y y x x ==-∈【答案】BD【分析】根据集合相等的概念依次分析各选项即可得答案.【详解】选项A 中,根据集合的无序性可知M P =;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项C 中,M ={y |y =x 2+1,x ∈R}=[)1,+∞,{}t t 1P =≥=[)1,+∞,故M =P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有y 组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合,故M P ≠.故选:BD .11.下列四个命题:其中不正确的命题为( )A .{}0是空集B .若N a ∈,则N a -∉;C .集合{}2R 210x x x ∈-+=有一个元素 D .集合6Q N x x ⎧⎫∈∈⎨⎬⎩⎭是有限集. 【答案】ABD【分析】根据空集的定义可判断A ;根据元素与集合的关系可判断B ;解方程求出集合中的元素可判断C ;x 为正整数的倒数时,都有6N x∈可判断D ,进而可得正确选项. 【详解】对于A :{}0含有一个元素0,所以{}0不是空集,故选项A 不正确;对于B :当0a =时,N a ∈,则N a -∈,故选项B 不正确;对于C :{}(){}{}22R 210R 101x x x x x ∈-+==∈-==只有一个元素,故选项C 正确; 对于D :Q 表示有理数,包括整数和分数,比如x 为正整数的倒数时,都有6N x∈,所以集合6Q N x x ⎧⎫∈∈⎨⎬⎩⎭是无限集,故选项D 不正确;故选:ABD.三、填空题12.已知集合{}1,2,A m =,{}13,B n =,,若A B =,则m n +=_______. 【答案】5【分析】由集合的性质,即元素的无序性和互异性可得3,2m n ==,得5m n +=.【详解】根据集合的元素具有无序性和互异性可得,3,2m n ==,所以5m n +=.故答案为:5.【点睛】(1)集合A B =的充要条件是A B ⊆,且A B ⊇;(2)集合由三个性质:确定性,互异性和无序性.13.若{}221,,2a a ∈-,则=a ______.【答案】2-【分析】结合集合的互异性来求得a .【详解】若2a =,则222a -=,不满足互异性,所以2a ≠.若222,2a a -==-或2a =(舍去),所以2a =-.故答案为:2-四、解答题14.已知集合{}222,1,A a a a =+-,{}20,7,5B a a =--,且5A ∈,求集合B .【答案】{}0,7,1B =【分析】根据题意,结合集合中元素的确定性与互异性,分类讨论即可求解.意;若2a =-,则26a a -=,此时{}2,5,6A =,{}0,7,1B =.而当25a a -=时,集合B 中250a a --=,根据互异性可知,不满足题意.综上,{}0,7,1B =.15.已知集合{}2210,A x ax x a R =++=∈, (1)若A 只有一个元素,试求a 的值,并求出这个元素;(2)若A 是空集,求a 的取值范围;(3)用列举法表示集合A .【答案】(1)见解析(2)1a >(3)见解析【分析】(1)分为0a =和0a ≠两种情形即可;(2)根据方程无解时,440a ∆=-<即可得结果;(3)根据(1)(2)的结果结合求根公式即可得结果.【详解】(1)∈0a =时,12A ⎧⎫=-⎨⎬⎩⎭满足题意; ∈0a ≠时,要使A 只有一个元素,则需:440a ∆=-=,即1a =,此时{}1A =-.综上:0a =时,12A ⎧⎫=-⎨⎬⎩⎭;1a =时,{}1A =-. (2)∈A =∅,0a =显然不合题意,∈440a ∆=-<,即1a >∈1a >时,A =∅.(3)由(2)得,当1a >时,方程2210ax x ++=无解,即A =∅,由(1)得0a =时,方程210x +=的解为12x =-,即12A ⎧⎫=-⎨⎬⎩⎭; 当1a =时,方程2210x x ++=的解为=1x -,即{}1A =-.当1a <时,由求根公式得2210ax x ++=的解为1x =2x =,即A =⎪⎪⎩⎭综上可得:当1a >时,A =∅;当0a =时,12A ⎧⎫=-⎨⎬⎩⎭,当1a =时,{}1A =-;当1a <时,A =⎪⎪⎩⎭. 【点睛】考查了用描述法表示集合,含有参数一元二次方程的解,分类讨论思想的应用,属于中档题。
人教版高一数学必修一第一章测试题含答案

人教版高一数学必修一第一章测试题含答案一、选择题1.下列数中,是正数且有理数的是____。
A.根号2B.根号3C.-0.8D.- 3/4答案:D2.在数轴上,数-3,-2,0,2所在的点的次序是____。
A.-2 < -3 < 0 < 2B.-3 < -2 < 2 < 0C.-3 < -2 < 0 < 2D.-2 < -3 < 2 < 0答案:C3.下列各数中,最小的是____。
A.-0.8B.-1/2C.-1D.-0.9999答案:C4.已知-3<x<5,则-2x的取值范围是____。
A.6<x<30B.15<x<30C.-30<x<-6D.-30<x<15答案:D二、填空题1.将-0.25用分数表示为________。
答案:-1/42.-13的绝对值是________。
答案:133.已知-5<x<4,那么|x+7|的取值范围是________。
答案:2<|x+7|<124.如果a>b>0,那么a²和b²的大小关系是________。
答案:a²>b²三、解答题1.已知x<2y,2y≤4z,z≤5,求满足以上条件的x的取值范围。
解:由条件可得:x<2y≤4z≤20故x<20。
2.已知-2<x<3,求满足0<2x-1<5的x的取值范围。
解:0<2x-1<51<2x<6由x的取值范围-2<x<3得1/2<x<3,故满足条件的x的取值范围为1/2<x<3。
3.小明的体重是58kg,如果减轻了1/8,减轻后的体重是多少?解:减轻了1/8,体重减轻的量为1/8×58=7.25kg。
减轻后的体重为58-7.25=50.75kg。
高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。
$\varnothing \in A$ B。
$2\in A$ C。
$2\in A$ D。
$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。
$2$ B。
$5$ C。
$6$ D。
$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。
若 $A\subseteq B$,则 $a$ 的范围是()A。
$a\geq 2$ B。
$a\leq 1$ C。
$a\geq 1$ D。
$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。
$(,\infty)$ B。
$[。
\infty)$ C。
$(-\infty,)$ D。
$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。
$\{0,2,3,6\}$ B。
$\{0,3,6\}$ C。
$\{2,1,5,8\}$ D。
$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。
$(2,3)$ B。
$[-1,5]$ C。
$(-1,5)$ D。
$(-1,5]$7.下列函数是奇函数的是()A。
$y=x$ B。
$y=2x-3$ C。
$y=x^2$ D。
$y=|x|$8.化简:$(\pi-4)+\pi=$()A。
$4$ B。
$2\pi-4$ C。
$2\pi-4$ 或 $4$ D。
$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。
高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案一、单项选择题(5分,每小题1分)1. 在空间直角坐标系中,共线的两个非零向量()A. 必定相等B. 不一定相等C. 长度不定D. 不可能共线答案:B2. 关于两个集合A和B,下列说法正确的是()A. 如果A⊆B,那么有B⊆AB.如果A⊂B,那么有B⊂AC.A∩B=B∩AD.两个空集合A和B之间有A=B答案:C3. 若a>0,b≤1,则有()A. a+b>1B. a+b≤1C. a+b<1D. a+b≥1答案:B4. 在三棱锥P—ABC中,底面PAB的面积是9,PA的长是6,PB的长为5,AB的长为9,则该三棱锥的体积是()A. 45B. 90C. 108D. 135答案:A5. 设X=[1,3],Y=[2,4],则下列命题中正确的是()A. X∪Y=[1,4]B. X∩Y=[2,3]C. X-Y=[1]D. Y-X=[4]答案:A二、填空题(10分,每小题2分)6. 已知一个空间向量a=(1,3,1),其中张成a的两条线段长分别为p和q,则 p、q 的大小关系是()。
答案:p>q7. 已知平面内角∠A、∠B、∠C三角形的度数分别为20°、70°、90°,若三角形ABC的面积为12,则此三角形的外接圆半径是()。
答案:128. 已知集合A={1,2,3}, B={1,5,9},则A∪B={()}答案:1,2,3,5,99. 已知数列{an}的首项a1=2,公比q=3,则数列{an}的前4项和S4=()答案:6210. 设函数f(x)=sinθx,θ是未知实数,则函数f(x)的最大值为( )答案:1。
新教材人教版高一数学上册单元测试题含答案全套

新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此.4.下列命题中正确的是( )A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,{}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}AB =-29a =3a =±(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R 2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N =【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个. 【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,{(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A 4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意;②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2). 【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求:A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+=}10B =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =(1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a ≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥a {}24a a a <≥或243y x x =-+{}|0A x x a =≤≤x A ∈1-a a x A ∈3a 2a ≥2243(2)1y x x x =-+=--2x =1-x A ∈1-2A ∈2a ≥2(2)1y x =--2x =x A ∈3x A ∈3,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
高一数学必修1单元试卷1及答案

高一数学(必修1)单元测试1班级________姓名________一.选择题(5’×3)1.集合S ={a,b,c}中的3个元素是△ABC 的三边长,则△ABC 一定不是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.集合M ={(x,y)|xy<0,x ∈R,y ∈R}是 ( )A.第一,三象限内的点集B.第二,四象限内的点集C.负实数集D.实数集3.设S 是全集,集合M,N ⊆S,则图中阴影部分可表 示为( )A.(M ∪N)∩S (M∩N)B. (M ∪N)∩S (M ∪N)C. (M∩N)∪S (M ∪N)D. (M∩N)∪S (M∩N) 二.填空题(5’×8)4.有以下语句:①全体平行四边形;②我校的所有高个子同学;③小于2的所有整数;④高一数学课本中的所有难题;⑤所有无理数;⑥高一年级16岁以下的同学.其中不能构成一个集合的有______________.(填写所有正确的序号)5.在下列五种写法中:①{0}∈{0,1,2};②φ{0};③0∈φ;④{0,1,2}⊆{1,2,0};⑤0 ∩φ=φ.错误的写法有__个.6.已知全集I ={x|-2<x<9,x ∈N *},A ={3,4,5},B ={1,3,6},那么{2,7,8}可用I,A,B 表示为____________.7.已知下列各组集合:①M ={(1,2)},P ={(2,1)};②M ={(2,3)},P ={2,3};③M ={3,4},P ={4,3};④M ={0},P =φ,其中M =P 的是__________.8.满足关系{1}⊆B {1,2,3,4}的集合B 有_____个,9.若集合S ={x|18-x ∈N,且x ∈Z},则S = (用列举法表示). 10.若A ={x|ax 2+3x+1=0}中有且只有一个元素,则a 值为 ___ (写出所有可能值).11.设U 是全集,非空集合P,Q 满足P Q U,若求含P,Q 的一个集合运算表达式,使运算结果为空集,则这个运算表达式可以是 .12.在某班50名学生中,有篮球爱好者30人,排球爱好者32人,则既爱好篮球又爱好排球的同学最少有 人,最多有 人.三.解答题(13’×2+14’)13. 已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且A∩B=φ,求m的取值范围.14.若全集U={x|x是不大于30的质数},A,B U,且A∩U B={5,13,23},(U A)∩B={11,19,29},(U A)∩(U B)={3,7},求集合A,B15.已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},若A∩B≠φ且A∩C=φ,求a的值.高一数学(必修1)单元测试1答案一.选择题: DBA二.填空题 4.②④ 5.3 6.(I A)∩(I B)或I(A∪B) 7.③8.7 9.{2,3,5,9}10.0,9411.P∩(U Q) 12.12 30三.解答题13. m<2或m>4 14.A={2,5,13,17,23} B={2,11,17,19,29} 15.a=-2。
(完整word版)人教版高中数学必修一第一章单元测试(含

第3题图高中数学《必修一》第一章教学质量检测卷一、选择题(将选择题的答案填入下面的表格.本大题共10小题,每小题5分,共50分。
)题号12345678910答案1、下列各组对象中不能构成集合的是( )A、佛冈中学高一(20)班的全体男生B、佛冈中学全校学生家长的全体C、李明的所有家人D、王明的所有好朋友( )A.{1,2,3,4,5} B.{2,3,4,5}C.{2,3,4},则图中的阴影部分表示的集合为( )的值是 ( )A、3B、1 C. 0 D。
-18、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(—2),f题号一二151617181920总分得分10、在集合{a,b,c,d}上定义两种运算和如下:A.a B.b C.c D.d二、填空题(本大题共4小题,每小题5分,共20分)的定义域为在区间[0,4]的最大值是B是 .16上是减函数。
其中真命题的序号是 (把你认为正确的命题的序号都填上)。
三、解答题(本大题6小题,共80分。
解答时应写出文字说明、证明过程或演算步骤).15、(本题满分12分)已知集合a的取值范围.16、(本题满分1217、(本题满分1418、 (本题满分14分)已知函(1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域.19、(本题满分1420、 (本题满分14高中数学《必修一》第一章教学质量检测卷参考答案一、选择题题号12345678910答案D D B C C A A B A C二、填空题12、-1 13、 14、①②三、解答题15、解:(1)A∪B={x∣2<x<10}……………..4分(2)(C R A)∩B={ x∣2〈x〈3或7≤x<10}...。
..。
.。
.。
.。
..。
...。
8分(3)a≥7.。
..。
.。
.。
..。
12分16.解:.2分证明:的定义域是,定义域关于原点对称…………….4分内任取一个x,则有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省聿怀中学高一数学模块一第二章单元测试试题06.10.25
说明:本试题测试时间为50分钟,满分100分
一、选择题:(本大题共8小题,每小题6分,共48分)答案填在答题卷答题卡内,否则不计分. 1、 函数32+=-x a y (a >0且a ≠1)的图象必经过点 ( ) (A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4) 2、三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是( )
(A )b c a <<. (B ) c b a << (C )c a b << (D )a c b <<
3、函数 的定义域为
( )
(A )[1,3] (B )),3()1,(+∞⋃-∞ (C )(1,3)
(D )(1,2)∪(2,3)
4、已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是( ) (A )y =(0.9576)
100
x (B )y =(0.9576)100x
(C )y =( )x (D )y =1-(0.0424)100
x
5、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a =( )
(A ) (B ) 2 (C ) 3 (D ) 6、下列函数中,在区间(0,2)上不是增函数的是( )
(A ) 0.5log (3)y x =- (B ) 12+=x y (C ) 2x y -= (D )x y 22=
7、函数 与 ( )在同一坐标系中的图像只可能是( )
; ; ; 。
8、(4~10班做)对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)+f (x 2);② f (x 1·x 2)=f (x 1)+f (x 2 ) ;③1212
()()f x f x x x -->0;
④1212()()()2
2
x x f x f x f ++<.当f (x )=lo g 2 x 时,上述结论中正确结论的序号选项是
(A ) ①④ (B ) ②④ (C )②③ (D )①③
8、(1~3班做)已知⎩⎨
⎧≥<+-=1
,log 1,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是 100
9576
.02
131
x
a y =x y a log -=1,0≠>a a 且)
34(log 1)(22-+-=
x x x f
(A )(0,1)
(B )1(0,)3
(C )11[,)73
(D )1[,1)7
二、填空题(本大题共4小题,每小题5分,共20分) 9、 函数)5lg()(-=x x f 的定义域是 . 10、求值:013
31
2log log 12(0.7)0.252
-+-+=________ _. 11、已知幂函数()y f x =的图象经过点(3,3),那么这个幂函数的解析式为 .
12、设,0.(),0.
x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________
三、解答题(第12题7分,13题10分,第14题15分,共32分, 解答应写出文字说明,证明过程或演算步骤) 13、求log 2.56.25+lg
100
1
+ln e +3log 122+的值. 14、已知m >1,试比较(lg m )0.9
与(lg m )0
.8
的大小.
15、已知()(01)x
x
f x a a
a a -=+>≠且
(Ⅰ)证明函数f ( x )的图象关于
y 轴对称;(4分 )
(Ⅱ)判断()f x 在(0,)+∞上的单调性,并用定义加以证明;(7分)
(4~10班做)(Ⅲ)当x ∈[1,2]时函数f (x )的最大值为2
5,求此时a 的值. (4分)
(1~3班做)(Ⅲ)当x ∈[-2,-1]时函数f (x )的最大值为2
5,求此时a 的值. (4分)
聿怀中学高一数学模块一第二章单元测试答题卷
班级 座号 姓名 得分
二、填空题(本大题共4小题,每小题5分,共20分)
9、 ;10、 ;11、 ;12、 . 三、解答题 (第12题7分,13题10分、14题15分,共32分, 解答应写出文字说明,证明过程或演算步骤)
13、 14、 15、
聿怀中学高一数学模块一第二章单元测试参考答案
一、选择题 DBDA CCAC 7、取a =2和a = 作图筛选得A
8、解:依题意,有0?a ?1且3a -1?0,解得0?a ?13
,又当x ?1时,(3a -1)x +4a ?7a -1,当x ≥1时,
log a x ≤0,所以7a -1?0解得a ?17
故选C
2
1
二、填空题
8、 ;9、 4 ;10、 ;11、 .
11、设这个幂函数的解析式为 ,将
(3, )代入得2
1=α 12、.【解析】1ln 2111
(())(ln )222
g g g e ===.
三、解答题 (本大题有3小题,共32分) 解答应写出文字说明,证明过程或演算步骤) 12、解: 原式=2-2+ ln e +6
log 22
…………3分
= +6 …………5分
=2
1
6 …………7分
14、解:∵m >1,∴lg m >0;以下分类为①lg m >1,②lg m =1;③0<lg m <1 三种情形讨论(lg m )0
.9
与(lg m )0
.8
的大小.…………2分
①当lg m >1即m >10时,(lg m )0.9>(lg m )0.8;…………5分 ②当lg m =1即m =10时,(lg m )0.9=(lg m )0.8;…………7分
③当0<lg m <1即1<m <10时,(lg m )0.9<(lg m )0.8.…………10分
15、解:(Ⅰ)要证明函数f ( x )的图象关于y 轴对称则只须证明函数f ( x )是偶函数…1分
∵x ∈R …………2分 由)()(x f a a a a
x f x x x x
=+=+=--- …………3分
∴函数f ( x )是偶函数,即函数f ( x )的图象关于y 轴对称…………4分
(Ⅱ)证明:设210x x <<,则
12()()f x f x -=2
12111111
12211)1)(()11()()(x x x x x x x x x x x x x a a a a a a a a a a a a x ++----=
-+-=+-+ (1)当a >1时,
由0<12x x <,则x 1+x 2>0,则01
>x a
、02>x a 、21x x a a <、121>+x x a ;
12()()f x f x -<0即12()()f x f x <;
(2)当0<a <1时,
由0<12x x <,则x 1+x 2>0,则01
>x a
、02>x a 、21x x a a >、1021<<+x x a ;
12()()f x f x -<0即12()()f x f x <;
所以,对于任意a (10≠>a a
且),f (x )在(0,)+∞上都为增函数.
(4~10班做)(Ⅲ)由(Ⅱ)知f (x )在(0,)+∞上为增函数,则当x ∈[1,2]时,函数f (x )亦为增函数;
由于函数f (x )的最大值为2
5,则f (2)= 2
5
)
5,(-∞2
1
x y =21
α
x y =2
1213
即2
5
122
=
+
a a
,解得2=a ,或22=a (1~3班做)(Ⅲ)由(Ⅰ)(Ⅱ)证知f (x ) 是偶函数且在(0,)+∞上为增函数,则知f (x )在)0,(-∞上为减函数;
则当x ∈[-2,-1]时,函数f (x )为减函数 由于函数f (x )的最大值为2
5,则f (-2)= 2
5
即
2512
2
=+a a
,解得2=a ,或22=a。