小升初数学试卷试题及答案
小升初数学试卷带答案

小升初数学试题一、选择题1.电视机厂为了能清楚地表示出上半年月产量的多少与增减变化情况,绘制()比较合适。
A.条形统计图 B.折线统计图 C.扇形统计图2.与5.62÷0.18商相等的算式是()。
A.56.2÷0.18 B.56.2÷1.8 C.56.2÷18 D.562÷1.83.(a×b)×c= b×(a×c),运用了()。
A.仅用了乘法结合律 B.仅用了乘法交换律C.同时用了乘法交换律和乘法结合律 D.同时用了加法结合律和乘法结合律4.在讲台上看班级座位,王浩的座位用数对表示是(5,4),他前面同学的座位数对是()。
A.(4,4) B.(5,3) C.(5,5) D.(6,4)5.下图平行四边形的面积是40cm2.图中阴影部分的面积是().A.7.5 cm2B.10 cm2C.12.5 cm2D.20 cm26.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,剩下的体积是多少立方厘米?7.一个两位小数精确到十分位是5.0,这个数最小是()。
A.4.99 B.4.9 C.4.94 D.4.958.吸烟不仅有害健康而且浪费钱财.如果一位吸烟者每天吸一包18元的香烟那么他每年(365天)花在吸烟上的钱是()元.A.365 B.6570 C.6480 D.8009.将100米平均分成()份,每份是20米.A.6 B.5 C.710.一辆卡车停在停车场上,它所占的车位面积大约是18_______。
()A.米B.平方分米C.平方米D.立方米11.下面属于方程的是()A.x+5 B.x﹣10=3 C.5+6=11 D.x÷12>20 12.下列图形中,()不是轴对称图形.A. B. C. D.二、填空题13.将24的因数找出四个,组成一个比例(______)=(______)。
14.左图中大长方形的周长是C厘米,剪去一个最大的正方形(如图,单位:厘米),剩下的长方形周长是(_______)厘米。
小升初数学试卷及答案详解

小升初数学试卷及答案详解一、选择题.【点评】此题考查了利用等式的性质求X的值,再进行计算解答.2.3x﹣7错写成3(x﹣7),结果比原来()A.多43B.少3C.少14D.多14【分析】根据题意知道,用3(x﹣7)减去3x﹣7,得出的数大于0说明结果比原来大,得出的数小于0说明结果比原来小.【解答】解:3(x﹣7)﹣[3x﹣7]=3x﹣21﹣3x+7=﹣14答:3x﹣7错写成3(x﹣7),结果比原来少14,故选:C.【点评】注意括号前面是减号,去掉括号时,括号里面的运算符合要改变.3.一个两位数,十位上的数字是6,个位上的数字是a,表示这个两位数的式子是()A.60+a B.6+a C.6+10a D.6a【分析】两位数=十位数字×10+个位数字.【解答】解:因为十位数字为6,个位数字为a,所以6个10与1个a的和为:60+a.故选:A.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.4.甲袋有a千克大米,乙袋有b千克大米,如果从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等.列成等式是()A.a+8=b﹣8B.a﹣b=8×2C.(a+b)÷2=8D.a﹣8=b【分析】根据“从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等”,那么现在甲袋就有a﹣8千克,乙袋就有b+8千克,得出原来甲袋的大米比乙袋的多,并且两袋相差8×2千克,由此找出a、b之间的关系.【解答】解:根据题意得出两袋大米相差8×2千克,即a﹣b=8×2;故选:B.【点评】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.5.甲、乙、丙、丁四人参加某次电脑技能比赛.甲、乙两人的平均成绩为a分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为()分.A.a+6B.4a+1.5C.4a+6D.a+1.5【分析】由题意得:甲加乙总分为2a,丙的成绩为a+9,丁的成绩为a﹣3,因此他们四人的平均成绩为(2a+a+9+a﹣3)÷4,据此解答.【解答】解:(2a+a+9+a﹣3)÷4=(4a+6)÷4=a+1.5答:他们四人的平均成绩为(a+1.5)分.故选:D.【点评】此题解答的关键在于根据甲、乙两人的平均成绩为a分,表示出丙、丁的成绩,然后根据平均数问题,即可解决.6.电影院第一排有m个座位,后面一排都比前一排多1个座位.第n排有()个座位.A.m+n B.m+n+1C.m+n﹣1D.mn【分析】第1排m个,第2排(m+1)个,第3排(m+2)个,…,从而找到规律,求出第n排的座位.【解答】解:根据题意得:第n排有(m+n﹣1)个座位.故选:C.【点评】此题也可用通项公式为a n=a1+(n﹣1)×d来解答,(a n表示第几项,a1表示首项,n表示项数,d表示公差).7.2x﹣28÷2=4,这个方程的解是()A.x=5B.x=9C.x=10D.x=20【分析】首先根据等式的性质,两边同时加上14,然后两边再同时除以2即可.【解答】解:2x﹣28÷2=42x﹣14+14=4+142x=182x÷2=18÷2x=9所以这个方程的解是x=9,故选:B.【点评】此题主要考查了根据等式的性质解方程的能力,即等式两边同时加上或同时减去、同时乘以或同时除以一个数(0除外),两边仍相等.8.下面几句话中错误的一句是()A.判断方程的解是否正确,只要把方程的解代入原方程,看方程左右两边是否相等C.a2不一定大于2a【分析】根据相关知识点,逐项分析后,进而确定错误的选项.【解答】解:A、判断方程的解是否正确的方法是:把方程的解代入原方程,看方程左右两边是否相等;所以原说法正确B、根据等式的性质,可知在等式的两边同时乘或除以一个不为0的数,所得等式才能仍是等式;所以原说法错误C、当a=0或2时,a2等于2a,所以a2不一定大于2a;所以原说法正确故选:B.【点评】此题属于综合性试题,解决关键是逐项分析后再确定错误的选项;要注意等式的性质:在等式的两边同时乘或除以一个数,此数必须是0除外.二、填空题.9.三数之和是120,甲数是乙数的2倍,丙数比乙数多20,丙数是45.【分析】本题数量关系比较复杂,甲数是乙数的2倍,丙数比乙数多20,甲数和丙数都同乙数有关系,因此本题用方程解比较简单.【解答】解:设乙数为x,则甲数为2x,丙数为x+20.2x+x+x+20=1204x+20=1204x+20﹣20=120﹣204x=1004x÷4=100÷4x=25.25+20=45.答;丙数是45.故答案为45.把乙数设为x求解.10.已知4x+8=20,那么2x+8=14.【分析】根据等式的性质,求出方程4x+8=12的解,再把x的值代入2x+8.据此解答.【解答】解:4x+8=20,4x+8﹣8=20﹣8,4x÷4=12÷4,x=3,把x=3代入2x+8得2x+8=2×3+8=6+8=14.故答案为:14.【点评】本题的关键是先求出方程的解,再把它代入式子中求值.11.爸爸说:“我的年龄比小明的4倍多3.”小明说:“我今年a岁.”用含有字母的式子表示爸爸的年龄,写作4a+3岁;如果小明今年8岁,那么爸爸今年35岁.【分析】(1)根据题意知道,爸爸的年龄=小明的年龄×4+3.把字母代入,即可得出爸爸的年龄;(2)把小明的年龄代入(1)所求出的式子,即可得出爸爸今年的年龄.【解答】解:a×4+3,=4a+3(岁),(2)把a=8,代入4a+3,即,4a+3,=4×8+3,=32+3,=35(岁),故答案为:4a+3岁,35.式子;再把字母表示的数代入式子,即可求出答案.12.果园里有苹果树和梨树共45棵,其中梨树有a棵,苹果树比梨树多45﹣2a棵.【分析】先求出苹果树的棵数,再用苹果的棵数减去梨的棵数,就是要求的答案.【解答】解:45﹣a﹣a,=45﹣2a(棵);答:苹果树比梨树多45﹣2a棵.故答案为:45﹣2a.【点评】解答此题的关键是,把给出的字母当做已知数,再根据基本的数量关系,列式解答即可.13.在一场篮球比赛中,小红共投中a个三分球,b个两分球,发球还的5分,在这场比赛中,小红共得3a+2b+5分.【分析】用三分球的得分加二分球的得分加发球得分,即可求出总得分.【解答】解:3×a+2×b+5=3a+2b+5(分)故答案为:3a+2b+5.【点评】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.14.1只青蛙1张嘴,2只眼睛4条腿,扑通扑通跳下水,2只青蛙2张嘴,4只眼睛8条腿,扑通扑通跳下水,…n只青蛙n张嘴,2n只眼睛4n条腿,扑通扑通跳下水.【分析】要求n只青蛙几张嘴,几只眼睛,几条腿,首先分析“1只青蛙1张嘴,2只眼睛4条腿”这个条件,然后用乘法进一步解答即可.【解答】解:n×1=n(张)n×2=2n(只)n×4=4n(条)故填n,2n,4n.15.小林买4支钢笔,每支a元;又买了5本练习本,每本b元.一共付出的钱数可用式子4a+5b来表示;当a=0.5,b=1.2时,一共应付出8元.【分析】(1)买4支钢笔,每支a元,买钢笔共花4a元;买5本练习本,每本b元,买练习本共花5b元;一共付出的钱数可用式子4a+5b来表示;(2)把a=0.5,b=1.2代入4a+5b中,即可求出一共应付的钱数.【解答】解:共付出的钱数可用式子表示为:4a+5b;当a=0.5,b=1.2时,一共应付出:4a+5b,=4×0.5+5×1.2,=2+6,=8(元).故答案为:4a+5b,8.【点评】此题考查了学生用字母表示数以及代入计算的能力.16.已知x=5是方程ax﹣3=12的解,那么方程ay+4=25的解是y=7.【分析】把x=5代入ax﹣3=12,依据等式的性质求出a的值,再把a的值代入方程ay+4=25,再依据等式的性质进行求解.【解答】解:把x=5代入ax﹣3=12可得:5a﹣3=125a﹣3+3=12+35a=155a÷5=15÷5a=3把a=3代入ay+4=25可得:3y+4=253y+4﹣4=25﹣43y=213y÷3=21÷3y=7故答案为:y=7.【点评】本题解答的原理与解方程是一样的,主要依据就是等式的性质.17.在①3x+4x=48 ②69+5n③5+3x>60 ④12﹣3=9⑤x+x﹣3=0 中,是方程的有①⑤,是等式的有①④⑤.【分析】等式是指用“=”连接的式子,方程是指含有未知数的等式;据此进行分类.【解答】解:①3x+4x=48,既含有未知数,又是等式,所以既是等式,又是方程;②69+5n,只是含有未知数的式子,所以既不是等式,又不是方程;③5+3x>60,是含有未知数的不等式,所以既不是等式,又不是方程;④12﹣3=9,只是用“=”连接的式子,没含有未知数,所以只是等式,不是方程;⑤x+x﹣3=0,既含有未知数,又是等式,所以既是等式,又是方程;所以方程有:①⑤,等式有:①④⑤.故答案为:①⑤,①④⑤.【点评】此题考查等式和方程的辨识,熟记定义,才能快速辨识.三、解答题(共2小题,满分0分)18.【分析】算式①、③根据四则混合运算的运算顺序计算即可.算式②、④可据乘法分配律进行计算即可尤其注意第二题中的数据.=100.4﹣9+0.7,=91.4+0.7,=92.1;②98.7×0.9+98.7,=98.7×(0.9+1),=187.53;【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.19.解方程或比例.【点评】本题考查解方程和解比例,解题的关键是掌握等式的性质与比例的基本性质:方程两边同时加上或减去相同的数,等式仍然成立;方程两边同时乘(或除以)相同的数(0除外),等式仍然成立;两个外项的积等于两个内项的积.四、解决问题.20.甲乙两车同时从相距135千米的两地相对开出,1.5小时后相遇,甲的速度是每小时48千米,求乙车速度是每小时多少千米?(列方程解答)【分析】首先找出题中的等量关系式,(甲车速度+乙车速度)×相遇时间=两地间的路程,由此列方程解答即可.【解答】解:设乙车速度是每小时x千米,(48+x)×1.5=135,48+x=135÷1.548+x=90x=90﹣48x=42;答:乙车速度是每小时42千米.【点评】此题属于相遇问题的基本类型,解题的关键是找出题中的等量关系式:速度和×相遇时间=总路程,列方程或用算术法解答即可.21.一桶油,第一次用去油的总千克数的30%,第二次用去10千克,两次共用去这桶油的2/5.这桶油有多少千克?用去两次后还剩多少千克?【分析】要求这桶油有多少千克,要找出10千克对应的分率,即10千克是这桶油的几分之几,通过题意可知,这桶油的(2/5﹣30%)是10千克,根据已知一个数的几分之几是多少,求这个数用除法解答;两次共用去这桶油的,根据一个数乘分数的意义即可得出结论.【解答】解:10÷(2/5﹣30%)=100(千克),100×2/5=40(千克);答:这桶油有100千克.用去两次后还40少千克.【点评】(1))此题属于已知一个数的几分之几是多少,求这个数的应用题,做该类型的题目用除法计算;(2))求一个数的几分之几是多少用乘法计算得出.22.红星机床厂上个月计划秤机床200台,实际比计划多生产40台,实际产量是计划的百分之几?【分析】夏秋出是i的产量是多少台,然后用实际的产量除以计划的产量即可.【解答】解:(200+40)÷200,=240÷200,=120%;答:实际产量是计划的120%.【点评】本题是求一个数是另一个数的百分之几,关键是看把谁当成了单位“1”,单位“1”的量为除数.23.学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?【分析】由题意得,把315本科普读物平均分成3+4=7份,又因五年级比六年级少一份,于是用除法可以求出每一份的数量,也就是五年级比六年级少的本数,问题即可得解.【解答】解:315÷(3+4)×(4﹣3),=315÷7×1,=45(本);答:五年级比六年级少借45本.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.24.希望小学要买60个足球,现有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同.甲店:买10个足球免费赠送2个,不足10个不赠送.乙店:每个足球优惠5元.丙店:购物每满200元,返还现金30元.为了节省费用,希望小学应到哪个商店购买?为什么?【分析】由题意可得,甲店:买50个,送10个刚好60个,即化买50个足球的钱即可;乙店:即每个足球25﹣5=20元;丙店:先算出买60个球花60×25=1500元,1500除以200=7.5,返还30×7=210元,用花的总钱数减去返还的即可;【解答】解:甲:50×25=1250(元);乙:60×(25﹣5)=1200(元);丙:60×25=1500(元),1500÷200=7.5(个),1500﹣30×7=1290(元);1200元<1250元<1290元,所以乙最划算;答:到乙店购买便宜,最划算.【点评】此题应根据题意,进行解答,进而根据所得数据,进行比较,得出最佳方案.【拓展资料】小学6年级数学知识点包括分数的乘法与除法、方向与距离、圆的认识、百分数、圆柱与圆锥等。
(word完整版)小升初数学测试题经典十套题及答案

(人教版)小升初入学考试数学试卷(一)班级______姓名______得分______一、选择题:(每小题4分,共16分)1、在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()。
A、15点B、17点C、19点D、21点2、将一根木棒锯成4段需要6分钟,则将这根木棒锯成7段需要()分钟。
A、10B、12C、14D、163、一个车间改革后,人员减少了20%,产量比原来增加了20%,则工作效率()。
A、提高了50%B、提高40%C、提高了30%D、与原来一样4、A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B做了5天,C做了4天,D作为休息的代价,拿出48元给A、B、C三人作为报酬,若按天数计算劳务费,则这48元中A就分()元。
A、18B、19.2C、20D、32二、填空题:(每小题4分,共32分)1、学校开展植树活动,成活了100棵,25棵没活,则成活率是()。
2、甲乙两桶油重量差为9千克,甲桶油重量的1/5等于乙桶油重量的1/2,则乙桶油重()千克。
3、两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是()。
4、一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,则圆柱的高是()厘米。
5、如图,电车从A站经过B站到达C站,然后返回。
去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时()千米。
6、扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作:第一步,分发左中右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步,从左边一堆拿出两张,放入中间一堆;第三步,从右边一堆拿出一张,放入中间一堆;第四步,左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆。
这时小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌现有的张数是()。
小学数学小升初测试题附完整答案(名校卷)含完整答案(易错题)

人教版小学数学小升初测试题一.选择题(共6题, 共12分)1.同时同地, 物体的高度和影长〔〕。
A.成正比例B.成反比例C.不成比例2.-与-的关系是〔〕。
A.-<-B.->-C.-=-D.无法比拟3.两个圆柱的高相等, 底面半径的比是3:2, 那么体积比为〔〕。
A.3:2B.9:4C.27:84.在以下各组量中, 成正比例的量是〔〕。
A.路程一定, 速度和时间B.长方体底面积一定, 体积和高 C.正方形的边长和面积5.一艘潜水艇所处的高度是海拔-50米, 一条鲨鱼在潜水艇上方30米, 鲨鱼所处的位置是海拔〔〕米。
A.80B.-80C.20D.-206.一个袋子里装着红、黄、二种颜色球各3个, 这些球的大小都相同, 问一次摸出3个球, 其中至少有〔〕个球的颜色相同。
A.1B.2C.3二.判断题(共6题, 共12分)1.订报份数和订报的总钱数成正比例。
〔〕2.直线上0右边的数是正数, 0左边的数是负数。
〔〕3.小圆周长与半径的比和大圆周长与半径的比不可以组成比例。
〔〕4.实际距离一定比相对应的图上距离要大。
〔〕5.圆柱的底面直径是3厘米, 高是3π厘米, 侧面沿高展开是一个正方形。
〔〕6.一个圆柱的底面半径缩小到原来的/, 底面积就缩小到原来的/。
〔〕三.填空题(共6题, 共13分)1.修一条公路, 第一次修了全长的35%, 第二次修了全长的20%, 第二次比第一次少修30千米, 这条公路全长〔〕千米。
2.甲、乙两个工程队同时合作修完一条路, 修完后发现, 甲工程队修的长度比乙工程队长20%, 那么甲、乙工程队工作效率的最简整数比是〔〕:〔〕。
3.一个直角三角形的两条直角边分别长6cm、8cm, 以8cm的直角边为轴旋转一周, 得到的立体图形是〔〕, 它的体积是〔〕cm3。
4.圆柱的侧面积=〔〕×〔〕;圆柱的外表积=〔〕+〔〕。
5.小圆的半径是2厘米, 大圆的直径是3厘米, 大圆和小圆的直径比是〔〕, 大圆和小圆的周长比是〔〕。
小升初数学50道应试题(带有答案)

小升初数学50道应试题(带有答案)1. 一辆汽车行驶了350公里,耗油量为28升,求该车的百公里油耗。
答案:油耗为28升/350公里 = 0.08升/公里。
2. 一块正方形的面积为64平方米,求其周长。
答案:正方形的边长为8米,周长为8米 * 4 = 32米。
3. 一桶装满水的容积为40升,已倒出其中的1/4,求剩余水量。
答案:剩余水量为40升 * (1 - 1/4) = 30升。
4. 甲数是乙数的3倍,乙数是丙数的2倍,若甲数为18,求丙数。
答案:丙数为乙数的1/2,乙数为甲数的1/3,所以丙数为18 * (1/3) * (1/2) = 3。
5. 一个长方形的长是宽的3倍,且周长为56米,求长方形的长和宽。
答案:设宽为x,则长为3x,根据周长的公式2(长+ 宽) = 56,代入得2(3x + x) = 56,解方程得x = 7,所以长为3 * 7 = 21,宽为7。
6. 一个数的2/3等于15,求这个数。
答案:设这个数为x,根据等式2/3x = 15,解方程得x = 15 *3/2 = 22.5。
7. 一个数的1/5是35,求这个数。
答案:设这个数为x,根据等式1/5x = 35,解方程得x = 35 * 5 = 175。
8. 一件商品原价为120元,现在打8折出售,求打折后的价格。
答案:打折后的价格为120元 * 0.8 = 96元。
9. 一块长方形的面积为180平方米,宽是长的2倍,求长方形的长和宽。
答案:设宽为x,则长为2x,根据面积的公式长 * 宽 = 180,代入得2x * x = 180,解方程得x = 6,所以长为2 * 6 = 12,宽为6。
10. 一个数的1/4等于12,求这个数。
答案:设这个数为x,根据等式1/4x = 12,解方程得x = 12 * 4 = 48。
11. 一支铅笔原价为2元,现在打6折出售,求打折后的价格。
答案:打折后的价格为2元 * 0.6 = 1.2元。
小升初数学真题试卷含答案

小升初数学真题试卷含答案一、选择题1. 下列哪个数是质数?A. 9B. 17C. 22D. 36答案:B2. 计算:(20 ÷ 5)× 2 + 10 ÷ 4 - 3 × 2A. 6B. 4C. 10D. 8答案:A3. 如果一个正方形的边长是6 cm,那么它的面积是多少?A. 12 cm²B. 18 cm²C. 24 cm²D. 36 cm²答案:D4. 已知一个长方体的长、宽、高分别是2 cm、3 cm和4 cm,那么它的体积是多少?A. 6 cm³B. 8 cm³C. 12 cm³D. 24 cm³答案:C5. 一辆汽车以每小时60公里的速度行驶,行驶2小时后,它行驶的总路程是多少?A. 60 kmB. 100 kmC. 120 kmD. 140 km答案:C二、填空题1. 8 ÷ 4 + 6 × 3 - 15 = ____答案:132. 3的平方根是____答案:√33. (4 + 2) × (3 - 1) = ____答案:124. 如果3x - 5 = 16,那么x的值是____答案:75. 某班级有40位学生,其中女生占总人数的40%,那么该班级女生的数量是____答案:16三、解答题1. 甲、乙、丙三人一起种植花草,甲每小时种10盆,乙每小时种8盆,丙每小时种6盆。
如果他们连续工作4小时后,一共种了多少盆花草?解答:甲的种植速度:10盆/小时乙的种植速度:8盆/小时丙的种植速度:6盆/小时甲、乙、丙连续工作4小时,总共种植的花草数量为:甲:10盆/小时 × 4小时 = 40盆乙:8盆/小时 × 4小时 = 32盆丙:6盆/小时 × 4小时 = 24盆总共种植的花草数量为:40盆 + 32盆 + 24盆 = 96盆答案:96盆2. 某商店商品原价为120元,现在正在打折促销,降价30%。
数学小升初试题及答案

数学小升初试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方根是4,那么这个数是:A. 16B. 8C. 4D. 2答案:A3. 一个长方体的长、宽、高分别是5cm、4cm、3cm,那么它的体积是:A. 60立方厘米B. 120立方厘米C. 180立方厘米D. 240立方厘米答案:A4. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1D. 0答案:A5. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/9答案:D6. 一个圆的直径是14cm,那么它的周长是:A. 44π厘米B. 28π厘米C. 21π厘米D. 14π厘米答案:B7. 一个数除以1/2等于乘以2,那么这个数是:A. 1/2B. 1C. 2D. 3答案:B8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C9. 一个数的立方等于-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B10. 下列哪个是偶数?A. 2B. 3C. 5D. 7答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数是____。
答案:±52. 一个数的立方是-27,那么这个数是____。
答案:-33. 一个数的倒数是1/3,那么这个数是____。
答案:34. 一个数的绝对值是7,那么这个数可能是____。
答案:±75. 一个圆的半径是7cm,那么它的面积是____。
答案:49π平方厘米三、解答题(每题10分,共50分)1. 计算:(2x + 3) - (x - 4) = ?答案:x + 72. 一个长方体的长是10cm,宽是5cm,高是3cm,求它的表面积。
答案:2(10×5 + 10×3 + 5×3) = 2(50 + 30 + 15) = 190平方厘米3. 一个数的3倍减去它的2倍等于5,求这个数。
小升初数学试卷附参考答案【完整版】

小升初数学试卷一.选择题(共8题,共16分)1.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为()。
A.228°B.144°C.72°D.36°2.一个圆柱的侧面展开图如图,那么这个圆柱可能是下列图中的()。
A. B. C.3.彩电按原价格销售,每台获利60元;现在降价销售,结果彩电销售量增加一倍,获得的总利润增加了0.5倍,则每台彩电降价了()元。
A.5B.10C.15D.204.圆锥的体积一定,圆锥的底面积与高成()比例。
A.正B.反C.不成5.小英把1000元按年利率2.25%存入银行,两年后,她应得本金和利息一共多少元?正确的列式是()。
A.1000×2.25%B.(1000+2.25%×1000)×2 C.1000×2.25%×2+10006.把一个图形先按2:1的比放大,再把放大后的图形按1:3的比缩小,最后得到的图形与原图形相比,()。
A.放大了B.缩小了C.大小不变D.不确定7.如果A×2=B÷3,那么A:B=()。
A.2:3B.1:6C.3:28.一种皮衣,原价1200元,现在85折出售.现在一件这样的皮衣()。
A.1002元B.1000元C.696元D.1020元二.判断题(共8题,共16分)1.一个圆柱体的底面直径扩大为原来的2倍,高不变。
这时,圆柱体的表面积也会扩大为原来的2倍。
()2.一件衣服打八折,就是指衣服的现价是原价的80%。
()3.数轴上的点表示的数,左边的数总比右边的数小。
()4.向南走100米,记作“+100” 。
()5.圆柱的表面积等于底面周长乘以高。
()6.正方体、长方体和圆柱体的侧面积都可以用底面周长乘高来计算。
()7.圆的直径一定,圆的周长与圆周率成正比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学试卷试题及答案
小升初数学试卷试题及答案
一、填空题。
(每题2分,共20分)
1.十八亿四千零五十万九千写作( ),改写成以万作单位写作( )。
2.5吨820千克=( )千克, 100分钟=( )小时。
3. =16÷( )=( ):10=( )%=( )成。
4.在3.14,1 ,,162.5%和1 这五个数中,最大的数是( ),相等的数是( )。
5.三个大小相等的正方形,拼成一个长方形,这个长方形的周长是24厘米,每个正方形的边长是( )厘米,这个长方形的面积是( )平方厘米。
6.有两堆苹果,假如从第一堆拿9个放到第二堆,两堆苹果的个数相等;假如从第二堆拿12个放到第一堆,那么第一堆苹果的个数是第二堆苹果个数的2倍。
原来第一堆有苹果( )个,第二堆有苹果( )个。
7.一根长1米2分米的木料,把它截成两段,外表积增加了24平方厘米,这根木料原来的体积是( )平方厘米。
8.某人到十层大楼的第十层办事,他从一层到第五层用64秒,那么以同样的速度往上走到第十层,还需要( )秒才能到达。
9.在一个盛满水的底面半径是20厘米的圆柱形容器里,有一个底面半径是10厘米的钢铸圆锥体浸没在水中。
取出圆锥后,容器内的水面下降5厘米。
这个圆锥高( )厘米。
10.一辆小车从A城到B城需用10小时,一辆货车从B城到A城需用15小时。
这两辆车分别从A、B两城同时出发,相向开出,在离B城20千米处相遇,那么A、B两城相距( )千米。
二、判断。
(对的打“√”,错的打“×”)(5分)
1.一个等腰三角形的顶角是锐角,那么这个三角形一定是锐角三角形。
( )
2.三位小数a准确到百分位是8.60,那么a最大为
8.599。
( )
3.一根铁丝长240厘米,焊成一个长方体框架,长、宽、高的比是3∶2∶1,它的体积是6000立方厘米。
( )
4.侧面积相等的两个圆柱,外表积也一定相等。
( )
5.两个自然数的公有质因数的积一定是这两个数的最大公因数。
( )
三、选择正确答案的序号填入括号内。
(每题2分,共10分)
1.以下表达正确的选项是( )。
A、零除以任何数都得零;
B、假如 = ,那么X与Y成反比例;
C、圆锥体的体积等于圆柱体的体积的 ;
D、不相交的两条直线叫平行线。
2.圆的半径与周长( )关系。
A、成正比例
B、成反比例
C、不成比例
D、以上答案都不对
3.某工厂要绘制反映年产值的数量和增长情况统计图,应该选用( )比拟适宜。
A、条形统计图
B、折线统计图
C、扇形统计图
D、以上答案都可以
4.在比例尺是1:30000000的地图上量得甲、乙两地相距
5.5厘米,一辆汽车按3:2分两天行完全程,那么第二天行的路程是( )
A、6.6千米
B、66千米
C、660千米
D、6600千米
5.一种商品的价格先提价30%后,再打7折出售,如今售价是原价的( )
A、70%
B、100%
C、109%
D、91%
四、计算题(共35分)
1.直接写得数(每题0.5分,共6分)
0.03×0.6= 0.375÷ = 1.25×0.4×2.5×80=
20-10 = 36×( - )= 21.82- -4 =
144× = 125×56= 13 +4.37+5.63+6 =
= 7.2÷0.4= 777×9+111×37=
2.计算下面各题,能简便计算的要简便计算。
(每题3分,共15分)
(1)7 -(2 -2.3) (2)4.85×3 -3.6+6.15×3
(3)0.025×999×2.8×40÷2
(4)
(5)(1- )(1- )(1- )……(1- )
3.求x的值(每题3分,共6分)
(1)4x-25%x=18.75 (2) : =1 :x
4. 列式计算(每题4分,共8分)
(1)7除以2 的商减去4.5乘以的积,差是多少?
(2)一个数的比270的30%多75,求这个数(用方程解)
五、如图在平行四边形内画了一些直线,把平行四边形分成八块,其中三块的面积(如图),那么图中阴影局部的面积是多少?(6分)
六、解答下面问题。
(每题4分,共24分)
1.某工厂去年总产值2300万元,比前年增加15%,这个工厂前年的总产值是多少万元?
2.某工程队俢一段路,第一天俢完全程的,第二天比第一天多修60米,这时已修的路程与剩下的路程的比是7:3,这段路共多少米?
3.甲、乙两车同时从A、B两地相向而行,在距B地68千米处相遇,两车各自到达对方车站后,立即返回原地,途中又在距A地52千米处相遇。
求两次相遇地点之间的间隔。
4.在含盐40%的盐水中参加80千克水,盐水含盐30%,再参加多少千克盐,盐水含盐50%?
5.甲、乙两车同时从两地沿公路相对开出,甲车平均每小时行48千米,乙车平均每小时行54千米,相遇时两车距两地中点36千米。
两地相距多少千米?
6.六(1)班50位人同学去划船,大船每条可以坐6人,租金10元;小船每条可以坐4人,租金8元。
假如你是领队,准备怎样租船?怎样租最省钱呢?
【参考答案】
一、1.1840509000,184050.9 2. 5820,1 3. 20,8,80,八 4. ,1 和162.5%
5.正方形边长:24÷(3+1)÷2=3(㎝),长方形面积:
(3×3)×3=27(㎝2)
6.设第一堆有x个,第二堆有x-9×2。
x+12=( x-9×2-12) ×2,x=72, x-9×2=54
7.24×120=2880(平方厘米)
8.64÷(5-1)×(10-5)=70(秒)
9.3.14×202×5×3÷(3.14×102)=60(厘米)
10.20÷[1÷( )× ]=50(千米)
二、1.√ 2.×3.√4.×5.√
三、1.B 2.A 3.B 4.C 5.D
四、1.0.018,3,100,9.4,2,16.82,142 ,7000,30,3,18,111000
2.(1)原式=7 -2 +2.3=7.3;(2)原式=
3.6×(
4.85-
1+6.15)=36
(3)原式=(0.025×40)×999×(2.8÷2 )=999
(4)原式= = = =1
(5)原式= × × ×…… = × × …… = × × ×…… = × =
3. (1)x=5,(2)x=
4.(1)7÷2 -4.5× =1
(2) x-270×30%=75,x=195
五、长方形面积,13+①+49+35+②= 长方形面积
①+阴影局部面积+②= 长方形面积
阴影局部面积=13+49+35=97
六、1.2300÷(1+15%)=2000(万元)
2. 60÷( =300(米)
3. 第2次相遇时,两车共行了68×3=204(千米),AB两地长:204-52=152(千米),两次相遇地点之间的间隔:152-52-68=32(千米)
4. 设40%的盐水有x千克。
40%x=(80+x)×30%,x=240(千克);设放入y千克盐。
240×30%+y=(240+y)×50%,y=96(千克)
5. 36×2÷(54-48)=72÷6=12(小时),
(48+54)×12=102×12=1224(千米)
6. 尽量租大船,50÷6=8(条)……2(人),大船:8-
1=7(条),小船:(6+2)÷4=2(条)。