永磁铁氧体的制备工艺
铁氧体磁铁制造工艺流程

铁氧体磁铁制造工艺流程铁氧体磁铁制造工艺流程一、概述铁氧体磁铁是一种常见的永磁材料,具有高磁能积、高矫顽力、高稳定性等优点,广泛应用于电机、声学器件、传感器等领域。
本文将介绍铁氧体磁铁的制造工艺流程。
二、原材料准备1. 铁氧体粉末:选择适当的铁氧体粉末是制造高质量铁氧体磁铁的关键。
常用的粉末有SrFe12O19、BaFe12O19等。
2. 粘结剂:粘结剂可以增加粉末之间的黏着力,提高成型后的强度和韧性。
常用的粘结剂有聚乙烯醇(PVA)、聚乙烯(PE)等。
3. 溶剂:溶剂用于稀释粘结剂,使其易于涂覆在粉末表面。
常用的溶剂有水、丙酮等。
4. 添加剂:添加剂可以改善材料性能,如增加导电性能或防腐蚀性能。
常用的添加剂有氧化铁、钛酸酯等。
三、成型1. 压制:将铁氧体粉末和粘结剂混合均匀后,采用压制工艺将其压成所需形状的坯料。
压制时需要控制压力和温度,以确保坯料的致密性和稳定性。
2. 烧结:将压制好的坯料置于高温炉中进行烧结。
烧结过程中,粉末颗粒之间会发生化学反应,形成致密的晶体结构。
同时,粘结剂也会被热分解并挥发出去。
烧结温度和时间需要根据具体材料而定。
四、加工1. 切割:将烧结好的铁氧体坯料切割成所需尺寸的小块。
2. 磨削:对切割好的小块进行表面处理和修整,以获得平整光滑的表面。
3. 磁化:通过电流或强磁场对铁氧体磁铁进行磁化处理。
在这个过程中,材料内部会产生一定方向上的自发极化,并形成一个稳定的磁场。
五、检测和质量控制1. 磁性检测:通过磁性测试仪器检测铁氧体磁铁的磁场强度、剩磁、矫顽力等指标。
2. 外观检测:对铁氧体磁铁进行外观检查,检查是否有裂纹、毛刺等缺陷。
3. 包装和贮存:将合格的铁氧体磁铁进行包装,并在干燥、无尘的环境中储存。
同时,要注意避免与其他磁性物品接触,以免影响其性能。
六、结语以上就是铁氧体磁铁制造工艺流程的详细介绍。
在实际生产中,需要根据具体情况进行调整和改进,以确保产品质量和生产效率。
铁氧体永磁和稀土永磁

铁氧体永磁和稀土永磁铁氧体永磁和稀土永磁是目前最为常见和广泛应用的两种永磁材料。
它们具有不同的物理和化学特性,适用于不同的应用领域。
下面将分别介绍铁氧体永磁和稀土永磁的特性、制备工艺、应用以及优缺点。
1. 铁氧体永磁铁氧体永磁材料是由铁、镁、铁氧体等元素组成的材料。
它具有以下特点:a) 矫顽力高:铁氧体永磁具有高的矫顽力(约为300-400千安/米),能够产生强磁场。
b) 热稳定性好:铁氧体永磁的居里温度高,可达到七百度以上,能够在高温环境下保持较高的磁性能。
c) 价格便宜:相对于稀土永磁材料,铁氧体永磁的价格较低,成本相对较低。
d) 抗腐蚀性能好:铁氧体永磁材料具有良好的抗腐蚀性能,可在一些恶劣环境下使用。
铁氧体永磁的制备工艺包括:熔铸法、粉末冶金法和溶胶-凝胶法等。
其中,粉末冶金法是最常用的制备方法,它通过将铁氧体微粉与粘结剂混合,经压制、烧结和磁化等工序制备成终产品。
铁氧体永磁广泛应用于电机、发电机、传感器、扬声器等领域。
例如,在电机领域,铁氧体永磁被用于制造小型电机、风力发电机组等;在电子领域,铁氧体永磁被用于制造磁头和磁带等。
铁氧体永磁的优点包括价格低廉、磁性能稳定和抗腐蚀性能好。
然而,铁氧体永磁的矫顽力相对较低,且易受磁场温度和震动影响,因此在某些特殊应用环境下会有一定的局限性。
2. 稀土永磁稀土永磁材料是由稀土元素和过渡金属组成的材料。
稀土永磁具有以下特点:a) 高矫顽力:稀土永磁具有非常高的矫顽力(可超过1500千安/米),能产生更强的磁场。
b) 示磁性能好:稀土永磁材料在外加磁场下,具有较高的剩余磁感应强度和高的磁导率。
c) 温度稳定性好:稀土永磁的居里温度较高(通常在300-600摄氏度之间),能在较高温度下保持较高的磁性能。
稀土永磁的制备工艺主要有:粉末冶金法、溶液法、热磁法等。
其中,粉末冶金法是最常用的制备稀土永磁的方法,它通过将稀土金属与过渡金属置于真空和惰性气氛下进行合金化处理,再经过磨碎和形成等工艺制备成终产品。
永磁铁氧体的制备工艺

永磁铁氧体的制备工艺
包括:
1、原料准备
永磁铁氧体的制备中,需要准备Fe3O4,碳,硫等原料,Fe3O4主要为氧化铁的双氧化物,通常使用熔炼方法从氧化铁中制得,同时还可以从廉价的铁矿石中提取。
碳正常使用称重的方法添加,常用的有石墨和碳酸钙,具体比例可根据制备要求进行调整,硫常添加在预制体中,常用的有硫酸钠和硫酸铵等。
2、制备工艺
(1)混合
将上述原料按照制备要求的比例混合,一般采用旋转搅拌机搅拌,对预制体中的硫添加量要控制好,过多或不足均会影响最终的永磁性能。
(2)烧制
将上述混合物通过冷却的压印机加热压制成颗粒状,然后放入电镀槽中,烧制时,槽内的溶液一般使用的是氯化钠或氢氟酸,烧制温度一般在400℃左右,时间为8—10小时,烧制反应完成后,颗粒会变成黑色。
(3)粉碎
将烧制完成的颗粒碎粉,一般采用超微粉碎机或者球磨机进行粉碎处理,粉碎后颗粒的直径可以达到数微米级别,对完成后永磁性能有着非常大的帮助。
(4)精炼。
铁氧体永磁材料

铁氧体永磁材料铁氧体永磁材料是一类具有优良永磁性能的材料,广泛应用于电机、传感器、磁性材料等领域。
本文将介绍铁氧体永磁材料的基本特性、制备工艺、应用领域和发展趋势。
铁氧体永磁材料具有高矫顽力、高剩磁、高磁能积等优良磁性能,是目前应用最为广泛的永磁材料之一。
其主要成分为氧化铁和一种或多种稀土元素,如钡、镧、钕等。
这些稀土元素的加入可以显著改善铁氧体的磁性能,提高其矫顽力和磁能积,使其成为优秀的永磁材料。
铁氧体永磁材料的制备工艺主要包括粉末冶金法、溶胶-凝胶法和烧结法等。
其中,粉末冶金法是目前应用最为广泛的一种制备工艺,通过混合、压制和烧结等步骤,可以制备出具有良好磁性能的铁氧体永磁材料。
铁氧体永磁材料在电机、传感器、磁性材料等领域有着广泛的应用。
在电机领域,铁氧体永磁材料可以制成各种形状和规格的磁铁,用于直流电机、交流电机、步进电机等各种类型的电机中,具有体积小、重量轻、磁能积高等优点。
在传感器领域,铁氧体永磁材料可以制成磁传感器,用于测量磁场强度、位置、速度等参数,具有灵敏度高、稳定性好等特点。
在磁性材料领域,铁氧体永磁材料可以制成磁芯、磁条等材料,用于电磁感应、变压器、电磁波屏蔽等领域,具有磁导率高、磁滞损耗小等优势。
随着科学技术的不断进步,铁氧体永磁材料的研究和应用也在不断发展。
未来,随着新材料、新工艺的不断涌现,铁氧体永磁材料的磁性能、稳定性、可加工性等方面将得到进一步提升,其在电机、传感器、磁性材料等领域的应用将更加广泛。
总之,铁氧体永磁材料具有优良的磁性能和广泛的应用前景,是一类具有重要意义的功能材料。
通过不断的研究和开发,铁氧体永磁材料将在未来发挥更加重要的作用,推动电机、传感器、磁性材料等领域的发展。
永磁铁氧体的制备工艺

永磁铁氧体的制备工艺一、原料选取1.氧化物原料:通常使用Fe2O3、Fe3O4作为铁源,Co3O4作为钴源。
2.氮化物原料:一般使用氮化铁作为氮源。
3.稀土原料:利用稀土元素的高磁晶各向异性,常使用氧化稀土和相应的稀土钴化合物作为稀土源。
二、配料1.按照化学计量比例将各种原料精细研磨,并通过筛网分选得到均匀的粉末。
2.将各种原料粉末按照一定比例进行混合,通常由铁源、稀土源和钴源组成。
三、烧结1.将混合粉末充分搅拌均匀,并进行压片成坯。
通常采用等静压方法,在模具中施加一定压力,使混合粉末在模具中成型。
2.将坯体进行预烧处理,去除一部分有机物质,并形成初步的金属氧化物。
3.进行烧结处理,将坯体加热至一定温度下,使金属氧化物发生化学反应,形成金属间化合物和磁性颗粒。
4.控制烧结温度和时间,以保证产生足够的磁晶各向异性和颗粒尺寸的增长。
四、后处理1.针对烧结后的材料进行磨削、超声清洗等处理,以去除表面的污染物和不良颗粒。
2.进行磁化处理,通过外加磁场将材料磁化,使其具有永久磁性。
3.进行磁性能测试,进行磁感强度、矫顽力和剩余磁感应强度等性能测试,并根据需要对材料进行优化。
永磁铁氧体的制备工艺繁多,其中最常用的是传统的陶瓷工艺和后来发展起来的粉末冶金工艺。
陶瓷工艺制备的永磁铁氧体具有较高的矫顽力和剩余磁感应强度,但磁晶各向异性较低;而粉末冶金工艺制备的永磁铁氧体具有较高的磁晶各向异性,但矫顽力和剩余磁感应强度较低。
目前,研究人员正在努力寻找新的制备工艺,以获得更优异的永磁铁氧体性能。
综上所述,永磁铁氧体的制备工艺包括原料选取、配料、烧结和后处理等步骤。
这些工艺在生产过程中需要严格控制参数和条件,以获得理想的微观结构和磁性能。
随着技术的不断发展,相信永磁铁氧体的制备工艺还会不断创新和改进,以满足不同领域对其性能的需求。
永磁铁氧体预烧料的加工工艺及方法

永磁铁氧体预烧料的加工工艺及方法永磁铁氧体(Permanent Magnet Ferrite)是一种常用的磁性材料,具有高磁感应强度、优良的耐腐蚀性和热稳定性等特性。
在制备永磁铁氧体磁体之前,需要首先制备永磁铁氧体预烧料,然后通过烧结等工艺将其转化为磁体材料。
原料选择与准备:永磁铁氧体预烧料的主要成分为铁氧体和结合剂。
铁氧体的主要成分有镍、锌、尤其是氧化铝和钡等。
结合剂可以选择有机物或无机物,如聚乙烯醇(PVA)、羟丙基甲基纤维素醚(HPMC)等。
这些原料需要根据成品永磁铁氧体的性能要求选择,并进行准备。
混合:将原料按照一定比例进行混合。
混合可以采用机械搅拌、称重、喷洒等方法。
通过混合可以保证各种成分得到均匀分布,确保后续工艺的顺利进行。
均化:将混合后的原料进行均化处理。
均化是为了消除原料中的团聚现象,使颗粒得到更好的分散状况。
常用的均化方法有机械研磨、超声波均化等。
湿法制粒:将均化后的原料与添加一定量的水或有机溶剂进行混合,形成可塑性较好的湿混合物。
然后通过制粒机等设备对湿混合物进行制粒。
制粒的目的是使混合物得到更好的成型性和流动性。
干燥:将制粒后的永磁铁氧体预烧料进行干燥,以去除水分或溶剂。
干燥的方法可以有自然干燥、烘箱干燥、真空干燥等。
干燥的温度和时间需要根据具体情况确定。
细粉磁性颗粒制备:将干燥后的永磁铁氧体预烧料粉末进行进一步处理,制备细粉磁性颗粒。
常用的制备方法有磁力分选、水力分选等。
此过程的主要目的是提高预烧料颗粒的磁性能和均匀性。
综上所述,永磁铁氧体预烧料的制备工艺包括原料选择与准备、混合、均化、湿法制粒、干燥、细粉磁性颗粒制备等环节。
这些工艺步骤的顺序和参数需要根据具体情况进行调整和优化,以确保永磁铁氧体预烧料的质量和性能。
同时,制备过程中需要严格控制工艺参数,确保原料的均匀分布和颗粒的一致性。
最终,制备出的永磁铁氧体预烧料可以通过烧结等工艺转化为磁体材料,用于生产各种永磁铁氧体磁体产品。
铁氧体生产工艺技术——永磁铁氧体的发展过程

课后小结:
❖ 1、国内、国外牌号性能,反映技术水平, ❖ 2、永磁铁氧体的分类及用途 ❖ 3、发展史,当今国际已接近理论值水平的FB9系列
❖ 作业布置: ❖ 1、永磁铁氧体有哪些特点? ❖ 2、永磁铁氧体有哪些种类和基本用途
高Br各பைடு நூலகம்异性铁氧体(钡)
适用于高磁导、价格低且性能 高的器件。如各类扬声器, 磁(发)电机等。
扬声器
高Hc各向异性锶铁氧体
适用于低温环境,大气隙,退磁干扰大的器件,如, 行波管,磁控管磁路等,又如汽车摩托车启动电机等
摩托车启 动电机
摩托 车磁 电机 线圈
汽车电机
我国永磁 铁氧体的 发展,在 几十年内
铁氧体具有磁铅石晶体结构。
1952年 1962年
Went等人制成相当于现今 的各向同性钡铁氧体
湿压磁场成型工艺
世界 上公 认的 永磁 铁氧 体的 发展 过程
磁能积方面大大优于钡铁氧体 70年代 的锶铁氧体大量投产
尤其在 1978年后
AlNiCo类磁钢的主要原料 Co的价格上涨,更加促进了 永磁铁氧体的发展。
永磁铁氧体的发展过程
❖复习上次课重点:
❖铁氧体粉料的制备,除氧化物法,盐类热 ❖分解法,共沉淀制备法以外,其它制备方法: ❖一、溶剂蒸发法 ❖1、冰冻干燥法,2、喷雾干燥法, ❖3、喷雾热分解法 ❖二、金属醇盐水解法 ❖三、溶胶——凝胶法 ❖四、溶盐合成法
新课教学:
第二章 永磁铁氧体 §2、1 永磁铁氧体材料的发展现状
经历了…
双高及高Br、 高Hcj锶铁氧体
适合于各类场合应用 但工艺难度较大。
(1)由钡铁氧体向锶 铁氧体转换 (2)工艺上由干压成型向 湿压磁场成型工艺转换, (3)材料性能由低性能 向国际先进水平高性能转换。
永磁铁氧体预烧料的生产工艺是怎样的

永磁铁氧体预烧料的生产工艺是怎样的1.原料筛选:首先,从供应商处获取适用于永磁铁氧体制备的原料,包括铁氧体粉末、稀土氧化物和其他辅助材料。
原料的选择要基于其化学成分、颗粒大小和磁性能等因素,以确保最终产品的质量和性能。
2.原料研磨:将粗颗粒的原料进行研磨,以获得细致均匀的粉末,以提高后续工艺的可控性。
研磨过程通常使用球磨机或气流磨等设备完成,根据不同原料的特性进行调整。
3.配料和混合:根据永磁铁氧体的化学配方,将粉末原料按一定的比例进行混合和均勻搅拌。
这一过程通常使用高速搅拌机或圆盘式混合机等设备完成,以确保配料的均匀性和一致性。
4.压制成型:将混合后的原料进行压制成型,通常使用粉末冶金压力机完成。
压制过程可以采用模具压制或注射成型等方式,以获得所需的形状和尺寸。
压制过程中需要控制压力和温度等参数,以确保所得的坯体具有一定的密实度和烧结性能。
5.预烧和烧结:将压制成型后的坯体进行预烧处理,以去除有机物和控制晶粒的生长。
预烧通常在氧气氛下进行,温度和时间会根据具体的工艺和配方进行调整。
6.粗磁研磨:将经过预烧处理的坯体进行研磨,以获得理想的粒度和平滑度。
研磨过程通常使用球磨机或研磨机等设备完成。
7.二次成型:将研磨后的预烧料再次进行成型,以获得所需的形状和尺寸。
二次成型可以采用模具压制或注射成型等方式,以进一步提高坯体的密实度和烧结性能。
8.最后烧结:将经过二次成型的坯体进行最后的烧结处理,以实现晶粒的长大和晶界的固相扩散,得到具有优良磁性能和物理性能的成品。
烧结过程通常在氧气氛下进行,温度和时间也会根据具体需求进行调整。
9.检测和包装:对最后烧结的永磁铁氧体进行物性和磁性能的检测,以确保产品符合要求。
合格的产品将经过清洗、包装和标识等工艺,最终通过质检合格后进入市场。
总结:永磁铁氧体预烧料的生产工艺包括原料筛选、原料研磨、配料和混合、压制成型、预烧和烧结、粗磁研磨、二次成型、最后烧结、检测和包装等多个步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 永磁铁氧体磁粉的合成工艺及原理
永磁铁氧体的性能取决于两个方面,一是相成份,与配方,以及原材料的理化性能有很密切关系,对剩磁有重要影响。
二是微结构,合成的工艺往往对产物微结构的起决定作用,不同的合成方法,所生产的永磁铁氧体的微结构差异很大对矫顽力有重要影响。
因此研究铁氧体生产工艺,深入认识其内在规律,可以有效的控制永磁铁氧体的性能,对生产的指导意义巨大。
根据铁氧体磁粉制备方式的不同,可以把永磁铁氧体的生产分为干法合成和湿法合成两类,之后制备磁体的工艺包括成型和烧结基本相同。
干法生产采用氧化物作原料,活性较差,反应程度难以完全,但是工艺简单,应用较为普遍;湿法生产虽然工艺复杂,但由于原料的化学活性较高,铁氧体的磁性能较好,而且还能充分利用各种工业副产品,便于提高质量,降低成本,很有发展前途。
1.3.1 传统的固相合成方法(氧化物法)
图1-1 传统固相合成工艺流程图
Fig.1-1 The conventional solid phase synthesis process process 目前工业生产中主要以氧化铁,氧化锶为原料,在远低于反应物的熔点或它们低共熔点的温度下以分子扩散的形式,达到离子或者原子的重排,生成新的固溶物即锶铁氧体。
反应的温度以及保温时间应该根据原料的特性比如原材料的粒度,纯度,来源进行控制,预烧温度太高或保温时间太长都容易造成合成的铁氧体异常晶粒长大,产生显著的磁畴壁,降低矫顽力,使磁性能恶化;温度太低可能使扩散不充分,铁氧体化过程不完全,通常的反应温度在1220~1280℃之间。
因为固相反应的原料活性较低,通常把第一次合成称为预烧阶段,之后进行球磨,
成型和二次烧结,在成型阶段进行充磁。
因为高温固相法合成永磁铁氧体具有工艺简单,产量大等优点,是当今企业生产永磁铁氧体的最主要方法。
1.3.2 溶胶-凝胶法(Sol-Gel)
溶胶-凝胶法也是目前合成永磁铁氧体使用较多的工艺,按照目前对醇盐水解过程的理解,溶胶的形成过程被概念性的描述如下:即以醇盐为原料,在温和条件下进行水解和缩聚反应,而随着缩聚反应的进行以及溶剂的蒸发,具有流动性的Sol逐渐变粘成为略显弹性的固体Gel,然后再在比较低的温度下烧结成为所合成的材料。
Gel的结构和性质在很大程度上决定了其后的干燥、致密过程,并最终决定材料的性能。
除了通过对反应过程工艺条件的控制来对材料进行裁减外,各种化学添加剂往往被引入到Sol-Gel反应过程中,这些添加剂可以改变水解、缩聚反应速度,改变Gel结构均匀性,同时也能够控制其干燥行为。
这种方法的优点是反应温度低,合成的颗粒粒径小,分布均匀,易实现高纯化,但是该方法本身还不太成熟,干燥时容易开裂,而且成本比较高。
1.3.3 化学共沉淀法
它是在金属盐的工作溶液中加入适量的沉淀剂得到纳米级沉淀物。
该法属于湿法工艺,可在离子水平上混合原料,因此可在低温度下形成细颗粒,该法不需要复杂的设备可通过共沉条件控制颗粒尺寸和形貌,是成本最低的一种湿法工艺。
该法的缺点是粉体的团聚难以克服,因此可采用纳米表面改性的方法,以减弱并消除团聚,如在沉淀体系中加入SDBS(十二烷基磺酸钠)等表面活性剂作稳定剂,但是这样做也难以从根本上消除团聚。
在共沉淀基础上出现的共沉淀-高温助熔法不需要球磨,从而避免了球磨过程中出现的内应力,粒度不均等。
这种方法制备的铁氧体化学组成较均一,而且反应较完全但是容易引入杂质,且不易去除,合成工艺复杂,成本高。
1.3.4 机械球磨法
机械球磨法是利用球磨的作用来促使反应物之间发生物理反应和化学反应形成化合物的方法。
球磨过程中,颗粒塑性变形,内部产生大量缺陷,降低元素
的扩展激活能。
球与粉末颗粒相互撞击,产生大量热量,造成界面升温,从而诱发化学反应. 固相球磨法工艺流程简单,化学成分易于控制,有效地降低合成温度,但是耗能大,反应时间长,容易引入杂质,对设备的材质要求极高,而且球磨过程中有噪声产生。
在粉磨过程中,需要合理选择研磨介质并控制球料比、研磨时间和合适的入料粒度。
固相球磨法能够使高固相合成在室温下进行,被运用在许多分解反应、置换反应和高温固相合成中。
1.3.5 水热法
水热法的原理是在加热,加压的条件下,有些氢氧化物在水中的溶解度要大于其氧化物在水中的溶解度,于是氢氧化物溶于水而析出氧化物,作为反应物的氢氧化物可以预先制备好再加热加压,也可以通过水解反应同时加热加压,即时产生氧化物。
这种方法的特点:(1)可以直接得到结果良好的粉体,无需进行高温燃烧处理和球磨,从而避免了因这些过程可能一起的粉体硬团聚,杂质和缺陷等,而此过程的粉体在烧结过程中表现很强的活性。
(2)易得到合适的化学计量比和晶粒形态。
(3)可使用较便宜的原料,工艺简单,所以该方法属于低能耗,低污染,低投入,且粉体质量好,产量也较高。
1.3.6 自蔓延高温合成法(SHS) [39~40]
SHS制备锶铁氧体是利用原料之间的氧化还原反应释放大量反应热推动反应
持续进行, 当反应物一旦被点燃就不再需要外界热源,反应区产生的热量预热临近反应区(又称预热区)的原料, 当燃烧波到达预热区时, 预热区就会被点燃并开始反应, 反应热又传导到下一个预热区, 这样周而复始地形成良性循环, 直至整个反应完全
用SHS方法合成铁氧体的工艺流程如图1-2。
前处理主要包括干燥,破碎,分级,混配,挤压等,燃烧合成装置包括电热装置,气体加压设备和热真空室;用钨丝线圈通电或者电火花点火等方式局部点燃引然剂(点火温度1500℃
~3000℃连续可调);后处理包括破碎,研磨,分级,有时还需要经过适当温度的退火消除磁粉内应力,促使反应完全。
图1-2 SHS工艺流程图
Fig.1-2 The SHS process
自蔓延方法与传统的合成方法相比具有很多优点:工艺过程极其简单,场地和设备要求低,生产效率高;产物一般是凝聚态,环境污染小;反应的燃烧温度高,能够达到1500℃~3000℃,并且能够通过调整配方来控制反应的温度,达到产物的自净化,生产的产品纯度高,有利于合成耐高温材料;体系自身的化学反应热高,一般不需要补充能量,能耗低;SHS反应在自燃烧和冷却过程中有非常高的温度梯度,在产物中能够产生非常高浓度的缺陷以及非平衡结构,从而使合成材料具有非常高的反应活性。
参考文献:
[26] 张密林,赵华,李茹民. M-型超微铁氧体粉末合成方法的进展[J]. 功能材料,1996,27(3): 202-205.
[16] 许献云,曾恒兴. 钡铁氧体制备工艺简介[J]. 磁记录材料,1995,2:21-23.
[17] 徐春旭,李茹民,景晓燕,等. 超微铁氧体磁性材料的制备技术[J]. 应用科技,2004.3,31(3): 57-59.
[18] 郭睿倩,李洪桂,孙培梅,等. 不同稀土元素掺杂M型钡铁氧体超微粉末的磁性研究[J].功能材料,2001.32(6): 588~560.
[19] 范薇. 钡磁铅石型铁氧体纳米磁粉的制备[J]. 矿冶,1998,7(3): 62-65.
[20] 刘先松,钟伟,顾本喜,等. 稀土La2+离子取代对M型锶铁氧体的结构和磁性的影响[J]. 稀有金属材料与工程,2002.10,31(5): 385-388.
[21] Ketov S V, Yu Yagodkin D A, Lebed L, et al. Structure and magnetic properties of nanocrystalline SrFe12O19alloy produced by high-energy ball milling and annealing[J]. J. Magn. Magn. Mater, 2006.5,300(1): e479-e481.
[22] Litsardakisa G, Manolakis I, Serletis C. Effects of Gd substitution on the structural and magnetic properties of strontium hexaferrites[J]. J Magn. Magn. Mater, 316 (2007): 170–173.
[23] Kupferling M, Flores V C, Grossinger R. Preparation and characterization of LaFe12O19 hexaferrite[J]. J.Magn.Magn.Mater, 290-291 (2005): 1255–1258.
[24] Garcia-Cerda L A, Rodriguez-Fernandez O S, Resendiz-Hernandez P J. Study of SrFe12O19synthesized by the sol–gel method[J]. p. 369 (2004): 182–184.。