数学分析8不定积分总练习题
不定积分典型例题

不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式. 例1、求 dx x x x ∫−)11(2解 原式= C x x dx x x ++=−∫−41474543474)(例2、求 dx e e x x ∫++113解 原式= C x e e dx e e x xx x ++−=+−∫2221)1( 例3、求 dx xx ∫22cos sin 1解 原式 ∫∫∫+=+=dx x dx x dx x x x x 222222sin 1cos 1cos sin cos sin C x x +−=cot tan 例4、 ∫dx x2cos 2 解 原式= C x x dx x ++=+∫2sin 2cos 1 例5、 dx xx ∫+221 解 原式∫∫+−=+−+=dx x dx x x )111(111222C x x +−=arctan 注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)C x G Cu G duu g dxx x g dx x f ux ++====∫∫∫=)]([)()()(')]([)()(ϕϕϕϕ还原求出令凑成在上述过程中,关键的一步是从被积函数)(x f 中选取适当的部分作为)('x ϕ,与dx 一起凑成 )(x ϕ的微分 du x d =)(ϕ且 ∫du u g )(易求.例1、求 ∫dx xxcos tan 解 原式= ∫∫−=x x xd dx x x x cos cos cos cos cos sin C xx d x +=−=−∫cos 2cos )(cos 23 例2、求 ∫−dx xx x 2arcsin解 原式)()(1arcsin 211arcsin 2x d x x dx xxx ∫∫−=⋅−=C x x d x +==∫2)(arcsin )(arcsin arcsin 2注)(21x d dx x= 例3、求 ∫−−dx xx 2491解 原式∫∫−−+−=−)49()49(81)2(3)2(21221222x d x x x dC x x x x x d +−+=−+−=∫222494132arcsin 214941)32(1)32(21例4、求 ∫+⋅+dx xx x 2211tan解 原式= C x x d x ++−=++∫|1cos |ln 11tan 222例5、求 dx x x x ∫−−12解 原式= ∫∫∫−+=−−−+dx x x dx x dx x x x x x 1)1()1(22222 C x x x d x x +−+=−−+=∫2323223)1(313)1(1213例6、求 ∫+dx xtan 11解 原式= ∫∫+−+=+dx xx xx dx x x x sin cos sin cos 1(21cos sin cos C x x x x x d x x x +++=⎥⎦⎤⎢⎣⎡+++=∫|)sin cos |ln (21)sin (cos sin cos 121 例7、求 ∫−+−dx xxx 11ln 112 解 原式=C xx x x d x x +−+=−+−+∫11ln 41)11(ln 11ln 212 例8、求 ∫+dx e x11解 原式= ∫∫∫+−=+−+dx e e dx dx e e e x x x xx 111 C e x e d edx xx x++−=++−=∫∫)1ln()1(11例9、求 ∫−+dx e e xx 1解 原式= C e e d e dx e e x x x x x +=+=+∫∫arctan )()(11122 例10、求 ∫+dx xxsin 1sin解 原式= ∫∫∫−−=+−dx xxdx dx x 2cos sin 1)sin 111( dx xxdx x x ∫∫+−=22cos sin cos 1C x x x ++−=sec tan 例11、求 ∫−xx dxln 32解 原式 )(ln )ln 32(21x d x −∫−=C x x d x +−+−⋅−=−−−=∫−2121)ln 32(121131)ln 32()31()ln 32( C x +−−=ln 3232例 12、求 ∫+dx xb x a 2222cos sin 1解 原式= ∫∫+=+)tan ()tan (111)(tan tan 12222x badx ba ab x d xa b C x baab +=)tan arctan(1 例13、求 ∫++dx x x 1164解 原式=∫∫∫+++−=+++−dx x x dx x x x dx x x x x 232322226224)(1)(1)(11 C x x dx x dx x ++=+++=∫∫33232arctan 31arctan )(113111 例14、求 ∫+dx x x )1(18解 原式=∫∫∫+−=+−+dx x x dx x dx x x x x 8788811)1(1C x x ++−=)1ln(81||ln 8例15、求 ∫+−−dx x x x 54232解 原式= dx x x x x x x d ∫∫+−++−+−541454)54(23222∫+−−++−=1)2()2(4|54|ln 2322x x d x x C x x x +−++−=)2arctan(4|54|ln 232 注 由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形如 ∫++dx cbx ax 21的积分(将分母配方,再凑微分). 例16、已知 2ln )1(222−=−x x x f ,且 x x f ln )]([=ϕ,求 ∫dx x )(ϕ.解 因为 1111ln )1(222−−+−=−x x x f ,故 11ln )(−+=x x x f ,又因为x x x x f ln 1)(1)(ln)]([=−+=ϕϕϕ,得x x x =−+1)(1)(ϕϕ,解出11)(−+=x x x ϕ,从而C x x dx x dx x x dx x +−+=−+=−+=∫∫∫|1|ln 2)121(11)(ϕ 例17、求 ∫dx x4cos 1解 原式C x x x d x x xd ++=+==∫∫322tan 31tan tan )tan 1(tan sec例18、求 ∫++dx x x x2)ln (2ln 1 解 原式=C x x x x x x d +=+∫)2ln arctan(21)ln (2)ln (2三、第二类换元法设 )(t x ϕ=单调可导,且0)('≠t ϕ,已知 C t F dt t t f +=∫)()(')]([ϕϕ,则C x F Ct F dt t t f dxx f x t t x ++==−===∫∫−)]([)()(')]([)(1)()(1ϕϕϕϕϕ还原令选取代换 )(t x ϕ=的关键是使无理式的积分化为有理式的积分(消去根号),同时使 dt t t f ∫)(')]([ϕϕ易于计算.例1、求 ∫−+221)1(xx xdx解 令 tdt dx t x cos ,sin ==原式=∫∫−−=+t td t t tdt t 22cos 2cos cos )1(sin cos sin t d tt cos )cos 21cos 21(221∫++−−= C xx C t t +−−−+−=+−+−=221212ln 221cos 2cos 2ln 221例2、求 ∫+241xxdx解 令 tdt dx t x 2sec ,tan ==原式=t d t t t d ttt tdt t t tdt sin )sin (sin sin sin sin 1sin cos sec tan sec 24424342∫∫∫∫−−−=−==⋅ C xx x x C t t ++++−=++−=)1(3)1(sin 1sin 13123323 例3、求 dx x x ∫−229解 令 t x sec 3=,则 tdt t dx tan sec 3⋅=原式= ∫∫∫−==⋅⋅dt t t dt tttdt t t t )cos (sec sec tan tan sec 3sec 9tan 3221sin |tan sec |ln C t t t +−+=12222ln C xa x a a x a x +−−−+=C xa x a x x +−−−+=2222ln 例4、求 ∫+dx x x )2(17解 令 t x 1=,则dt tdx 21−=,原式∫∫∫++−=+−=−+=)21(21114121)1(2777627t d t dt t t dt t ttC x x C t +++−=++−=||ln 21|2|ln 141|21|ln 14177 注 设n m ,分别为被积函数的分子,分母关于x 的最高次数,当1>−m n 时,可用倒代换求积分.例5、求 dx x xx ∫−+1122解 令t x 1=,dt tdx 21−=原式 ∫∫−+−=−−+=dt t t dt t t t t 222211)1(11111∫∫−−+−−=22212)1(11t t d dt tC xx x C t t +−−=+−+−=1arcsin 11arcsin 22例6、求 dx xx x∫−432解 原式 ∫∫∫−⋅=−=⋅−==dt t t t dt t t dt t t t t tx dt t dx 11211212541051411386121211令∫∫−++=⋅−+−=5554510)111(51211112dt t t dt t t t C t t t +−++=|1|ln 51251210125510 C x x x +−++=1ln 5125125612512565例7、求 ∫+xedx 1解 令t e x =+1,12−=t e x ,dt t tdx 122−=原式= C t t dt t dt t t t ++−=−=−⋅∫∫11ln 11212122C e e x x +++−+=1111ln例8、求 ∫+dx xx xln 1ln解 令x t ln 1+=原式∫∫−=+=dt tt x d x x 1ln ln 1lnC x x C t t dt tt ++−=+−=−=∫ln 1)2(ln 32232)1(2123例9、求 dx x x ∫++−+1111 解 令 tdt dx t x t x 2,1,12=−==+因为原式dx xx x x dx x x x ∫∫+−+=+−+=12||ln 2122而 ∫∫∫−+=−=+dt t t dt t dx x x 111(2121222 C x x x C t t t +++−+++=++−+=1111ln 1211ln2原式=C x x x x x +++−+−+−+1111ln214||ln 2=C x x x +++++−11ln 414四、分部积分法分部积分公式为 ∫∫−=vdx u uv dx uv ''使用该公式的关键在于 ',v u 的选取,可参见本节答疑解惑4. 例1、求 ∫dx e x x 3解 原式=x x x x x x de x e x e x de x e x de x ∫∫∫+−=−=63323233 C e xe e x e x x x x x +−+−=66323 例2、求 ∫dx xx 2cos 22 解 原式∫∫+=+=xdx x x dx x x cos 2161)cos 1(21232 ∫∫−+=+=xdx x x x x x d x x sin sin 2161sin 21612323 ∫∫−++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323 C x x x x x x +−++=sin cos sin 216123 例3、求 ∫dx e x 3解 原式C e te e t det dt e t t t t tttx dtt dx ++−==∫∫==66333222332令C eex ex xxx++−=333663332例4、求 ∫dx x )cos(ln解 原式 ∫+=dx x x x )sin(ln )cos(ln∫−+=dx x x x x x )cos(ln )sin(ln )cos(ln移项,整理得原式C x x x++=)]sin(ln )[cos(ln 2注 应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:∫∫xdx e xdx e xx ββααsin cos 或例5、求 ∫++dx x x )1ln(2解 原式 dx x x x x x ∫+−++=221)1ln(C x x x x ++−++=221)1ln(例6、求 ∫dx xx23ln解 原式= ∫∫−−=−=1(ln 3ln )1(ln 233xxd x x x xdC x x x x x x x x xd xx x x +−−−−=⎥⎦⎤⎢⎣⎡+−−=∫6ln 6ln 3ln )1(ln 2ln 3ln 2323 例7、推导 ∫+dx a x n)(122的递推公式 解 令 ∫+=dx a x I nn )(122∫++−+++=dx a x a a x n a x x I n n n 12222222)(2)(∫++−++=dx a x na nI a x x n n n 122222)(122)(122222)(+−++=n n nI na nI a x x ⎥⎦⎤⎢⎣⎡−++=+n nn I n a x xna I )12()(212221 ⎥⎦⎤⎢⎣⎡−++−=−−11222)32()()1(21n n n I n a x xa n I 例8、推导 ∫=xdx I n n tan 的递推公式.解 ∫⋅=−xdx x I n n 22tan tan ∫−⋅=−dx x x n )1(sec tan 22∫∫−−−⋅=xdx xdx x n n 222tan sec tan 2122tan 11)(tan tan −−−−−−=−=∫n n n n I x n I x xd 注 应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式. 例9、已知)(x f 的一个原函数是 2x e −,求 ∫dx x xf )(' 解 原式C e x xf dx x f x xf x xdf x +−=−==−∫∫2)()()()( 例10、求 ∫+dx x x x )1ln(arctan 2解 因为 ∫+dx x x )1ln(2∫++=)1()1ln(2122x d x C x x x +−++=22221)1ln()1(21 所以 原式= ∫⎥⎦⎤⎢⎣⎡−++22221)1ln()1(21arctan x x x xd[]∫⎥⎦⎤⎢⎣⎡+−+−−++=2222221)1ln(21arctan )1ln()1(21x x x x x x x []C x x xx x x x +++−−−++=23)1ln(23)1ln()1(arctan 212222 注 本题是三类函数相乘的形式,这类问题大多采用本题的方法.例11、求 ∫+dx x xe x)1(2arctan 解 令 tdt dx t x 2sec ,tan ==原式dt e t t dt tte t t t ∫∫=⋅=cos sin sec sec tan 42 C t t e dt te t t+−==∫)2cos 2(sin 1012sin 21C x x x e x ++−+=)1(5)1(22arctan 例12、求 xdx x x arctan 122∫+ 解 原式= xdx x arctan )111(2∫+−∫∫+−=xdx x dx x arctan 11arctan 2 C x x x x +−+−=22)(arctan 21)1ln(21arctan例13、求 ∫−+⋅dx x x x x 22211arcsin 解 令 tdt dx t x t x cos ,arcsin ,sin ===,原式 ∫∫∫+=⋅+=tdt dt t ttdt tt t t 222sin cos cos sin )sin 1(2221cot cot 21)cot (t tdt t t t t td ∫∫++−=+−= C t t t t +++−=221|sin |ln cosC x x x x x +++−−=22)(arcsin 21||ln arcsin 1注 直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用. 五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分: (1) C a x A dx ax A+−=−∫||ln (2) )1()(11)(1≠+−−−=−−∫n C a x n A dx a x A n n (3) ∫=∫∫+⎥⎦⎤⎢⎣⎡−++=+++−n upx ap q nna u dup q p x dxdx q px x dx )(44)2()(2224422222=令=令 (4) ∫∫++−+++−−=+++−n n n q px x dxp a q px x n dx q px x dx a x )()2()(1)1(21)()(2122,其中 042<−q p .这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的. 例1、求 ∫+−322x x dx解 原式= C x x x d x dx +−=−+−=+−∫∫21arctan 21)1(2)1(2)1(22例2、求 ∫++++dx x x x x 4545242 解 原式= ∫∫++++++dx x x xdx x x x )4)(1(5)4)(1(422222 2222222)4111(65arctan )4)(1(251dx x x x x x dx x dx ∫∫∫+−++=++++= C x x x ++++=41ln 65arctan 22 本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,设 41454522242+++++=++++x DCx x B Ax x x x x ,通分后应有 )1)(()4)((45222+++++=++x D Cx x B Ax x x比较等式两端x 的同次幂的系数,得0=+C A ,0=+D B ,54=+C A ,44=+D B 由此, 1,35,1,35−=−===D C B A故原式= dx x x x x ∫⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+−−+++4135113522C x x x ++++=arctan 41ln 6522 例3、求 ∫−13x xdx解 设11123++++−=−x x C Bx x A x x ,通分后应有)1)(()1(2−++++=x C Bx x x A x 比较等式两端x 的同次幂的系数,得0 ,1 ,0=−=+−=+C A C B A B A ,由此,31,31,31=−==C B A故原式= dx x x x x ∫⎥⎦⎤⎢⎣⎡++−−−)1(31)1(312∫∫∫+++++++−−=43)21()21(211126113122x x d dx x x x x dx C x x x x +++++−=312arctan 311)1(ln 6122例4、求 ∫−)1(42x x dx解 原式= dx x x dx x x dx x x x x ∫∫∫+−−−=−−+)1)(1(1)1(1)1()1(22224222 dx x x dx x x ∫∫++−−−+=)1111(21)111(2222 ∫∫+−−+−=dx x dx x x 22112111211 C x x x x +−−++−=arctan 2111ln411 注:本题若用待定系数法,应当将被积函数分解为)1)(1)(1(1)1(12242x x x x x x ++−=−22111x F Ex x D x C x B x A +++++−++= 然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.例5、求 ∫++dx x x dxx 334811 解 令u x =4,则dx x du 34=,于是,原式∫∫+−++=++=du u u du u u u )24111(41234122 )|2|ln 4|1|ln (41C u u u ++−++=C x x x ++−++=)2ln()1ln(414444例6、求 ∫+dx x x 325)32( 解 令 dt xdx t x t x =−==+4,23,3222,从而, 原式= ∫∫+−=⋅−dt tt t dt t t 961(16144)3(3232 C t t t +−+=296||(ln 1612C x x x ++−+++=)32(29326|32|[ln 1612222 例7、求 ∫++dx x x x 45244解 45)45(145242244+++−+=++x x x x x x 设 4145)45(222211242+++++=+++−x B x A x B x A x x x ,通分后应有)1)(()4)(()45(2222112+++++=+−x B x A x B x A x由此, 316,0,31,02211−====B A B A ,故原式= dx x x ∫⎥⎦⎤⎢⎣⎡+−++)4(316)1(31122C xx x +−+=2arctan 38arctan 31例8、求 ∫+210)1(x x dx解 由于2109102101010210)1()1(1)1(1)1(1+−+=+−+=+x x x x x x x x x x 2109109)1()1(1+−+−=x x x x x 原式= dx x x x x x ∫⎥⎦⎤⎢⎣⎡+−+−2109109)1()1(1∫∫++−++−=210101010)1()1(1011)1(101||ln x x d x x d x C x x x ++++−=)1(101)1ln(101||ln 1010C x x x ++++=)1(1011ln 101101010注 对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分 ∫dx x x R )cos ,(sin 可通过万能代换2tan xt =化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,然后再求解. 例1、求 ∫xx dx4cos sin 解 原式= ∫∫∫+=+x x dxdx x x dx x x x x 24422cos sin cos sin cos sin cos sin ∫∫∫++−=x dx dx x x x d xsin cos sin )(cos cos 124 ∫+−=|2tan |ln cos )(cos cos 3123x x x d x C x x x +++=|2tan |ln cos 1cos 313例2、求 ∫+dx x sin 1解 原式= ∫++dx x x x x 2cos 2sin 22cos 2sin 22∫∫+=+=dx xx dx x x )2cos 2(sin )2cos 2(sin2 C x x ++−=2sin 22cos 2例3、求 ∫+−5cos sin 2x x dx解 令2tan x t =,则222212,11cos ,12sin tdtdx t t x t t x +=+−=+=,于是 原式=C x C t t t dt +⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+=+⎟⎠⎞⎜⎝⎛+=++∫512tan 3arctan 51513arctan 512232 例4、求 ∫+dx xxsin 1sin解 原式= ∫−dx x x x 2cos )sin 1(sin dx x xdx x x ∫∫−−=222cos cos 1cos sin C x x x++−=tan cos 1例5、求 ∫+dx xx xcos sin sin解 原式=dx x x x x dx x x x x x x ∫∫⎟⎠⎞⎜⎝⎛+−+=+−++cos sin cos sin 121cos sin cos sin cos sin 21 C x x x x x x x d x ++−=++−+=∫|)cos sin |ln (21cos sin )cos (sin 2121 例6、求 ∫xdx x cos 5sin解 原式=C x x dx x x +−−=+∫6cos 1214cos 81]6sin 4[sin 21 注 积化和差公式])cos()[cos(21cos cos ])cos()[cos(21sin sin ])sin()[sin(21cos sin x x x x x x x x x x x x βαβαβαβαβαβαβαβαβα−++=⋅+−−=⋅−++=⋅例7、求 ∫+xx dxcos )sin 2(2解 令 dt xdx t x ==cos ,sin于是原式= dt t t t t t t dt∫∫−+−++=−+)1)(2()1()2(31)1)(2(222222C tt t t dt t dt ++−+=++−=∫∫2arctan(23111ln 6123113122 C x x x ++−+=2sin arctan(231sin 1sin 1ln 61注 形如∫dx x x R )cos ,(sin 的有理函数的积分,一般可利用代换 t x=2tan 化为有理函数的积分.(i) 若 )cos ,(sin )cos ,sin (x x R x x R −=−或)cos ,(sin )cos ,(sin x x R x x R −=− 成立,最好利用代换 t x =cos 或对应的 t x =sin .(ii) 若等式 )cos ,(sin )cos ,sin (x x R x x R =−−成立,最好利用代换t x =tan .例8、求 ∫+dx xx x33cos sin sin21 解 令 t x =tan ,则 dt xdx =2sec ,于是原式= ∫∫∫∫+−+−+=+−++−−+=+t dt dt t t t dt t t t t t t dt t t 1311131)1)(1()1()1(31122223 = C t t t t ++−−++−|1|ln 31)312arctan(31)1ln(612 =C x x x x +−+++−31tan 2arctan(31)tan 1(1tan tan ln 6122。
(完整版)不定积分习题与答案

不定积分(A)求下列不定积分dx~~2X(x 2)2dxdx2) xV x2x .2dx 4) 1 x1、1) 3)5)7) 2、1) 3) 5) 7) 9) 11) 13) 15) 17)2 3X 53^△dx cos2x2 ;~2~dx6)cos xsin xX 3(2e )dxx求下列不定积分(第一换元法)(1 —y^'xYxdX8) x3(3 2x) dxsin t ..dtxtdxcosxsin xdx2) 32 3xdx,) xl n x In (I n x)xcos(x2)dxsinx , 厂dxcos xdx2x2 1sin 2xcos3xdxdxx x6) e e“、cos3xdx12)tan3x secxdx14)3x9 x2dx16)______ 13cos2 x—dx4sin x10 2arccosxdxarctan x ,dx 18) x(1 x)3、求下列不定积分(第二换元法)1) 2)sinxdx3) 4)2x----------- d x, (a 0)2 2.a x5)7) 4、1) 3) 5)7) 5、1)2)3)dx6)dx1 \2xdxx -J x28)dx1 T x2求下列不定积分(分部积分法)xSnxdxx2In xdxx2arcta nxdxIn2xdx求下列不定积分(有理函数积分)3xdxx 32x 32x 3xdxx(x21)1、一曲线通过点方程。
2、已知一个函数2)4)6)8)arcs inxdxe 2x sin -dx2x2cosxdx2 2 xx cos dx2(B)(M,3),且在任一点处的切线斜率等于该点的横坐标的倒数,F(x)的导函数为1 x2,且当x 1时函数值为2求该曲线的,试求此函数。
3、证明:若f(x)dx F(x)c,则f (ax b)dx 丄F(axa b) c,(a 0)o sin x4、设f(x)的一个原函数为求xf(x)dx。
数学分析有答案的套题

七章 实数的完备性判断题:1. 1. 设11,1,2,2H n n n ⎧⎫⎛⎫==⎨⎬⎪+⎝⎭⎩⎭ 为开区间集,则H 是(0, 1 )的开复盖. 2. 2. 有限点集没有聚点.3. 3. 设S 为 闭区间 [],a b , 若,x S ∈则x 必为S 的聚点.4. 4. 若lim nn a →∞存在, 则点集{}n a 只有一个聚点.5. 5. 非空有界点集必有聚点.6. 6. 只有一个聚点的点集一定是有界点集.7. 7. 如果闭区间列{}[,]n n a b 满足条件 11[,][,],1,2,n n n n a b a b n ++⊃= , 则闭区间套定理成立. 8. 8. 若()f x 在[,]a b 上一致连续, 则()f x 在[,]a b 上连续. 9. 9. 闭区间上的连续函数一定有界.10. 10. 设()f x 为R 上连续的周期函数, 则()f x 在R 上有最大值与最小值.答案: √√√√×××√√√ 证明题1. 1. 若A 与B 是两个非空数集,且,,x A y B ∀∈∈有 x y ≤, 则sup inf A B ≤.2. 证明: 若函数()f x 在(,)a b 单调增加, 且(,)x a b ∀∈, 有()f x M ≤(其中M 是常数), 则 ,c M ∃≤ 使 lim ()x b f x c-→=.3. 证明: 若E 是非空有上界数集, 设 sup ,E a =且 a E ∉, 则 存在数列1,,n n n x E x x n N +∈<∈, 有 lim n n x a →∞=.4. 证明: 函数()f x 在开区间(,)a b 一致连续⇔函数()f x 在开区间(,)a b 连续, 且(0)f a +与(0)f b -都存在.5.设{}n x 为单调数列,证明: 若{}n x 存在聚点,则必是唯一的, 且为{}n x 的确界.6. 证明:sin ()xf x x =在()0,+∞上一致连续.7. 证明: {}n x 为有界数列的充要条件是{}n x 的任一子列都存在其收敛子列.8. 设()f x 在[],a b 上连续, 又有{}[],n x a b ⊂, 使 lim ()n n f x A →∞=. 证明: 存在[]0,x a b ∈, 使得 0()f x A =.答案1.证明: 设sup ,inf .A a B b == 用反证法. 假设 s u pi n f A B > 即 ,b a <有2a b b a +<<, 一方面, sup ,2a b a A +<= 则存在 00,;2a b x A x +∈<另一方面,inf ,2a b b B +=< 则00,2a by B y +∃∈<. 于是, 00,x A y B ∃∈∈有002a b y x +<<, 与已知条件矛盾, 即 sup inf A B ≤.2. 证明: 已知数集{}()(,)f x x a b ∈有上界, 则其存在上确界, 设{}sup ()(,)f x x a b c M ∈=≤由上确界的定义, 00,(,)x a b ε∀>∃∈, 使得 0(),c f x c ε-<≤00,:b xx b x b δδ∃=->∀-<<; 或 0:,x x x b ∀<<有 0()()c f x f x c ε-<≤≤ 或 ()f x c ε-<. 即 l i m ()x b f x c -→=.3. 证明: 已知 sup E a =, 由确界定义, 111,x E ε=∃∈, 有 11a x a ε-<<2121min ,0,2a x x E ε⎧⎫=->∃∈⎨⎬⎩⎭, 有 12x x < , 并且22a x a ε-<<3231min ,0,3a x x Eε⎧⎫=->∃∈⎨⎬⎩⎭, 有 23x x <, 并且33a x a ε-<<于是, 得到数列{}1,,,n n n n x x E x x n N +∈<∀∈. 有 lim n n x a →∞=.4. 证明: ⇒ 已知 ()f x 在(,)a b 一致连续,即12120,0,,(,):x x a b x x εδδ∀>∃>∀∈-<, 有 12()()f x f x ε-< 显然 ()f x 在(,)a b 连续, 且 120,0,,(,)x x a b εδ∀>∃>∀∈1122()a x a x x a x a δδδ<<+⎧-<⎨<<+⎩, 有 12()()f x f x ε-<.根据柯西收敛准则,函数()f x 在a 存在右极限(0).f a +同理可证函数()f x 在b 存在左极限(0)f b -.⇐已知(0)f a +与(0)f b -存在, 将函数()f x 在a 作右连续开拓, 在b 作左连续开拓, 于是函数()f x 在闭区间[],a b 连续, 从而一致连续, 当然在(,)a b 也一致连续. 5. 证明: 不妨设{}n x 递增.(1) 先证若{}n x 存在聚点必唯一. 假定,ξη都是{}n x 的聚点, 且ξη<. 取02ηξε-=, 由η是{}n x 聚点, 必存在0(,).n x U ηε∈又因{}n x 递增, 故n N ≥时恒有002n N x x ξηηεξε+≥>-==+于是, 在0(,)U ξε中至多含{}n x 的有限多项, 这与ξ是{}n x 的聚点相矛盾. 因此{}n x 的聚点存在时必唯一.(2) 再证{}n x 上确界存在且等于聚点ξ. ()a ξ为{}n x 上界. 如果某个N x ξ>, 则 n N ≥时恒有n x ξ>, 取00,N x εξ=-> 则在0(,)U x ξ内至多含{}n x 的有限多项, 这与ξ为{}n x 的聚点相矛盾.()b 对0,ε∀>由聚点定义, 必存在N x 使N x ξεξε-<<+. 由定义{}sup n x ξ=.6. 6. 证明: 令10,()sin (0,)x F x xx x =⎧⎪=⎨∈+∞⎪⎩由于 00sin lim ()lim 1(0)x x x F x F x ++→→===, 而 (0,)x ∈+∞时sin ()xF x x =, 所以 ()F x 在[)0,+∞上连续, 又因lim ()0x F x →+∞=存在, 所以 ()F x 在[)0,+∞上一致连续,从而在(0,)+∞上也一致连续, 即 ()f x 在(0,)+∞上一致连续. 7. 7. 证明: ⇒ 设{}n x 为有界数列, 则{}n x 的任一子列{}kn x 也有界, 由致密性定理知{}kn x 必存在其收敛子列{}k jn x .⇐ 设 {}n x 的任一子列都存在其收敛子列. 若{}n x 无界, 则对1M =, 必存在正整数1n 使得11n x >; 对2,M =存在正整数21,n n >使得22;;n x > 一般地,对M k =, 存在正整数1,k k n n ->使得k n x k >. 于是得到{}n x 的子列{}k n x , 它满足lim k n k x →∞=∞, 从而{}kn x 的任一子列{}k jn x 必须是无穷大量, 与充分性假定相矛盾.8. 8. 证: 因{}[],n x a b ⊂为有界数列, 故{}n x 必有收敛子列{}kn x ,设lim k n k x x →∞=,由于{}[],kn x a b ⊂,故 []0,x a b ∈. 一方面, 由于()f x 在0x 连续有0l i m ()(),x x f x f x →=再由归结原则有0lim ()lim ()()k n k x x f x f x f x →∞→==; 另一方面, 由lim ()n n f x A→∞= 及{}()kn f x 是{}()nf x 的子列有lim ()lim ()k n n k n f x f x A→∞→∞==因此 0().f x A =第八章 不定积分填空题1. ()()_________x ex dx ϕϕ'=⎰.2. 若函数()F x 与()G x 是同一个连续函数的原函数, 则()F x 与()G x 之间有关系式_______________.3. 若()f x '=且3(1)2f π= , 则 ()__________.f x = 4. 若()cos f x dx x C =-+⎰, 则()()___________.n f x =5.(ln )________.f x dx x '=⎰6. 若(sin ,cos )(sin ,cos )R x x R x x =--, 则作变换___________计算(sin ,cos )R x x dx ⎰.7.[1()]()__________n x x dx ϕϕ'+=⎰.()n N +∈8.3415(1)_________x x dx -=⎰9.若()(0)f x x x =>, 则 2()___________f x dx '=⎰.10. 过点(1,)4π斜率为211x +的曲线方程为___________.答案:1. ()x eC ϕ+. 2. ()()F x G x C =+ (C 为任意常数). 3. arcsin x π+. 4. sin()2n x π+. 5.(ln )f x C +. 6. tan t x =.7. 11[1()]1n x C n ϕ++++. 8. 4161(1)64x C --+. 9. 1ln 2x x C++10. arctan y x =判断题:1. 1. 有理函数的原函数是初等函数.2. 2. ()()df x dx f x dx =⎰3. 3. 若函数()f x 存在一个原函数,则它必有无限多个原函数.4. 4. 设()F x 是()f x 在区间I 上的原函数,则()F x 在区间I 上一定连续.5. 5. 函数()f x 的不定积分是它的一个原函数.6. 6. 21(1)x x x +-的有理函数分解式为: 22221(1)1(1)x A Bx C Dx Ex x xx x +++=++--- 7. 7.()()d d f x d f x =⎰8. 8. 若函数()f x 在区间I 上连续, 则它在区间I 上必存在原函数.9. 9. 存在一些函数, 采用不同的换元法, 可以得到完全不同的不定积分. 10. 10. 若()f x dx x C =+⎰, 则(1)f x dx x C -=+⎰答案: 1---10 √√√√××√√×√ 选择题:1.下列等式中( )是正确的.()().()()xx A f x dx f x Bf edx f e C ''==+⎰⎰221..(1)(1)2C f dx f C D xf x dx f x C ''=+-=--+⎰⎰2.若()f x 满足()sin 2,f x dx x C =+⎰则()(f x '= ) .4s i n 2.2c o s 2.4s i n 2.2A x B x C x Dx-- 3.若21()(0),f x x x '=>则()f x =( ).2.l n A x CB x CxCC ++++4.设函数()f x 在[,]a b 上的某个原函数为零,则在[,]a b 上 ( ) A .()f x 的原函数恒等于零. B. ()f x 的不定积分等于零.C. ()f x 不恒等于零但其导数恒等于零.D. ()f x 恒等于零. 5. 下列凑微分正确的是 ( )221.2.(ln 1)1x x A xe dx de B dx d x x ==++21.a r c t a n .c o s 2s i n 21C x d x d D x d xd x x ==+6. 22()()xf x f x dx '=⎰( )2222221111.().().().()2244A f x CB f x CC f x CD f x C++++.7. 若()f x dx x C =+⎰, 则 (1)f x dx -=⎰ ( )21.1......(1)2A x C B x C C x C D x C -+-++-+ 8. 函数cos (0)ax a ≠的一个原函数是 ( )111.s i n .s i n .s i n .s i n A x B a xC a xD a xa a a-9. 若()21xf x dx x C =+++⎰, 则()f x =( )2111.2..2ln 2 1..21.21ln 22x x x x A x x B C D ++++++10. 下列分部积分中对u 和v '选择正确的有 ( )22.cos ,cos ,.(1)ln ,1,ln A x xdx u x v x B x xdx u x v x''==+=+=⎰⎰.,,.a r c s i n ,1,a r cx xC xe dx u x v eD xdx u v x --''====⎰⎰答案:1—10 DCCDADCBBC计算题:1.ln(x dx+⎰2. x ⎰3. dx4.44cos 2sin cos xdx x x +⎰5.ln tan cos sin x dxx x ⎰6. 7.221(1)(1)x dxx x ++-⎰. 8. 11sin cos dxx x ++⎰9. 2(1)xx xe dx e +⎰.10.2答案:1. 1. 原式=ln(x x dx+-⎰21ln(2x x =-ln(x x C =+.2. 2.原式21122x =221124x =21arctan 2x C=3. =(sin cos )2cos 2sin 2222x x x xdx C=+=-++⎰4. 4422222cos 2cos 2sin cos (sin cos )2sin cos x xdx dx x xx x x x =++-⎰⎰ 22cos 2sin 2(2)2sin 22sin 2x d xd x x x ==--⎰⎰C=+5. ln tan ln tan tan ln tan (ln tan )cos sin tan xxdx d x xd x x xx ==⎰⎰⎰2(ln tan )2x C =+.6. 2sin 2(2cos 1)cos 21cos 2cos 2x t tt dt dtt t =-=+=⎰⎰tan 2t t C =-+arcsin x C=+7. 2221111[]2(1)2(1)(1)(1)(1)x dx dx x x x x x +=+--++-+⎰⎰111ln 1ln 1221x x Cx =-+++++211ln 121x Cx =-+++.8.tan222121sin cos 211111x u dxdu x xu u uu u =⋅++-+++++=⎰⎰ln 1ln 1tan 12du xu C C u =++=+++⎰.9.21(1)111x x x x x xe x dx dx xd e e e e ⎛⎫=-=-+ ⎪++++⎝⎭⎰⎰⎰ln(1)111x x x x xx e dx x e C e e e ---=-+=--+++++⎰.10.sin 22221cos 2sin 2x a uua udu a du =-==⎰⎰⎰22sin 2()arcsin 222a u a x u C C a =-+=+.第九章 定积分一、 一、 选择题(每题2分) 1、若()⎰=+122dx k x ,则=k ( )(A )1 (B )1- (C )0 (D )212、若()x f 是奇函数,且在[]a a ,-上可积,则下列等式成立的有( )(A )()()⎰⎰-=aa adxx f dx x f 02 (B )()()⎰⎰--=aaadxx f dx x f 02(C )()⎰-=a adx x f 0(D )()()⎰-=a aa f dx x f 23、设()x f 在[]b a ,上连续,则下面式子中成立的有( )(A )()()x f dt t f dx d x a =⎰ (B )()()x f dx x f dx d ba=⎰(C )()()⎰+=C x f dx x f dx d(D )()()x f dx x f ='⎰4、设()x f 为连续函数,()()⎰-=104dxx f x x f ,则()⎰10dx x f =( )(A )1- (B )0 (C )1 (D )25、函数()x f 在[]b a ,上连续是()⎰ba dx x f 存在的( )(A ) (A ) 必要条件 (B )充要条件 (C )充分条件 (D )无关条件 6、()x f 在[]b a ,上连续,()()⎰=xa dt t f x F ,则正确的是( )(A )()x F 是()x f 在[]b a ,上的一个原函数; (B )()x f 是()x F 在[]b a ,上的一个原函数; (C )()x F 是()x f 在[]b a ,上唯一的原函数; (D )()x f 是()x F 在[]b a ,上唯一的原函数 7、⎰e edxx 1ln =( )(A )0 (B )2e-2 (C )e 22-(D )e e 222-+8、已知()()21210-=⎰x f dt t f x,且()10=f ,则()=x f ( ) (A )2xe (B )x e 21 (C )x e 2 (D )x e 2219、下列关系中正确的有( )(A )dxe dx e x x ⎰⎰≤1102(B )dxe dx e x x ⎰⎰≥112(C )dxe dx e x x⎰⎰=112(D )以上都不正确10、⎰=ba xdx dx d arcsin ( )(A )a b arcsin arcsin -(B )211x -(C )x arcsin (D )011、设410I xdxπ=⎰,4230,sin I I xdxπ==⎰,则( );(A )123I I I >> (B )213I I I >> (C )312I I I >>(D )132I I I >>12、下列积分中可直接使用牛顿—莱布尼兹公式计算其值的是( );(A )1201x dx x +⎰ (B)10⎰ (C)e (D )210x e dx ⎰13、设()f x 为连续函数,则积分()ba I f x t dx=+⎰( )(A )与,,t a b 有关 (B )与,t x 有关 (C )与,,x b t 有关 (D )仅与x 有关 14、()2x af t dt '=⎰( )(A )()()1222f x f a -⎡⎤⎣⎦ (B )()()222f x f a -⎡⎤⎣⎦ (C )()()22f x f a -⎡⎤⎣⎦ (D )()()12f x f a -⎡⎤⎣⎦15、下列积分中,使用换元积分正确的是( )(A )1arcsin 1sin dt t x t π=+⎰令 (B)10sin x t =⎰令 (C)10tan x t=⎰令 (D )12111dx x xt -=+⎰令 答案:ACACC ACCBD BAAAC 二、 二、 填空题(每题2分)1、已知⎰=Φxdtt x 02)sin()(,则=Φ')(x .;2、比较大小:⎰20πxdx⎰2s i n πx d x.3、⎰-++1142251sin dx x x xx = ;4、函数()x f 在区间[]1,2-上连续且平均值为4,则()⎰-12dxx f = ; 5、设()x f 为连续函数,则()()[]=⋅+-+⎰-dx x x x f x f 322 ;6、522cos xdx ππ-=⎰;7、()12ln 1xd t dt dx +=⎰ ;8、(211x dx -+=⎰;9、设()f x 为连续函数,且()()12,f x x f t dt =+⎰则()f x = ;10、设0a ≠,若()0120ax x dx -=⎰,则a = ;11、已知()2302xf t dt x =⎰,则()1f x dx =⎰ ;12、=⎰ ;答案:1、()2sin x 2、≥>or 3、0 4、12 5、564 6、1615 7、()2ln 1x -+ 8、2 9、1x - 10、34 11、3 12、4π三、计算题 (每题5分)1、dx x x ⎰-22101解:令t x sin =,则tdt dx cos =,tx 2010π→→ dx x x ⎰-22101=⎰2022cos sin πtdt t=()⎰⎰-=202024cos 1812sin 41ππdt t tdt=16024sin 4181ππ=⎪⎭⎫ ⎝⎛-t t2、⎰2sin πxdxx 20cos xd xπ=-⎰=⎰+-20cos 02cos ππxdxx x=102sin =πx 3、dxx x x ⎰+-20232=()()⎰⎰⎰-+-=-2121111dxx x dx x x dx x x=12325201523223252523⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-x x x x =()22154+4、⎰-2121dx x x解:令tdt t dx t x tan sec ,sec ==,3021π→→t x⎰-2121dx x x =⎰302tan πtdt =()d t t ⎰-3021sec π=()3303tan ππ-=-t t5、()dx xx 21124⎰--+=()⎰--+-+11222442dxx x x x=()d xx x ⎰-+-112442=⎰-=1184dx6、⎰⋅202cos πxdx e x=⎰202sin πx d e x=⎰⋅-⋅20222sin 02sin ππdx e x x e x x=⎰⎰-+=+2022022cos 402cos 2cos 2πππππxdxe x e e x d e e x x x=2-πe则 ⎰⋅202c o s πx d x e x =()251-πe7、⎰-⋅ππxdxx sin 4解: x x sin 4⋅为奇函数,且积分区间[]ππ,-关于原点对称sin 4=⋅∴⎰-ππxdx x8、⎰+402cos 1πdx x x=⎰⎰=4402tan 21cos 2ππx xd dx x x=⎰-40tan 2104tan 21ππxdx x x =04cos ln 218ππx + =2ln 41822ln 218-=+ππ9、()⎰-+11221x dx = ()⎰+102212x dx解:令tdt dx t x 2sec ,tan ==,4010π→→t x ()⎰-+11221x dx =⎰402cos 2πtdt=()⎰+402cos 1πdt t =042sin 21π⎪⎭⎫ ⎝⎛+t t =214+π10、⎰+301arcsindx x x解:令x x t +=1arcsin,t x 2tan =,则tdt t dx 2sec tan 2=,3030π→→t x ⎰+301arcsin dx x x =⎰302tan πt td =⎰-3022tan 03tan ππtdt t t=()d t t ⎰--3021sec ππ=()03tan ππt t -- 334)33(-=--=πππ11、⎰+133221x x dx解:令t x 1=,则dt t dx 21-=,13133→→tx⎰+133221x x dx =⎰+⋅-132221111t t dt t=⎰+3121t tdt=221312-=+t12、dxx ee⎰1ln =dxx e⎰-11)ln (+dxx e ⎰1ln=()()1ln 11ln e x x x e x x x -+-- … =e 22-13、⎰--1145x xdx解:令x t 45-=,则()2541t x -=,tdtdx 21-=,1311→→-t x ⎰--1145x x d x =()dt t ⎰-312581 =13315813⎪⎭⎫ ⎝⎛-t t =61 14、0xdx=20arctan 1xdx x x +=1ln 1ln 2323x -+=- 15、20π⎰20cos 2x dx π20c o s c o s 22x x dx dx πππ⎫=-⎪⎭⎰⎰ =2sin sin 022x x πππ⎫-=⎪⎭五、证明题(每题5分)1、 1、 证明:若f 在[],a b 上可积,F 在[],a b 上连续,且除有限个点外有()()F x f x '=,则有()()()baf x dx F b F a =-⎰证:设除[]()()12,,,n x x x a b F x f x '∈= 外,即()()[]{}12,,\,,n F x f x x a b x x x '=∀∈ 可设 0121n n x a x x x b x +=≤<<<≤= 在[]1,i i x x +上应用N-L 公式知:()()()()()()()110i innbx i i ax i i f x dx f x dx F x F x F b F a ++====-=-∑∑⎰⎰2、 2、 证明:若T T '是增加若干个分点后所得到的分割,则iiiiT Tx xωω'''∆≤∆∑∑证:由性质2知 ()()()(),S T S T s T s T ''≤≥。
不定积分 计算题

计算题(共 200 小题) 1、⎰⎰+=.d )( , sin d )()(x x f c x x x f n 求设 2、⎰'>+=.d )(),0()(2x x f x x x x f 试求设 3、.d x x ⎰求4、.)( .0,sin ,0)(2的不定积分求 设x f x x x x x f ⎩⎨⎧>≤= 5、已知,求它的原函数.f x x F x ()()=-1 6、.d x x ⎰求 7、⎰-233d x x 求 8、 .,d 2是常数其中求 a x x a ⎰9、.0,,d >⎰a a x e a x x 是常数其中求 10、.d tan csc 22x x x ⋅⎰求11、⎰⋅x x x d cot sec 22求 12、⎰+22d x x 求 13、⎰+82d 2x x求 14、⎰-9d 2x x 求 15、⎰-.63d 2x x 求 16、 ⎰+232d x x 求 17、.d 2432x xx x ⎰-求 18、x x x d ⎰⋅求 19、.d )1(23x x x ⎰+求 20、 .,,d )cosh sinh (均为常数其中求 b a x x b x a ⎰+ 21、⎰x x d cot 2求22、.d 11)(3x x x ⎰++求 23、.d x x x x ⎰求 24、⎰+.d )arccos (arcsin x x x 求 25、[].d )1(cos cos )1(sin sin x x x x x ⎰+++求 26、⎰⋅.d 2sin 22x x 求 27、⎰.d 2cos 22x x 求 28、.d sin 1sin 423x x x ⎰-求 29、⎰+.d )32(2x x x 求 30、.d 3273x x x ⎰--求 31、.d 22222x x x x ⎰-+-求 32、⎰---.d )31)(21)(1(x x x x 求 33、x x x x d )1(21222⎰++求 34、.d 323x xx e x x x ⎰+-求 35、.d )1()1(22x x x x ⎰++求 36、⎰+.d )sec (tan 22x x x 求 37、.d )csc (cot 22x x x +⎰求 38、.d sin sin 2222⎰+x xx x x 求 39、.d 122x xx ⎰+求40、⎰-.d 122x x x 求 41、.d 1322x x x ⎰-+求 42、.d 111422x x x x ⎰--++求 43、 .d 111422x x x x ⎰---+求44、 .d 2cos 1sin 12x xx ⎰-+求 45、.d 1cos sin 122x x x ⎰--求 46、.d cos sin d 22x xx x ⎰求 47、 ⎰++.d 2cos 1cos 12x xx 求 48、.d sin cos 2cos x xx x ⎰-求 49、 ).20(d 2sin 1π≤≤+⎰x x x 求 50、x xx x d sin cos 2cos 22⎰求 51、 ⎰+x x x 2sin 2cos d 求 52、求⎰++++x xx x x x d 13323。
不定积分习题及答案

不定积分习题及答案9.求()()()()()dx x f x f x f x f x f ⎰⎥⎦⎤⎢⎣⎡'''-'32。
10.()d x x x ⎰1,,max 23。
第四章 不定积分(A 层次)1.⎰xx dx cos sin解:原式()()⎰⎰+===C tgx tgxtgx d dx tgx x ln sec 2 2.⎰--dx xx 2112解:原式()⎰⎰+---=-----=C x x x dx x x d arcsin 1211122223.()()⎰-+21x x dx解:原式()()[]⎰+--+-=⎪⎭⎫ ⎝⎛--+-=C x x dx x x 2ln 1ln 31211131 C x x +⎪⎭⎫⎝⎛+-=12ln 314.⎰xdx x 7sin 5sin 解:原式()⎰⎰⎰-=--=xdx xdx dx x x 12cos 212cos 212cos 12cos 21C x x +-=12sin 2412sin 41 5.()⎰+dx x x x arctg 1解:原式()()()⎰⎰+==+=C xarctg x arctg d x arctg dx x x arctg 222126.⎰-+21xx dx解:⎰⎰⎰+-++=+=-+dt tt tt t t t t tdt t x x x dx sin cos sin cos sin cos 21cos sin cos sin 12令()()C t t t t t t t d dt +++=+++=⎰⎰cos sin ln 2121cos sin cos sin 2121 ()C x x x ++-+=21ln 21arcsin 21 7.⎰arctgxdx x 2 解:原式()⎪⎭⎫ ⎝⎛+-==⎰⎰dx x x arctgx x x arctgxd 2333113131 ⎰⎰++-=231313131x xdxxdx arctgx x ()C x x arctgx x ++--=2231ln 6161318.()⎰dx x ln cos解:原式()()[]⎰+=dx x x x x x 1ln sin ln cos ()()⎰+=dx x x x ln sin ln cos()()()[]⎰-+=x xd x x x x ln sin ln sin ln cos ()()()⎰-+=dx x x x x x x ln cos ln sin ln cos 故()()()[]C x x x x dx x ++=⎰ln sin ln cos 21ln cos 9.⎰--+dx xx x x 3458解:原式()⎰⎰--++++=dx xx x x dx x x 32281⎰⎰⎰--+-+++=dx x dx x dx x x x x 131******** ()()C x x x x x x +--+-+++=1ln 31ln 4ln 821312310.()⎰+dx x x 2831解:原式()()()⎰⎰⎰=+=+=t tdt tgt u u du u x x x d 42224284sec sec 41141141令令 ()⎰⎰+==dt t tdt 2cos 181cos 412C t t ++=2sin 16181C uu u arctgu ++⋅++=221118181 ()C x x arctgx +++=844188111.⎰xdx x 2cos解:原式⎰⎪⎭⎫⎝⎛+=dx x x 22cos 1[]()⎰⎰⎰+=+=x xd x xdx x xdx 2sin 41412cos 212 ⎰-+=xdx x x x 2sin 412sin 41412C x x x x +++=2cos 812sin 4141212.⎰dx e x 3解:令t x =3,则3t x =,dt t dx 23=原式[]⎰⎰⎰-===t d t e e t de t dt t e t t t t 2333222[]⎰⎰--=-=dt e te e t tde e t ttttt 636322C e te e t t t t ++-=6632 ()C x x e x++-=2223332313.⎰xx x dxln ln ln解:原式()()[]()()[]C x x x d x x x d +===⎰⎰ln ln ln ln ln ln ln ln ln ln ln 14.()⎰+21x e dx解:()()()()⎰⎰⎰⎰+-+=+-+=+222111111t dtdt t t t t t t t e e dxx x令 ()()C t t t t t d dt t t ++++=++-⎪⎭⎫ ⎝⎛+-=⎰⎰111ln 111112()C e e x C e e e xxx x x ++++-=++++=111ln 111ln15.()⎰+dx exe xx21解:原式()()⎰⎰⎪⎭⎫⎝⎛+-=++=11112x xx e xd ee xd()()⎰⎰⎪⎭⎫ ⎝⎛+-++-=+++-=x x x x x x x x e d e e e x dx e e e e x 111111()C e e e xx x x++-++-=1ln ln 1()C e e xe x xx++-+=1ln 116.dx x ⎰3sin解:令t x =3,则3t x =,dt t dx 23= 原式⎰⎰-=⋅=t d t dt t t cos 33sin 22⎰⎰+-=⋅+-=t td t t tdt t t t sin 6cos 32cos 3cos 322 ⎰-+-=tdt t t t t sin 6sin 6cos 32 C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3 17.⎰-dx xx 1arcsin解:令u x sin =,则u x 2sin =,udu u dx cos sin 2= 原式⎰=udu u uucos sin 2cos ()⎰⎰--=-=udu u u u d u cos cos 2cos 2C x x x C u u u ++--=++-=2arcsin 12sin 2cos 218.()⎰+dx x x 321ln解:原式()⎰⎪⎭⎫⎝⎛+-=-22211ln x d x()⎰+++-=dx xx x x x 2222122121ln ()()⎰+++-=2222212121ln x x dx x x ()⎰⎪⎭⎫ ⎝⎛+-++-=222221112121ln dx x x x x ()()[]C x x xx ++-++-=22221ln ln 2121ln ()()C x x xx ++-++-=2221ln 21ln 21ln 19.⎰+-dx xx xx sin 2cos 5sin 3cos 7解:原式()()⎰+-++=dx x x x x x x sin 2cos 5sin 5cos 2sin 2cos 5dx x x x x ⎰⎪⎭⎫⎝⎛+-+=sin 2cos 5sin 5cos 21C x x x +++=sin 2cos 5ln 20.()⎰++dx x xx 21ln解:原式()⎰⎪⎭⎫ ⎝⎛+-+=x d x x 11ln⎰+++++-=dx x x x x x 1111ln ⎰+++-=dx x x x x 11ln C x xxx ++++-=ln 1ln 21.⎰xdx x 35cos sin解:原式⎰=xdx x x cos cos sin 25()x d x x sin sin 1sin 25⎰-=C x x +-=86sin 81sin 6122.⎰dx x x tgxsin cos ln解:原式()⎰⎰==tgx d tgx tgxdx xtgxtgx ln cos ln 2 ()()⎰+==C tgx tgx tgxd 2ln 21ln ln 23.dx xx ⎰-2arccos 2110解:原式()⎰-=x d x arccos 21021arccos 2 C C x x ar +-=+-=arccos 2cos 21010ln 211010ln 12124.⎰arctgxdx x 2 解:原式()⎰=331x arctgxd ⎪⎭⎫⎝⎛+-=⎰dx x x arctgx x 2331131 dx xxx x arctgx x ⎰+-+-=23313131 ⎰⎰++-=231313131x xdxxdx arctgx x ()C x x arctgx x ++--=2231ln 61613125.⎰-+dx x xx 1122解:令t x 1=,dt tdx 21-=原式dt t t t t ⎰⎪⎭⎫ ⎝⎛--+=222111111⎰⎰⎰----=-+-=dt tt tdt dt tt 2221111C t t +-+-=21arcsinC xx x+-+-=11arcsin 2 26.dx x a x ⎰+222 解:令atgt x =,tdt a dx 2sec = 原式dt t a ttg a t a ⎰=222sec sec ⎰⎰+==dt tt tt t t dt cos sin cos sin cos sin 2222dt tttdt ⎰⎰+=2sin cos sec C t tgt t +-+=sin 1sec lnC xx a a x a x a ++-++=2222lnC x a x a x ++-++=2222ln 27.()dx tgx e x 221⎰+解:原式()⎰+=dx tgx x e x 2sec 22 ⎰⎰+=tgxdx e xdx e x x 2222sec ⎰⎰+=tgxdx e dtgx e x x 222dx tgx e dx e tgx tgx e x x x ⎰⎰+⋅-=22222C t g xe x +=2 28.()()()⎰+++321x x x xdx解:原式⎥⎦⎤⎢⎣⎡+-+-+=⎰⎰⎰3312421x dx x dx x dx()()()[]C x x x ++-+-+=1ln 3ln 32ln 421()()()C x x x ++++=34312ln2129.()⎰+xx dxsin cos 2解:令t x tg =2,则arctgt x 2=,212t dt dx +=,212sin t tx +=,2211cos t t x +-=,于是原式()⎰++=dt tt t 3122⎰⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++=dt t t t 313322()⎰⎰+++=dt tt t d 131333122 ()C t t ++=3ln 313C x tg x tg +⎪⎭⎫⎝⎛+=232ln 31330.dx xxx x ex⎰-23sin cos sin cos 。
华东师范大学数学系《数学分析》(第4版)(上册)(课后习题 不定积分)【圣才出品】

第8章 不定积分§1 不定积分概念与基本积分公式1.验证下列等式,并与(3)、(4)两式相比照(1)(2)(3)式为(4)式为解:(1)因为,所以它是对f(x)先求导再积分,等于f(x)+C,(3)式是对f(x)先积分再求导,则等于(2)因为,由(1)可知它是对f(x)先微分后积分,则等于f(x)+C;而(4)式是对f(x)先积分后微分,则等于f(x)dx.2.求一曲线y=f(x),使得在曲线上每一点(x,y)处的切线斜率为2x,且通过点(2,5).解:由题意,有f'(x)=2x,即又由于y=f(x)过点(2,5),即5=4+C,故C=1.因而所求的曲线为y=f(x)=x2+1.3.验证是|x|在(-∞,+∞)上的一个原函数.证明:因为所以而当x =0时,有即y'(0)=0.因而即是在R 上的一个原函数.4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解:设x 0为f (x )在区间I 上的第一类间断点,则分两种情况讨论.(1)若x 0为可去间断点.反证法:若f (x )在区间I上有原函数F (x ),则在内由拉格朗日中值定理有,ξ在x 0和x 之间.而这与x 0为可去间断点是矛盾的,故F (x )不存在.(2)若x 0为跳跃间断点.反证法:若f(x )在区间I 上有原函数F (x ),则亦有成立.而这与x0为跳跃间断点矛盾,故原函数仍不存在.5.求下列不定积分:解:6.求下列不定积分:解:(1)当x≥0时,当x<0时,由于在上连续,故其原函数必在连续可微.因此即,因此所以(2)当时,由于在上连续,故其原函数必在上连续可微.因此,即,因此所以7.设,求f(x).解:令,则即8.举例说明含有第二类间断点的函数可能有原函数,也可能没有原函数.解:x=0是此函数的第二类间断点,但它有原函数另外,狄利克雷函数D(x),其定义域R上每一点都是第二类间断点,但D(x)无原函数.§2 换元积分法与分部积分法1.应用换元积分法求下列不定积分:。
数学分析课本(华师大三版)-习题及答案08

第八章 不定积分习题§1 不定积分概念与基本积分公式1. 验证下列等式,并与(3)、(4)两式相比照:(1)()()C x f dx x f +=⎰/; (2)()()C x f x df +=⎰2. 求一曲线()x f y =,使得在曲线上每一点()y x ,处的切线斜率为x 2,且通过点()5,2.3. 验证x x y sgn 22=是x 在()+∞∞-,上的一个原函数. 4. 据理说明为什么每一个含有第一类间断点的函数没有原函数? 5. 求下列不定积分:(1)⎰⎪⎪⎭⎫ ⎝⎛-+-dx x x x 32311; (2)⎰⎪⎪⎭⎫ ⎝⎛-dx x x 21; (3)⎰gxdx 2; (4)()⎰+dx x x232;(5)⎰-dx x2443; (6)()⎰+dx x x 2213; (7)⎰xdx 2tan ; (8)⎰xdx 2sin ;(9)⎰-dx x x x sin cos 2cos ; (10)⎰⋅dx x x x22sin cos 2cos ;(11)⎰•dt t t 2310; (12)⎰dx x x x ;(13)⎰⎪⎪⎭⎫⎝⎛+-+-+dx x x x x 1111; (14)()⎰+dx x x 2sin cos ; (15)()⎰•dx x x 2cos cos ; (16)()⎰--dx e e x x 3§2 换元积分法与分部积分法1. 应用换元积分法求下列不定积分:(1)()⎰+dx x 43cos ; (2)⎰dx xex 22;(3)⎰+dx x 121; (4)()⎰+dx x n1;(5)⎰⎪⎪⎭⎫⎝⎛-+-dx x x 2231131; (6)⎰+dx x 322;(7)⎰-dx x 38; (8)⎰-dx x3571; (9)⎰dx x x 2sin ; (10)⎰⎪⎭⎫ ⎝⎛+dx x 42sin 12π;(11)⎰+dx x cos 11; (12)⎰+dx x sin 11;(13)⎰xdx csc ; (14)⎰-dx xx 21;(15)⎰+dx x x 44; (16)⎰dx x x ln 1;(17)()⎰-dx x x 3541; (18)⎰-dx x x 283; (19)()⎰+dx x x 11; (20)⎰xdx cot ;(21)⎰xdx 5cos ; (22)⎰dx x x cos sin 1;(23)⎰-+dx e e xx 1; (24)⎰+--dx x x x 83322;(25)()⎰++dx x x 3212; (26)⎰+dx ax 221;(27)()⎰+dx ax23221; (28)⎰-dx xx 251;(29)⎰-dx xx31; (30)⎰++-+dx x x 1111.2. 应用分部积分法求下列不定积分:(1)⎰xdx arcsin ; (2)⎰xdx ln ; (3)⎰xdx x cos 2; (4)⎰dx x x3ln ;(5)()⎰dx x 2ln ; (6)⎰dx x arctan ; (7)()⎰⎥⎦⎤⎢⎣⎡+dx x x ln 1ln ln ; (8)()⎰dx x 2arcsin ;(9)⎰xdx 3sec ; (10)()⎰>±022a dx a x .3. 求下列不定积分:(1)()[]()()⎰-≠1/ααdx x f x f ; (2)()()[]⎰+dx x f x f2/1;(3)()()⎰dx x f x f /; (4)()()⎰dx x f e x f /.4. 证明:(1)若 ,3,2,tan ==⎰n xdx I n n ,则21tan 11----=n n n I x n I ; (2)若()⎰=xdx x n m I n m sin cos ,,则当0≠+n m 时,()()(),3,2,,2,1sin cos ,21sin cos ,1111=-+-++-=-+-++=-++-m n n m I nm n n m x x n m I nm m n m x x n m I n m n m5. 利用上题的递推公式计算:(1)⎰xdx 3tan ; (2)⎰xdx 4tan ;(3)⎰xdx x 42sin cos .6. 导出下列不定积分对于正整数n 的递推公式:(1)⎰=dx e x I kx n n ; (2)()⎰=dx x I nn ln ; (3)()⎰=dx x I n n arcsin ; (4)⎰=xdx e I nx n sin α. 7. 利用上题的递推公式计算:(1)⎰dx e x x 23; (2)()⎰dx x 3ln ; (3)()⎰dx x 3arcsin ; (4)⎰xdx e x 3sin . §3有理函数和可化为有理函数的不定积分1. 求下列不定积分:(1)⎰-dx x x 13; (2)⎰+--dx x x x 12722; (3)⎰+dx x 113; (4)⎰+dx x 114;(5)()()⎰+-dx xx 22111; (6)()⎰++-dx x xx 221222.2. 求下列不定积分:(1)⎰-dx x cos 351; (2)⎰+dx x 2sin 21;(3)⎰+dx x tan 11; (4)⎰-+dx xx x 221;(5)⎰+dx x x 21; (6)⎰+-dx xxx 1112. 总练习题求下列不定积分: (1)⎰--dx xx x 4312; (2)⎰xdx x arcsin ; (3)⎰+dx x 11; (4)⎰xdx e x 2sin sin ;(5)⎰dx ex; (6)⎰-dx x x 112;(7)⎰+-dx x x tan 1tan 1; (8)()⎰--dx x xx 322; (9)⎰dx x 4cos 1; (10)⎰xdx 4sin ; (11)⎰+--dx x x x 43523; (12)()⎰+dx x 1arctan ; (13)⎰+dx x x 247; (14)⎰++dx x x x1tan tan tan 2; (15)()⎰-dx x x 10021; (16)⎰dx xx2arcsin ; (17)⎰⎪⎭⎫⎝⎛-+dx x x x 11ln (18) ⎰dx xx 7cos sin 1; (19)⎰⎪⎭⎫⎝⎛+-dx x x e x 211;(20)⎰=dx uv I n n ,其中x b a v x b a u 2211,+=+=,求递推形式解.习题答案§1 不定积分概念与基本积分公式2.12+=x y .5.(1)C x x x x +-+-342342; (2)C x x x +-+3334ln 3; (3)C gx+2; (4)C x x x +•++6ln 629ln 94ln 4; (5)C x +arcsin 23; (6)()C x x +-arctan 31; (7)C x x +-tan ; (8)()C x x +-2sin 241;(9)C x x +-cos sin ; (10)C x x +--cot tan ;(11)C t+90ln 90; (12)C x +815158; (13)C x +arcsin 2; (14)C x x +-2cos 21; (15)C x x +⎪⎭⎫ ⎝⎛+3sin 31sin 21; (16)C e e e e x xx x ++----33313331; §2 换元积分法与分部积分法1.(1)()C x ++43sin 31; (2)C e x +2241; (3)C x +-12ln 21; (4)()C n x n ++++111;(5)()C x x++3arcsin 313arcsin ;(6)C x ++2ln 222; (7)()C x +--33892; (8)()C x +--3257103; (9)C x +-2cos 21; (10)C x +⎪⎭⎫ ⎝⎛+-42cot 21π;(11)C x+2tan; (12)C x x +-sec tan ; (13)C x x ++-cot csc ln ; (14)C x +--21;(15)C x +2arctan412; (16)C x +ln ln ;(17)()C x +--251101; (18)C x x ++-22ln28144;(19)C xx+-1ln; (20)C x +sin ln ; (21)C x x x ++-53sin 51sin 32sin ;(22)C x +tan ln ; (23)C e x+arctan ; (24)C x x ++-83ln 2; (25)()C x x x ++-+++2123121ln ;(26)C a x x +++22ln ; (27)C ax ax ++222;(28)()()()C x x x+---+--2522322121511321;(29)C x x x x x x ++------11ln 3625676616161216567; (30)C x x x +++++-11ln414.2.(1)C x x x +-+21arcsin ; (2)C x x x +-ln ; (3)C x x x x x +-+sin 2cos 2sin 2;(4)()C x x ++-1ln 2412; (5)()C x x x x x ++-2ln 2ln 2; (6)()C xx x +-+2arctan 1212;(7)()C x x +ln ln ; (8)()C x x x x x +--+2arcsin 12arcsin 22;(9)()C x x x x +++tan sec ln tan sec 21; (10)C x a x a a x x +⎪⎭⎫ ⎝⎛+±±±22222ln 21.3.(1)()()C x f +++111αα; (2)()()C x f +arctan ; (3)()C x f +ln . 5.(1)C x x ++cos ln tan 212; (2)C x x x ++-tan tan 313;(3)C x x x x +--4sin 641sin cos 611633. 6.(1)11--=n kx n n I kn e x k I ; (2)()1ln --=n nn nI x x I ;(3)()()()2121arcsin 1arcsin -----+=n n nn I n n x x n x x I ;(4)()()[]21221cos sin sin 1---+-+=n n ax n I n n x n x a x e an I . 7.(1)C x x x e x+⎪⎭⎫⎝⎛-+-83434321232;(2)()()[]C x x x x +-+-6ln 6ln 3ln 23;(3)()()C x x x x x x x +----+222316arcsin 6arcsin 13arcsin ;(4)()C x x x x x e x+-+-cos 3sin 3cos sin 3sin 10123. §3有理函数和可化为有理函数的不定积分1.(1)C x x x x +-+++1ln 2323; (2)()C x x +--34ln 2; (3)()C x x x x +-++-+312arctan 3111ln 6122; (4)C x x x x x x +-++-++22212arctan 421212ln 82; (5)()()C x x x x x ++---+--141arctan 211ln 811ln 4122; (6)()()C x x x x ++-+++-12arctan 251222352; 2.(1)C x +⎪⎭⎫ ⎝⎛2tan 2arctan 21; (2)C x +⎪⎪⎭⎫ ⎝⎛tan 26arctan 66; (3)C xx x +++2sin cos ln 21; (4)C x x x x +-++--21432512arcsin87; (5)C x x x ++++221ln ; (6)C x x x x +---+22111ln. 总练习题(1)C x x x +--4312134534132454; (2)C x x x x x +-+-22141arcsin 41arcsin 21; (3)()C x x ++-1ln 22; (4)()C x e x +-1sin 2sin ;(5)()C x ex+-12; (6)C x+1arccos ;(7)C x x ++sin cos ln ; (8)()C x x x +-----221232ln ; (9)C x x ++3tan 31tan ; (10)C x x x ++-4sin 3212sin 4183; (11)C x x x +-++-2112ln 32; (12)()C x x x x x ++++-+22ln 1arctan ;(13)()C x x ++-2ln 214144; (14)C x x +⎪⎪⎭⎫ ⎝⎛+-31tan 2arctan 32; (15)()()()C x x x +-+------979899197114911991; (16)C xx x x +-+--211lnarcsin 1; (17)C x x x x ++⎪⎭⎫ ⎝⎛-+-11ln 212; (18)C x x +⎪⎭⎫⎝⎛+5tan 511tan 2; (19)C xe x++21; (20)()()[]121121122--++=n n n I b a b a n u v b n I典型习题解答1.(§1 第5题(13))求⎰⎪⎪⎭⎫ ⎝⎛+-+-+dx x x x x 1111 解:C x dx x xx x dx x x x x +=⎪⎪⎭⎫⎝⎛--+-+=⎪⎪⎭⎫⎝⎛+-+-+⎰⎰arcsin 211111111222.(§2 第1题(21))求⎰xdx 5cos解:()C x x x x d x xdx ++-=-=⎰⎰53225sin 51sin 32sin sin sin 1cos3.(§2 第1题(23))求⎰-+dx e e x x 1解:C e e de dx e e xx x x x+=+=+⎰⎰-arctan 112 4.(§2 第2题(9))求⎰xdx 3sec()C x x x x xdx xdxxdx x x xdxx x x xdxx x x x xd xdx +++=∴+-=--=-==⎰⎰⎰⎰⎰⎰⎰tan sec ln 21tan sec 21sec sec sec tan sec sec 1sec tan sec sec tan tan sec tan sec sec 33223解:5.(§2 第题(2))若()⎰=xdx x n m I n m sin cos ,,则当0≠+n m 时,()()(),3,2,,2,1sin cos ,21sin cos ,1111=-+-++-=-+-++=-++-m n n m I nm n n m x x n m I nm m n m x x n m I n m n m证明:()()()()()()()2,1sin cos ,,21sin cos ,cos sin 11cos sin 111sin cos cos cos 1sin 111sin cos sin cos 11sin 1sin cos 1sin cos ,11112112211211111-+-++-=-+-++=∴+--+-++=-+-++=-+++=+=-++--+--+--++-+-⎰⎰⎰⎰⎰n m I n m n n m x x n m I n m I nm m n m x x n m I xdx x n m xdx x n m n x x xdx x x n m n x x xdx x m n xn x x n x xd n m I n m n m mn m n n m m n n m m n n m n m 同理, 6.(§3 第1题(4))求⎰+dx x 114解:()()⎰⎰⎰⎰-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=+--+=+211211211112111224224x x x x d x x x x d dx x x x dx xC xx x x x x +++-+--=2121ln 24121arctan221。
不定积分和定积分习题

f ( x) f ( x)dx f x df x 1 2 f x C 2
1 cos x sin 2 x C 2 2 1 x sin x
2
不定积分 dx 2 x x 1
u x 1
1 3 ln x 1dx 3
2 x ln x 1 dx
不定积分
e cos 2 x 2 e sin 2 xdx
x x
e
x
cos 2 xdx cos 2 xde
x
e x cos 2 x 2 sin 2 xde x
2 d x x 1 1 3 dx 2 2 2 x x 1 2 x x 1 3 1 dx 2 ln x x 1 2 2 2 2 3 1 x 2 2
......
不定积分
e
3 x
x 3 ue
练习题(不定积分、定积分)
y f x 0
a
0
x
x+dx
b
不定积分
sin x 已知 f ( x) 的一个原函数为 ,求 f ( x) f ( x)dx 1 x sin x 2 sin x cos x sin x 解: f x 2 1 x sin x 1 x sin x
x
sin x cos x 1 d sin x 1 sin 4 x dx 2 1 sin 2 x 2 1 2 arctan sin x C 2 x 2 dx dx 2 x 2 x 2 x 2 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 不定积分总练习题求下列不定积分: (1)∫43x1x 2x --dx ;(2)∫xarcsinxdx ;(3)∫x1dx +;(4)∫e sinx sin2xdx ;(5)∫xe dx ;(6)∫1x x dx2-;(7)∫x tan 1x tan 1+-dx ;(8)∫32)2-x (x-x dx ; (9)∫x cos dx 4;(10)∫sin 4xdx ;(11)∫4x 3x 5-x 23+-dx ;(12)∫arctan(1+x )dx ; (13)∫2x x 47+dx ;(14)∫x tan tanx 1tanx 2++dx ;(15)∫1002x)-(1x dx ; (16)∫2x arcsinx dx ;(17)∫xln ⎪⎭⎫ ⎝⎛+x -1x 1dx ;(18)∫xsinx cos dx 7;(19)∫e x 22x 1x -1⎪⎭⎫ ⎝⎛+dx ; (20)I n =∫uv n dx, 其中u=a 1+b 1x ,v=a 2+b 2x ,求递推形式解.解:(1)∫43x 1x 2x --dx=∫41x dx-2∫121x dx-∫41x-dx =5445x -13241213x -34∫43x +C.(2)∫xarcsinxdx=-21∫arcsinxd(1-x 2)=-21(1-x 2)arcsinx+21∫(1-x 2)darcsinx=-21(1-x 2)arcsinx+21∫2x -1dx =-21(1-x 2)arcsinx+21∫t sin -12dsint=-21(1-x 2)arcsinx+21∫cos 2tdt=-21(1-x 2)arcsinx+81∫(1+cos2t)d2t =-21(1-x 2)arcsinx+4t +81sin2t+C=-21(1-x 2)arcsinx+41arcsinx +41sintcost+C =2x 2arcsinx-41arcsinx +2x -14x+C. (3)∫x 1dx+=∫t 1dt 2+=∫t12tdt +=2∫t 1t 1++dt-2∫t 1dt +=2t-2ln|1+t|+C=2x -2ln|1+x |+C.(4)∫e sinx sin2xdx=2∫e sinx sinxcosxdx=2∫sinxde sinx =2e sinx sinx-2∫e sinx dsinx=2e sinx sinx-2e sinx +C.(5)∫x e dx=∫e t dt 2=2∫tde t =2te t -2∫e t dt=2e t (t-1)+C=2x e (x -1)+C.(6)方法一:令t-x=1x 2-,则x=2t 1t 2+,dx=222t1t -dt ;∫1x x dx 2-=∫⎪⎪⎭⎫ ⎝⎛++-2t 1t -t 2t 1t 2t 1t 2222dt=2∫1t dt 2+=2arctant+C=2arctan(1x 2-+x)+C. 方法二:∫1x x dx 2-=-∫2x 11x 1d-=arccos x1+C.(7)方法一:∫x tan 1x tan 1+-dx=∫t 1t 1+-darctant=∫)t t)(11(t 12++-dt=∫t 1dt+-∫2t1t +dt =ln|1+t|-21∫22t 1dt +=ln|1+t|-21ln|1+t 2|+C= ln 2t 1|t 1|+++C= ln ttan 1|tant 1|2+++C. 方法二:∫x tan 1x tan 1+-dx=∫x sin x cos x sin x cos +-dx=∫xsin x cos x)sin x (cos d ++=ln|cosx+sinx|+C.(8)∫32)2-x (x-x dx=∫2-x dx +3∫22)-(x dx +2∫32)-(x dx =ln|x-2|-2-x 3-22)-(x 1+C.(9)∫xcos dx 4=∫sec 2xdtanx=∫(tan 2x+1)dtanx=31tan 3x+tanx+C. (10)∫sin 4xdx=41∫(1-cos2x)2dx=41(∫dx -∫cos2xd2x+∫cos 22xdx)=41x -41sin2x+81∫(cos4x+1)dx=41x -41sin2x+321∫cos4xd4x +81∫dx =41x -41sin2x+321sin4x +81x+C=83x -41sin2x+321sin4x +C. (11)由4x 3x 5-x 23+-=)1x (2)-x (5-x 2+≡2-x A +22)-x (B +1x C+得:x-5≡A(x-2)(x+1)+B(x+1)+C(x-2)2.当x=2时,B=-1;当x=-1时,C=-32;由A+C=0,得A=32.∴∫4x 3x 5-x 23+-dx=32∫2-x dx -∫22)-x (dx -32∫1x dx +=32ln 1x 2-x ++2-x 1+C. (12)令t=1+x ,则x=t 2-2t+1,dx=2t-2. ∫arctan(1+x )dx=xarctan(1+x )-∫xdarctan(1+x )=xarctan(1+x )-∫]1)x 1[(x 2x2++dx=xarctan(1+x )-∫)1t )(1-(t 21)-1)(t 2t -2(t 22++dt =xarctan(1+x )-∫1t 1)2t -(t 22++dt=xarctan(1+x )-∫dt+∫1t dt 22+=xarctan(1+x )-t+ln(t 2+1)+C=xarctan(1+x )-1-x +ln(x+2x +2)+C =xarctan(1+x )-x +ln(x+2x +2)+C 1.(13)∫2x x 47+dx=∫2x x 2x 437++dx-∫2x x 243+dx=∫x 3dx-21∫2x dx 44+=41x 4-21ln(x 4+2)+C.(14)∫x tan tanx 1tanx 2++dx=∫2tt 1t++darctant=∫)t (1)t t (1t 22+++dt =∫2t 1dt +-∫2t t 1dt ++=arctant-32∫131t 32t32d2+⎪⎪⎭⎫⎝⎛+=x-32arctan ⎪⎪⎭⎫ ⎝⎛+31t 32+C =x-32arctan312tanx ++C.(15)方法一:∫1002x)-(1x dx=991∫x 2d 99x )-(11=991[992x)-(1x -∫992x)-(1dx ]=991[992x)-(1x -2∫99x )-(1x dx]=992x)-99(1x -98992⨯∫xd 98x )-(11 =992x)-99(1x -98x )-98(1992x ⨯+98992⨯∫98x )-(11dx =992x)-99(1x -98x )-98(1992x ⨯+9798992⨯⨯∫d 97x )-(11=992x)-99(1x -98x )-98(1992x ⨯+97x )-97(198992⨯⨯+C =992x)-99(1x -98x )-(19499x ⨯+97x )-97(194991⨯⨯+C. 方法二:∫1002x)-(1x dx=∫1002x)-(1x)-(1dx-2∫100x )-(1x )-(1dx+∫100x )-(1dx=∫98x )-(1dx dx-2∫99x )-(1dx +∫100x )-(1dx =97x )-97(11-98x )-49(11+99x )-99(11+C. (16)令arcsinx=t ,则x=sint ,dx=costdt.∫2x arcsinx dx=∫tsin tcost 2dt=-∫td sint 1=-sint t +∫sint 1dt=-sint t +∫2t 2tan2t sec 2dt =-sint t +∫2t tan 2t dtan dt=-sint t +ln|tan 2t |+C =-sint t +ln sint cost -1+C =-xarcsinx+ln x x -1-12+C.(17)∫xln ⎪⎭⎫⎝⎛+x -1x 1dx=21∫ln ⎪⎭⎫ ⎝⎛+x -1x 1dx 2=21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1-21∫x 2dln ⎪⎭⎫ ⎝⎛+x -1x 1 =21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1-∫22x -1x dx=21x 2ln ⎪⎭⎫ ⎝⎛+x -1x 1+∫dx-∫2x -1dx=21x 2ln ⎪⎭⎫⎝⎛+x -1x 1+∫dx-21ln ⎪⎭⎫ ⎝⎛+x -1x 1+C=21(x 2-1)ln ⎪⎭⎫⎝⎛+x -1x 1+∫dx+C. (18)∫xsinx cos dx 7=2∫31)x sin2x(cos2d2x +=2∫322221t 1t -1·t 1t 2t 12⎪⎪⎭⎫ ⎝⎛++++dt=∫tt 12+dt=∫t1dt+∫3t dx=2t +525t +C=2tanx +52x tan 5+C.(19)∫e x 22x 1x 1⎪⎭⎫ ⎝⎛+-dx=∫e x 222)x (1x2x 1+-+dx=∫2x x 1e +dx-2∫22x )x (1e +dx=∫2x x 1de ++∫e x d 2x 11+=2x x 1e +-∫e x d 2x 11++∫e x d 2x 11+=2x x 1e ++C. (20)I n =∫u v ndx=1b 1∫uv n du=1b 2∫v n d u =1b 2v n u -1b 2∫u dv n=1b 2v n u -12b 2nb ∫v n-1u dx=1b 2v nu -12b 2nb ∫uuv 1-n dx. 又∫uuv 1-n dx=∫ux )v b +(a 1-n 11dx=21b b ∫ux)v b +(a b b 1-n 1112dx=21b b ∫ux)v b +b b a (1-n 2121dx=21b b ∫uv )a b b a (x)v b +a (1-n 21211-n 22-+dx=21b b I n +)b ba a (2121-I n-1 =2b 1[b 1I n +(a 1b 2-a 2b 1)I n-1]. ∴I n =1b 2v n u -1b 2n [b 1I n +(a 1b 2-a 2b 1)I n-1]=1b 2v n u -2nI n +1b 2n(a 1b 2-a 2b 1)I n-1. 即I n =)1n 2(b 21+v n u +)1n 2(b 2n1+(a 1b 2-a 2b 1)I n-1.。