(完整版)数学分析知识点总结(定积分)
数学分析第十章 定积分的应用

x x(t) y y(t)
t [, ]
给出,在[, ]上y(t)连续, x(t)连续可微,
且x'(t) 0,记a x( ),b x( ),则
曲边梯形的面积
A y(t)x' (t) dt.
例2
求椭圆 x2 a2
y2 b2
1的面积.
解
椭圆的参数方程
x y
a cos t bsin t
对一个立体,如果知道该立体上垂直于一 定轴的各个截面面积,那么,这个立体的体积 也可用定积分来计算.
如图,设 A( x)
表示过点 x且 a o
垂直于 x轴的
x
bx
截面面积。
A( x)为 x的已知连续函数,
取积分变量为 x,变化范围[a,b]
相应于[a, b]上的任一小区间[ x, x dx],
立体位于该小区间部分而成的薄片的体积近似看成是 以 A(x) 为底面积、 dx 为高的扁圆柱体的体积,即
1.由连续曲线
y f ( x)( f ( x) 0)、x 轴与两条直线 x a、 x b所围成的平面图形
的面积。
y
y f (x)
oa
bx
2.如果y=f(x)在[a,b]上不都是非负时,如下图
积分重要知识点总结

应用场景
03
适用于已知原函数且积分区间为有限区间的定积分计
算。
间接积分法
定义
间接积分法是通过将被积函数进行适当的变形,将其转化为易于 计算的积分形式,从而求出定积分的值。
公式
$int f(x) dx = F(x) + C$,其中$F(x)$是$f(x)$的原函数,$C$ 是常数。
应用场景
适用于被积函数较为复杂或不易找到原函数的定积分计算。
间接积分法
定义
间接积分法是通过将被积函数进行适当的变形,将其转化为易于 计算的积分形式,从而求出定积分的值。
公式
$int f(x) dx = F(x) + C$,其中$F(x)$是$f(x)$的原函数,$C$ 是常数。
应用场景
适用于被积函数较为复杂或不易找到原函数的定积分计算。
数值积分法
定义
数值积分法是一种通过选取适当的积分点和权函数,将定积分近似 为有限项和,从而得到定积分的近似值的计算方法。
微积分基本定理
总结词
微积分基本定理是积分学中的重要定理,它建立了函数与其 导数之间的关系,为微分和积分之间的联系提供了桥梁。
详细描述
微积分基本定理表述为,如果函数f(x)在区间[a, b]上可导,那 么对于任意x∈[a, b],有∫xaf'(x)dx=f(x)|xa。这个定理表明, 函数的积分与其导数之间存在密切关系,是微分学和积分学之 间的桥梁。
$f(x)$的原函数。
应用场景
03
适用于已知原函数且积分区间为有限区间的定积分计
算。
直接积分法
定义
01
直接积分法是通过将被积函数代入积分区间端点处的
函数值,再乘以积分区间的长度来计算定积分的。
数学分析知识点总结(定积分)

第一篇 分析基础 1.1收敛序列(收敛序列的定义)定义:设}{n x 是实数序列,a 是实数,如果对任意0>ε都存在自然数N ,使得只要N n >,就有ε<-a x n那么}{n x 收敛,且以a 为极限,称为序列}{n x 收敛收敛于a ,记为a x n =lim 或者)(+∞→→n a x n定理1:如果序列}{n x 有极限,那么它的极限是唯一的。
定理2(夹逼原理):设}{n x ,}{n y 和}{n z 都是实数序列,满足条件N n z y x n n n ∈∀≤≤,如果a z x n n ==lim lim ,那么}{n y 也是收敛序列,且有a y n =lim定理3:设}{n x 是实数序列,a 是实数,则以下三陈述等价(1) 序列}{n x 以a 为极限; (2) {}n x a -是无穷小序列; (3) 存在无穷小序列{}n a 使得,1,2,.n n x a a n =+=(收敛序列性质)定理4:收敛序列}{n x 是有界的。
定理5:(1)设a x n =lim ,则a x n =lim 。
(2)设a x n =lim ,b y n =lim ,则b a y x n n ±=±)lim (。
(3)设a x n =lim ,b y n =lim ,则ab y x n n =)lim(。
(4)设0≠n x ,0lim ≠=a x n ,则ax n 11lim=。
(5)设0≠n x ,0lim ≠=a x n ,b y n =lim ,则lim limlim n n n n y y b x x a==。
(收敛序列与不等式)定理6:如果lim lim n n x y <,那么存在0N N ∈,使得0n N >时有n n x y <定理7:如果}{n x 和{}n y 都是收敛序列,且满足0,,n n x y n N ≤∀>那么lim lim n n x y ≤1.2 收敛原理(单调序列定义)定义:(1)若实数序列}{n x 满足1,,n n x x n N +≤∀∈则称}{n x 是递增的或者单调上升的,记为{}.n x ↑(2)若实数序列{}n y 满足1,,n n y y n N +≥∀∈则称{}n y 是递减的或者单调下降的,记为{}n y ↓(3)单调上升的序列和单调下降的序列统称为单调序列。
定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
(整理版)揭示定积分的性质

揭示定积分的性质定积分内容是研究曲边梯形、变速行程等问题的有力工具,在对定义加深理解的根底上,我们还应了解一些定积分的根本性质.〔由于这些性质的证明联系到大学《数学分析》的一些内容,所以对证明过程不作要求.〕一、定积分根本性质假设下面所涉及的定积分都是存在的,那么有性质1 函数代数和〔差〕的定积分等于它们的定积分的代数和〔差〕. 即[()()]()()b b ba a a f x g x dx f x dx g x dx ±=±⎰⎰⎰. 这个性质可推广到有限多个函数代数和的情形.性质2 被积函数的常数因子可以提到积分号前.即()()b ba a kf x dx k f x dx =⎰⎰〔k 为常数〕. 性质3 不管abc ,,三点的相互位置如何,恒有()()()b c ba a c f x dx f x dx f x dx =+⎰⎰⎰. 这性质说明定积分对于积分区间具有可能性.性质4 假设在区间[]a b ,上,()0f x ≥,那么()0ba f x dx ⎰≥. 推论1 假设在区间[]ab ,上,()()f x g x ≤,那么()()b ba a f x dx g x dx ⎰⎰≤. 推论2 ()()bba a f x dx f x dx ⎰⎰≤. 性质5 〔估值定理〕设函数()f x 在区间[]ab ,上的最小值与最大值分别为m 与M ,那么()()()ba mb a f x dx M b a --⎰≤≤. 证明:因为()m f x M ≤≤,由性质推论1得()b b ba a a mdx f x dx Mdx ⎰⎰⎰≤≤. 即()b b ba a a m dx f x dx M dx ⎰⎰⎰≤≤. 故()()()ba mb a f x dx M b a --⎰≤≤. 利用这个性质,由被积函数在积分区间上的最小值及最大值,可以估计出积分值的大致范围.二、定积分性质的应用例1 比拟定积分20x e dx -⎰和20xdx -⎰的大小. 解:令()x f x e x =-,[20]x ∈-,,那么()0f x >, 故02()0f x dx ->⎰,即02()0x e x dx -->⎰.022x e dx xdx -->⎰⎰,从是2200x e dx xdx --<⎰⎰. 例2 估计定积分π30212sin dx x +⎰的值.解:∵当[0π]x ∈,时,0sin 1x ≤≤,320sin 1∴≤≤,由此有3222sin 3x +≤≤,32111322sin x +≤≤, 于是由估值定理有π302π1π322sin dx x +⎰≤≤. 评注:例1是比拟同区间上两个定积分的大小,可以直接求值进行比拟,但本例的构造函数,利用性质比拟防止了大量计算,显得简捷、明了.例2中运用的估值定理为大学涉及内容,不作要求,可以了解.。
数学分析知识点总结(定积分)

第一篇 分析基础 1.1收敛序列(收敛序列的定义)定义:设}{n x 是实数序列,a 是实数,如果对任意0>ε都存在自然数N ,使得只要N n >,就有ε<-a x n那么}{n x 收敛,且以a 为极限,称为序列}{n x 收敛收敛于a ,记为a x n =lim 或者)(+∞→→n a x n定理1:如果序列}{n x 有极限,那么它的极限是唯一的。
定理2(夹逼原理):设}{n x ,}{n y 和}{n z 都是实数序列,满足条件N n z y x n n n ∈∀≤≤,如果a z x n n ==lim lim ,那么}{n y 也是收敛序列,且有a y n =lim定理3:设}{n x 是实数序列,a 是实数,则以下三陈述等价(1) 序列}{n x 以a 为极限; (2) {}n x a -是无穷小序列; (3) 存在无穷小序列{}n a 使得,1,2,.n n x a a n =+=(收敛序列性质)定理4:收敛序列}{n x 是有界的。
定理5:(1)设a x n =lim ,则a x n =lim 。
(2)设a x n =lim ,b y n =lim ,则b a y x n n ±=±)lim(。
(3)设a x n =lim ,b y n =lim ,则ab y x n n =)lim(。
(4)设0≠n x ,0lim ≠=a x n ,则ax n 11lim=。
(5)设0≠n x ,0lim ≠=a x n ,b y n =lim ,则lim limlim n n n n y y b x x a==。
(收敛序列与不等式)定理6:如果lim lim n n x y <,那么存在0N N ∈,使得0n N >时有n n x y <定理7:如果}{n x 和{}n y 都是收敛序列,且满足0,,n n x y n N ≤∀>那么lim lim n n x y ≤1.2 收敛原理(单调序列定义)定义:(1)若实数序列}{n x 满足1,,n n x x n N +≤∀∈则称}{n x 是递增的或者单调上升的,记为{}.n x ↑(2)若实数序列{}n y 满足1,,n n y y n N +≥∀∈则称{}n y 是递减的或者单调下降的,记为{}n y ↓(3)单调上升的序列和单调下降的序列统称为单调序列。
(完整版)定积分知识点汇总

(完整版)定积分知识点汇总定积分是高中数学教学的重点难点之一,也是高数的基础知识。
我们通过汇总定积分的相关知识点,帮助同学们更好地掌握定积分的相关知识,以便在考试中取得好的成绩。
一、定积分的定义定积分是对函数在一定区间上的积分,也就是函数在此区间上的面积。
1. 定积分与区间的选取无关,即如果函数在 $[a,b]$ 上是可积的,则定积分$\int_a^b f(x) \mathrm{d}x$ 的值是唯一的。
2. 定积分具有可加性,即对于任意的 $c \in [a,b]$,有 $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$。
三、定积分的求解方法1. 函数曲线与坐标轴相交的情况:对于函数曲线与 $x$ 轴相交的区间,可以根据定义式直接求出该区间内的面积。
对于函数曲线与 $y$ 轴相交的区间,则要将积分区间平移后,再根据定义式计算面积。
2. 利用基本积分法和牛顿-莱布尼茨公式:可以利用基本积分法求出一个函数的原函数,然后利用牛顿-莱布尼茨公式,即$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$,其中 $F(x)$ 是 $f(x)$ 的一个原函数。
3. 利用换元积分法:换元积分法是利用一些特殊的代换,将积分式转化为某些基本形式的积分。
常见的代换包括:$u=g(x), x=h(u)$ 和 $\mathrm{d}u = f(x) \mathrm{d}x$。
分部积分法是将原积分式做一个变形,转化成两个积分乘积的形式,从而更容易求解。
5. 利用定积分的对称性:如积分区间对于 $0$ 对称,或者函数具有四象限对称性等,可以根据对称性减少计算量。
1. 几何应用:用定积分可以求解函数曲线与坐标轴围成的图形的面积、体积和质心等几何特征。
利用定积分可以求解质点运动的速度、加速度、位移和质量等物理量。
定积分计算方法总结

摘要定积分是数学分析中的一个基本问题,而计算定积分是最基本最重要的问题.它在许多实际问题有着广泛的应用.下面针对定积分的计算方法做一个比较详细的总结,常见的包括分项积分、分段积分法、换元积分法、分部积分法.但对于不能直接找出原函数的定积分,或者被积函数比较复杂时,往往是比较难求出原函数的,从而无法用牛顿-莱布尼兹公式求解.针对这样的情形,本文总结用欧拉积分求解定积分、留数在定积分上的运用、巧用二重积分求解定积分、反函数求解定积分以及带积分型余项的泰勒公式在定积分上的应用,并列举相应的例子进行说明.关键词: 定积分; 被积函数; 原函数; 牛顿-莱布尼兹公式目录1 引言2 定计算的计算方法2.1 分项积分法 (1)2.2 分段积分法 (2)2.3 换元积分法 (3)2.4 分部积分法 (5)2.5 欧拉积分在定积分计算中的应用 (9)2.6 留数在定积分计算上的应用 (10)2.7 巧用二重积分求解定积分 (10)2.8 反函数法求解定积分 (10)2.9 带积分型余项的泰勒公式在定积分上的应用 (11)3 总结 (12)浅谈定积分的计算1.引言定积分的计算是微积分学的重要内容,其应用十分广泛,它是包括数学及其其他学科的基础.本文归纳总结了常见的定积分计算方法(如[1-4]),其中包括分项积分法、分段积分法、换元积分法以及分部积分法.另外对于找不出原函数的定积分,或者被积函数十分复杂时,往往是很难求出其原函数,从而无法用牛顿-莱布尼兹公式求解.针对这样的情形,我们有必要在此基础上研究出新的计算方法.对此本文总结了一些另外的方法(如[5-9]),其中包括欧拉积分求解定积分、运用留数计算定积分、巧用二重积分求解定积分、反函数法求解定积分以及带积分型余项的泰勒公式在定积分上的应用,进行了一一列举,并通过例子加以说明.2.定积分的计算方法2.1 分项积分法我们常把一个复杂的函数分解成几个简单的函数之和:1122()()f x k g x k g x ()+,若右端的积分会求,则应用法则1122()()b b baaaf x dx kg x dx k g x dx =⎰⎰⎰()+,其中1k ,2k 是不全为零的任意常数,就可求出积分()baf x dx ⎰,这就是分项积分法.例2-1[1]计算定积分414221(1)dxx x π+⎰.解 利用加减一项进行拆项得414221(1)dx x x π+⎰=2241422(1)(1)x x dx x x π+-+⎰=41421dx x π⎰-2241222(1)(1)x x dx x x π+-+⎰ =41421dx x π⎰-41221dx x π⎰+412211dx x π+⎰=-313x 412π+4121xπ+arctan x412π.=364415arctan 323ππ-+-+. 例2-2计算定积分21⎰.解 记J=21⎰=1⎰=3221x dx ⎰+21⎰再将第二项拆开得 J=3221x dx ⎰+3221(1)x dx -⎰+1221(1)x dx -⎰=522125x +52212(1)5x -+32212(1)3x -=52225+23. 2.2 分段积分法分段函数的定积分要分段进行计算,这里重要的是搞清楚积分限与分段函数的分界点之间的位置关系,以便对定积分进行正确的分段.被积函数中含有绝对值时,也可以看成分段函数,这是因为正数与负数的绝对值是以不同的方式定义的,0就是其分界点.例2-3[2]计算定积分221(1)min ,cos 2x x dx ππ-⎧⎫+⎨⎬⎩⎭⎰.解 由于1min ,cos 2x ⎧⎫⎨⎬⎩⎭为偶函数,在0,2π⎡⎤⎢⎥⎣⎦上的分界点为3π,所以221(1)min ,cos 2x x dx ππ-⎧⎫+⎨⎬⎩⎭⎰=221min ,cos 2x x dx ππ-⎧⎫⎨⎬⎩⎭⎰+2012min ,cos 2x dx π⎧⎫⎨⎬⎩⎭⎰ =0+320312(cos )2dx xdx πππ+⎰⎰=23π+.例2-4 计算定积分2(1)f x dx -⎰,其中1,011,01()xx x x e f x ≥+<+⎧⎪=⎨⎪⎩.解 由于函数()f x 的分界点为0,所以,令1t x =-后,有2(1)f x dx -⎰=11()f t dt -⎰=0111x dx e -+⎰+1011dx x +⎰ =011x xe dx e ---+⎰+10ln(1)x +=01ln(1)xe ---++ln 2=ln(1)e +.2.3 换元积分法(变量替换法) 换元积分法可以分为两种类型:2.3.1 第一类换元积分法(也被俗称为“凑微分法”) 例2-5[3]计算定积分21sin tan dxx xπ+⎰.解21sin tan dxx x π+⎰=21cos sin (1cos )xdx x x π+⎰=22213cos sin 224sin cos 22x x dx x x π-⎰ =2211tan 2tan 22tan2xx d x π-⎰ =2111(tan )tan 222tan 2x x d x π-⎰ =2221111ln tan tan 2242x xππ-=21111ln tan tan 2424-+-.例2-6计算定积分241x dx x-+.解241x dx x -+=222111x dx xx -+=02211()1d x x x x -++=0211()1()2d x x x x-++-= 0011()()11()()d x d x x x x x x x ⎡⎤++⎢⎥-⎢⎢+-++⎣=15.2.3.2 第二换元积分法常用的变量替换有:①三角替换;②幂函数替换;③指数函数替换④倒替换. 下面具体介绍这些方法. ① 三角替换例2-7[4] 计算定积分31240(1)x x dx -⎰.解 由于31240(1)x x dx -⎰=3124201(1)2x dx -⎰,故可令2sin x t =,于是 31240(1)x x dx -⎰=arcsin1401cos 2tdt ⎰=2arcsin101(1cos 2)8t dt +⎰=arcsin101(12cos 28t ++⎰1cos 4)2t dt + =arcsin1011(32sin 2sin 4)164t t t ++=1(34sin 16t +2arcsin10sin sin ))t -=224101(3arcsin 4(1216x x x x +-=2101(3arcsin 5216x x x +=3arcsin116.②幂函数替换例2-8 计算定积分220sin sin cos xdx x xπ+⎰. 解 作变量代换2x t π=-,得到220sin sin cos x dx x xπ+⎰=220cos sin cos t dt t t π+⎰,因此220sin sin cos x dx x x π+⎰=2222001sin cos ()2sin cos sin cos x t dx dt x x t t ππ+++⎰⎰= 20112sin cos dx x x π+⎰201sin()4dx x ππ+⎰3441sin dx x ππ⎰= 3441cos )sin x x ππ-. ③倒替换例2-9计算定积分1解11令1t x=得1=11-=1arcsin-=6π. 2.4 分部积分法定理 3-1[5]若()x μ',()x ν'在[],a b 上连续,则bb b a aauv dx uv u vdx ''=-⎰⎰或b bba aaudv uv vdu =-⎰⎰.利用分部积分求()baf x dx ⎰的解题方法(1)首先要将它写成b audv ⎰()bauv dx '⎰或得形式.选择,u v ,使用分布积分法的常见题型: 表一(2)多次应用分部积分法,每分部积分一次得以简化,直至最后求出. (3)用分部积分法有时可导出()ba f x dx ⎰的方程,然后解出.(4)有时用分部积分法可导出递推公式. 例2-10[6]计算定积分2220sin x xdx π⎰.解 于21sin (1cos 2)2x x =-,所以2220sin x xdx π⎰=2201(1cos 2)2x x dx π-⎰=322211sin 264x x d x ππ-⎰ 连续使用分部积分得222sin x xdx π⎰=3222111(sin 2)sin 2642x x x x xdx ππ-+⎰ =3222111(sin 2)cos 2644x x x xd x ππ--⎰ =32201111(sin 2cos 2sin 2)6448x x x x x x π--+=3488ππ+.例2-11[7]计算定积分220sin x x e xdx π⎰.解 因为20sin x e xdx π⎰=20sin xxde π⎰=2sin xe xπ-20cos x xde π⎰=20(sin cos )xe x x π-20sin x e xdx π-⎰ 所以2sin xe xdx π⎰=1220(sin cos )xe x x π- =21(1)2e π+ 于是 20cos x e xdx π⎰=cos xe x20π+20sin x e xdx π⎰=201(sin cos )2x e x x π+=21(1)2e π- 从而220s i n xx e x d x π⎰=2201(sin cos )2x x d e x x π⎡⎤-⎢⎥⎣⎦⎰=2201(sin cos )2x x e x x π-20(sin cos )x xe x x dx π--⎰=2201(sin cos )2x x e x x π-201(sin cos )2x xd e x x π⎡⎤--⎢⎥⎣⎦⎰201(sin cos )2x xd e x x π⎡⎤++⎢⎥⎣⎦⎰=2201(sin cos )2x x e x x π-201(sin cos )2x xe x x π--201(sin cos )2x e x x dx π+-⎰ 201(sin cos )2x xe x x π++201(sin cos )2x e x x dx π-+⎰ =2201(sin cos )2x x e x x π-20cos xxe xπ+20cos x e xdx π-⎰=2201(sin cos )2x x e x x π-20cos xxe xπ+-201(sin cos )2x e x x π+=2221(1)sin (1)cos 2x e x x x x π⎡⎤---⎣⎦=221(1)242e ππ-+. 例2-12[8]计算定积分0sin n x x dx π⎰,其中n 为正整数.解(21)2s i n k k x x d x ππ+⎰=(21)2sin k k x xdx ππ+⎰作变量替换2t x k π=-得(21)2sin k k x xdx ππ+⎰=0(2)sin t k tdt ππ+⎰=0sin 2sin t tdt k tdt πππ+⎰⎰=0cos cos 2cos t ttdt k tππππ-+-⎰=(41)k π+(22)(21)sin k k x xdx ππ++⎰=(22)(21)sin k k x xdx ππ++-⎰作变量替换2t x k π=-得(22)(21)sin k k x xdx ππ++-⎰=2(2)sin t k tdt πππ-+⎰=-22sin 2sin t tdt k tdt πππππ--⎰⎰=222cos cos 2cos t tdttdt k tπππππππ-+⎰=(43)k π+ 当n 为偶数时,sin n x x dx π⎰=12(21)(22)2(21)0(sin sin )nk k k k k x xdx x xdx ππππ-+++=+∑⎰⎰=[]12(41)(43)n k k k ππ-=+++∑(1)224222n n n π⎡⎤-⎢⎥=⋅+⎢⎥⎢⎥⎣⎦=2n π 当n 为奇数时,sin n x x dx π⎰=32(21)(22)2(21)(1)0(sin sin )sin n k k n k k n k x xdx x xdx x x dx ππππππ-+++-=++∑⎰⎰⎰=[]321(41)(43)(41)2n k n k k πππ-=-++++⋅+∑ =324(21)(21)n k k n ππ-=++-∑=31()()12242(21)22n n n n ππ--⎡⎤⋅⎢⎥-⋅++-⎢⎥⎢⎥⎣⎦=2n π.2.5 欧拉积分在定积分计算中的应用定义 2-1[4]形如(,)p q B =1110(1)p q x x dx ---⎰的含参变量积分称为Beta 函数,或第一类Euler 积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇 分析基础 1.1收敛序列(收敛序列的定义)定义:设}{n x 是实数序列,a 是实数,如果对任意0>ε都存在自然数N ,使得只要N n >,就有ε<-a x n那么}{n x 收敛,且以a 为极限,称为序列}{n x 收敛收敛于a ,记为a x n =lim 或者)(+∞→→n a x n定理1:如果序列}{n x 有极限,那么它的极限是唯一的。
定理2(夹逼原理):设}{n x ,}{n y 和}{n z 都是实数序列,满足条件N n z y x n n n ∈∀≤≤,如果a z x n n ==lim lim ,那么}{n y 也是收敛序列,且有a y n =lim定理3:设}{n x 是实数序列,a 是实数,则以下三陈述等价(1) 序列}{n x 以a 为极限; (2) {}n x a -是无穷小序列; (3) 存在无穷小序列{}n a 使得,1,2,.n n x a a n =+=L(收敛序列性质)定理4:收敛序列}{n x 是有界的。
定理5:(1)设a x n =lim ,则a x n =lim 。
(2)设a x n =lim ,b y n =lim ,则b a y x n n ±=±)lim (。
(3)设a x n =lim ,b y n =lim ,则ab y x n n =)lim(。
(4)设0≠n x ,0lim ≠=a x n ,则ax n 11lim=。
(5)设0≠n x ,0lim ≠=a x n ,b y n =lim ,则lim limlim n n n n y y b x x a==。
(收敛序列与不等式)定理6:如果lim lim n n x y <,那么存在0N N ∈,使得0n N >时有n n x y <定理7:如果}{n x 和{}n y 都是收敛序列,且满足0,,n n x y n N ≤∀>那么lim lim n n x y ≤1.2 收敛原理(单调序列定义)定义:(1)若实数序列}{n x 满足1,,n n x x n N +≤∀∈则称}{n x 是递增的或者单调上升的,记为{}.n x ↑(2)若实数序列{}n y 满足1,,n n y y n N +≥∀∈则称{}n y 是递减的或者单调下降的,记为{}n y ↓(3)单调上升的序列和单调下降的序列统称为单调序列。
定理1:递增序列}{n x 收敛的充分必要条件是它有上界,其上确界记为sup{}n x 。
定理1推论:递减序列{}n y 收敛的充分必要条件是它有下界,其下确界记为inf{}n x 。
扩展:因为一个序列的收敛性及其极限值都只与这序列的尾部(即从某一项之后的项)有关,所以定理1和它的推论中单调性条件可以虚弱为“从某一项之后单调”,即为10,,n n x x n N +≤∀>及10,,n n y y n N +≥∀>(自然对数的底e )自然对数的底e 通过下面这个式子求得1lim 1nn e n →+∞⎛⎫=+ ⎪⎝⎭我们先来证明序列11nn x n ⎛⎫=+ ⎪⎝⎭是收敛的。
(1)序列11nn x n ⎛⎫=+ ⎪⎝⎭是单调上升的。
111112111(1)(1)(1)2!3!1121(1)(1)(1)!1121(1)(1)(1)!nn x n n n n k k n n n n n n n n⎛⎫=+=++-+-- ⎪⎝⎭-++----++---L L L L11111112111(1)(1)(1)12!13!111121(1)(1)(1)!1111121(1)(1)(1)!111112(1)(1)(1)(1)!111n n x n n n n k k n n n n n n n n n n n n n ++⎛⎫=+=++-+-- ⎪++++⎝⎭-++---+++-++---++++---++++L L L L L 对比n x 和1n x +的展开式,1n x +前面1n +项的每一项都比n x 中相应项要大,即11211121(1)(1)(1)(1)(1)(1)!111!k k k n n n k n n n----->---+++L L 除此之外1n x +还比n x 在最后多一个正项。
因此我们得出n x 是单调上升的,即1,,n n x x n N +<∀∈(2)序列11nn x n ⎛⎫=+ ⎪⎝⎭是有上界的。
21111121111(1)(1)(1)(1)2!!111112221112113111122nn n nn x n n n n n n -⎛⎫=+=++-++--- ⎪⎝⎭<+++++⎛⎫- ⎪⎝⎭=+<+=--L L L序列11nn x n ⎛⎫=+ ⎪⎝⎭是单调上升且有上界,因此必是收敛的,此收敛值用e 表示。
通过计算机模拟,我们可以得到e 的近似值,前几位是2.718281828459045…在数学中,以e 为底的对数称为自然对数,e 称为自然对数的底,正实数x 的自然对数通常记为ln x ,log x 或者log e x 。
(闭区间套原理)定理2(闭区间套原理):如果实数序列{}n a 和{}n b (或闭区间序列[]{},n n a b )满足条件 (1)[][]11,,n n n n a b a b --⊂(或者11,1n n n n a a b b n --≤≤≤∀>)(2)()lim 0n n b a -= 那么(i )闭区间序列[]{},n n a b 形成一个闭区间套。
(ii )实数序列{}n a 和{}n b 收敛于相同的极限值c 。
lim lim n n a b c ==(iii )c 是满足以下条件的唯一实数值。
,n n a c b n N ≤≤∀∈证明:(ii )由条件(1)可得111n n n n a a b b b --≤≤≤≤≤L我们可以看到{}n a 单调上升而有上界,{}n b 单调下降而有下界,因此{}n a 和{}n b 都是收敛序列。
由条件(2)可得()lim lim lim 0n n n n b a b a -=-=,因此实数序列{}n a 和{}n b 收敛于相同的极限值。
lim lim n n a b c ==(iii )因为{}{}sup inf n n c a b ==所以显然有,n n a c b n N ≤≤∀∈假如还有一个实数'c 满足',n n a c b n N ≤≤∀∈由于lim lim n n a b c ==那么根据夹逼准则,有'lim 'lim lim n n c c a b c ====则证明了c 是唯一的。
(Bolzano-Weierstrass 定理) 定义:设{}n x 是实数序列,而1231k k n n n n n +<<<<<<L L是一串严格递增的自然数,则1231,,,,,,k k n n n n n x x x x x +L L也形成一个实数序列。
我们把序列{}k n x 叫做序列{}n x 的子序列(或部分序列),要注意的是子序列{}k n x 的序号是 k 。
定理3:设序列{}n x 收敛于a ,则它的任何子序列{}k n x 也都收敛于同一极限a 。
证明:对于任意0ε>,存在0N N ∈,使得只要0n N >,就有n x a ε-<当0k N >时就有0k n k N ≥>,因而此时有k n x a ε-<定理4(Bolzano-Weierstrass ):设{}n x 是有界序列,则它具有收敛的子序列。
(柯西收敛原理)柯西序列定义:如果序列{}n x 满足条件:对于任意0ε>,存在0N N ∈,使得当0,m n N >时,就有m n x x ε-<则此序列为柯西序列,又称基本序列。
引理:柯西序列{}n x 是有界的。
证明:对于任意1ε=,存在0N N ∈,使得当0,m n N >时,就有1m n x x -<于是对于0n N >,我们有0001111n n N N N x x x x x +++≤-+<+若记{}00121max ,,,,1N N K x x x x +=+L则有,n x K n N ≤∀∈定理5(收敛原理):序列{}n x 收敛的必要充分条件是:对任意0ε>,存在0N N ∈,使得当0,m n N >时,就有m n x x ε-<换句话说:序列{}n x 收敛⇔{}n x 序列是柯西序列1.3 无穷大定义:(1)设{}n x 是实数序列,如果对任意正实数E ,存在自然数N ,使得当n N >时就有n x E >那我们就说实数序列{}n x 发散于+∞,记为lim n x =+∞(2)设{}n y 是实数序列,如果对任意正实数E ,存在自然数N ,使得当n N >时就有n y E <-那我们就说实数序列{}n y 发散于-∞,记为lim n y =-∞(3)设{}n z 是实数序列,如果序列{}n z 发散于+∞,即lim n z =+∞,那么我们就称{}n z 为无穷大序列,记为lim n z =∞注记:(1)若集合E R ⊂无上界,则记sup E =+∞(2)若集合F R ⊂无下界,则记sup F =-∞定理1:单调序列必定有(有穷的或无穷的)极限,具体而言是: (1)递增序列{}n x 有极限,且{}lim sup n n x x =(2)递减序列{}n y 有极限,且{}lim inf n n y y =定理2:设{}n x 和{}n y 是实数序列,满足条件,n n x y n N ≤∀∈则有:(1)如果lim n x =+∞,那么lim n y =+∞; (2)如果lim n y =-∞,那么lim n x =-∞。
定理3:如果lim n x =+∞(或-∞,或∞),那么对于{}n x 的任意子序列{}k n x 也有lim k n x =+∞(或-∞,或∞)定理4:设0,n x n N ≠∀∈,则{}n x 是无穷大序列⇔1n x ⎧⎫⎨⎬⎩⎭是无穷小序列 扩充的实数系:{,}R R =⋃-∞+∞定理5:实数序列{}n x 至多只能有一个极限。
扩充的实数系R 中的运算: (1)如果x R ∈,那么()()x x +±∞=±∞+=±∞()x -±∞=∞m(2)如果x R ∈,0x >,那么()()x x ⋅±∞=±∞⋅=±∞如果y R ∈,0y <,那么()()y y ⋅±∞=±∞⋅=∞m(3)如果x R ∈,那么0x x ==+∞-∞(4)()()+∞++∞=+∞,()()+∞--∞=+∞()()-∞+-∞=-∞,()()-∞-+∞=-∞ ()()+∞⋅+∞=+∞,()()-∞⋅-∞=+∞ ()()()()+∞⋅-∞=-∞⋅+∞=-∞(5)除此之外,其余都没有定义。