(完整版)高中数学定积分知识点
高二数学定积分知识点总结

高二数学定积分知识点总结一、定积分的概念1.1 定积分的引入在高中数学中,我们学过了不定积分的概念和性质,定积分就是在这个基础上引入的。
当我们对一个函数进行积分时,如果我们要计算的量是函数在一个区间上的面积或者体积,那么我们就需要用到定积分。
定积分可以看做是一个变量的特定区间上的累积和。
1.2 定积分的定义设函数f(x)在区间[a, b]上有定义,将[a, b]分成n等分,每个小区间的长度为Δx=n(b-a),在第i个小区间上任取一点ξi,则f(x)在[a, b]上的定积分为:∫[a,b]f(x) dx=lim{n→∞}∑{i=1}^{n}f(ξi)Δx其中lim{n→∞}表示当n趋向于无穷大时的极限。
1.3 定积分的几何意义定积分的几何意义即函数f(x)在[a, b]上的定积分就是函数y=f(x)与x轴所围区域的有向面积。
1.4 定积分的性质(1)定积分的线性性质:∫[a,b][f(x)+g(x)] dx=∫[a,b]f(x) dx+∫[a,b]g(x) dx(2)定积分的估值性质:若f(x)在[a, b]上连续,则必定存在α∈[a, b],使得∫[a,b]f(x)dx=f(α)(b-a)1.5 定积分的计算定积分的计算主要是通过不定积分的计算来实现。
通过不定积分求出F(x)的原函数后,即可得到∫[a,b]f(x) dx=F(b)-F(a)。
二、定积分的应用2.1 定积分的物理意义定积分在物理学中有着重要的应用,它可以用来计算物体的质量、重心、压力、力矩等。
在力学中,定积分常用来计算物体的质心以及转动惯量等。
2.2 定积分的几何应用定积分可以用来求曲线与坐标轴所围成的曲边梯形或者曲边梯形的面积,也可以用来计算曲线的弧长、曲线旋转体的体积等几何问题。
2.3 定积分的工程应用在工程问题中,定积分可以用来计算各种曲线的长度、曲线所围成的区域面积、曲线所绕成的物体的体积等。
2.4 定积分的经济应用在经济学中,定积分可以用来计算总收益、总成本、总利润等与变量有关的经济指标。
数学定积分知识总结

定积分1. 概念: 定积分源自于求曲边梯形的面积, 它的计算形式为:01()lim ()nbk k a k f x dx f x λξ→==∆∑⎰, 结果是一个数值, 其值的大小取决于两个因素(被积函数与积分限).2. 几何意义: 是曲线[](),y f x a b =介于之间与x 轴所围的面积的代数和;3. 经济意义: 若()f x 是某经济量关于x 的变化率(边际问题), 则()ba f x dx ⎰是x 在区间[],ab 中的该经济总量.4. 性质: 本章共列了定积分的八条性质, 其中以下几条在计算定积分中经常用到.(1)()()baabf x dx f x dx =-⎰⎰;(2)[]()()()()b bbaaaf xg x dx f x dx g x dx ±=±⎰⎰⎰;(3)()()bbaakf x dx k f x dx =⎰⎰; (4)()()()bcbaac f x dx f x dx f x dx =+⎰⎰⎰;(5)00()2()aaaf x f x dx f x dx f x -⎧⎪=⎨⎪⎩⎰⎰为奇函数时()()为偶函数时.1.公式: 若()f x 在[],a b 上连续, ()F x 是()f x 的一个原函数, 则()()()baf x dx F b F a =-⎰.2.换元法: 若()f x 在[],a b 连续, ()x t ϕ=在[],c d 上有连续的导数'()t ϕ, 且()t ϕ单调, 则有()()(())'()bdx t acf x dxf t t dt ϕϕϕ=⋅⎰⎰.3. 分部积分法: 若()u x 与()v x 在[],a b 上有连续的导数, 则有()()()()()()bbaabu x dv x u x v x v x du x a =⋅-⎰⎰.1.=⎰__42a π_____; 2. 定积分112121x e dx x⎰ = ___e e -_____;3. 若广义积分2011k dx x +∞=+⎰ , 其中k 为常数,则k = __π2_____;4. 定积分1321sin x xdx -=⎰__0____ ; 5.1211xdx x -=+⎰___0___; 6. 30(sin )xt t dt '=⎰__3sin x x _____ ;7. 广义积分211dx x +∞=⎰__1_____ ; 8. ()bad f x dx dx =⎰ __0______; 9. 设 )(x f 在 [,]a b 上连续,则()()bbaaf x dx f t dt -=⎰⎰ __0_____ ;10. 若函数 )(x f 在 [,]a b 上连续,)(x h 可导,则()()h x ad f t dt dx=⎰_)()]([x h x h f '⋅_____ ;11. 当 =x _0___ 时,⎰-=xt dt te x F 02)( 有极值;12. 设 0()xt f x te dt =⎰ ,则 (0)f ''= __1_______ ;13. 若2kxedx +∞-=⎰ ,则 k = ___21_______ ;14.21(ln )edx x x +∞=⎰_1_______ ; 15. 2131x x e dx -=⎰__0_________ ;二1.arctan xxdx =⎰ ( B )(A)1112-+x(B) 21arctan ln(1)2x x x -+ (C) 1112++x (D) 211x + 2. 下列积分可直接使用牛顿─莱不尼兹公式的有 ( A )(A)53201x dx x +⎰(B)1-⎰ (C)4322(5)xdx x -⎰ (D)11ln eedx x x ⎰ 3. 设 )(x f 为连续函数,则()xaf t dt ⎰为 ( C )(A) ()f t 的一个原函数 (B) ()f t 的所有原函数 (C) )(x f 的一个原函数 (D) )(x f 的所有原函数4.11()()22xf t dt f x =-⎰,且 (0)1f =,则 ()f x = ( A ) (A) 2x e (B)12x e (C) 2x e (D) 212x e 5.1211dx x -=⎰ ( D ) (A) -2 (B) 2 (C) 0 (D) 发散三、1.求下列各函数的导数:(1)211()1xF x dt t =+⎰解:.1111)(212x dt t dx d x F x +=+='⎰ (2)02()cos xF x t tdt =⋅⎰ 求'()F π解:.cos )('.cos cos )cos (cos )(222020202ππππ-===-=-=='⎰⎰⎰F x x tdt t dx d tdt t dx d tdt t dx d x F x x x (3)22()1tx xte F x dt t =+⎰解:⎰⎰⎰⎰⎰+-+=+++=+=x tx t x t x t x x t dt tte dx d dt t te dx d dt t te dt t te dx d dt t te dx d x F 020********)11(1)('222 2223222221)(121)()(122x xe x e x x xe x dx d x e x xx x x +-+=+-⋅+= 2.求下列各极限: (1)203sin limxx tdt x →⎰解:).(3lim 3sin lim )()sin (limsin lim312202203020320上代换倒数第二步用等价无穷===''=→→→→⎰⎰xx x x x tdt xtdt x x xx xx (2)02(2)limxt t x e e dtx-→+-⎰解:.02lim )2()2(lim 22lim )())2((lim)2(lim0002002=-=''-+=-+=''-+=-+-→-→-→-→-→⎰⎰xx x x x x x x x xt t x xt t x e e x e e x e e x dt e e xdte e 3.求下列各定积分:(1)1(1)x dx -⎰10221|)(x x -= (2)120(3)x x dx +⎰103313ln 1|)3(x x+=(3)20cos 2xdx π⎰2021|2sin πx = (4)1310x e dx -⎰=10331103|)(x x e e dx e e =⎰ (5)212x dx -⎰⎰⎰+-=-200122xdx xdx (6)0cos x dx π⎰⎰⎰-=πππ22cos cos 0xdx xdx(7)2adx ⎰a ax x a ax dx x x a a 0221340|)()2(2321+-=+-=⎰(8)21201x dx x +⎰⎰+-=102)111(dx x (9)4⎰ 解:令t =x 2,则d t =2x d x ,当t =0时,x =0;当t =4时,x =2.于是.|))1ln((2)111(2121120202040x x dx x dx x x dt t +-=+-=+=+⎰⎰⎰(10)20ax ⎰解:令x =a sin t ,则d x =a cos t d t ,当x =0时,t =0;当x =a 时,t =2π.于是.|)4sin ()4cos 1(24cos 1)2(sin )2sin ()cos (sin cos sin cos sin sin 16041880402402214242242222202224242424242222πππππππππa a a a a at t dt t dt tdt t dt t a dtt t a tdt t a tdta t a a t a dx x a x =-=-=-=====⋅-⋅=-⎰⎰⎰⎰⎰⎰⎰⎰(11)101dx x+⎰解:令x =t 2,则d x =2t d t ,当x =0时,t =0;当x =1时,t =1.于是).1(2|)arctan (2)111(212211410102102210210π-=-=+-=+=⋅+=+⎰⎰⎰⎰t t dt tdtt t tdt t tdx x x(12)21dx x⎰解:令x =sec t ,则d x =tan t sect t d t ,当x =1时,t =0;当x =2时,t =3π.于是.|)(tan )1(sec tan sec tan sec 1sec 133330121212212ππππt t dt t tdt tdtt tt dx xx -=-==⋅-=-⎰⎰⎰⎰(13)2210x e dx -⎰20122121221|)12(--=-=⎰x x e x d e (14)0cos3xdx π⎰ππ031031|3sin )3(3cos x x xd ==⎰(15)20cos 2xdx π⎰ππ0210)sin (2cos 1x x dx x +=+=⎰ (16)212ln e xdx x+⎰=⎰⎰+=2200ln 2e e dx x x dx x22220221000|)(ln |ln 2)(ln ln 12e e e e x x x xd dx x +=+=⎰⎰. (17)210x xe dx ⎰101221|22x x e dx e ==⎰(18)120x ⎰⎰-=133311dx x.|)1()1()1(110394103331133312321x x d x dx x --=---=-=⎰⎰(19)1201x xe dx e +⎰ .|)arctan()(1110102x x x e de e =+=⎰ (20)12⎰⎰-=2121)(arcsin )(arcsin 2x d x2121|)(arcsin 331-=x四、解答题1.求0()(4)xF x t t dt =-⎰在区间[]1,5-上的最大值与最小值;解:)4()(-='x x x F ,令0)(='x F ,得x =0,x =4.由此可得在),4[]0,(+∞-∞ 上F(x)单调增加,在[0,4]单调减少. 由此可知,在[-1,5]中,F(x)在x =0处取极大值,极大值为F(0)=0;在x =4处取极小值,极小值为F(4)=.|)2()4()4(332402331424-=-=-=-⎰⎰t t dt t t dt t t又F(-1)=.|)2()4()4(371023311240-=-=-=---⎰⎰t t dt t t dt t tF(5)=.|)2()4()4(325502331525-=-=-=-⎰⎰t t dt t t dt t t故在[-1,5]上的最大值为F(0)=0,最小值为F(4)=.332- 2.设20()(1)xf t dt x x =+⎰, 求(0),'(0)f f ;解:两边求导得26)(,23)1(2))1(()(222+='+=++='+=x x f x x x x x x x x f ,故.2)0(,0)0(='=f f。
定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
定积分的计算知识点总结

定积分的计算知识点总结一、定积分的定义。
1. 概念。
- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。
在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。
当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。
- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。
2. 几何意义。
- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。
- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。
- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。
二、定积分的基本性质。
1. 线性性质。
- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。
2. 区间可加性。
- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。
3. 比较性质。
- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。
- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。
(完整版)定积分知识点汇总

(完整版)定积分知识点汇总定积分是高中数学教学的重点难点之一,也是高数的基础知识。
我们通过汇总定积分的相关知识点,帮助同学们更好地掌握定积分的相关知识,以便在考试中取得好的成绩。
一、定积分的定义定积分是对函数在一定区间上的积分,也就是函数在此区间上的面积。
1. 定积分与区间的选取无关,即如果函数在 $[a,b]$ 上是可积的,则定积分$\int_a^b f(x) \mathrm{d}x$ 的值是唯一的。
2. 定积分具有可加性,即对于任意的 $c \in [a,b]$,有 $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$。
三、定积分的求解方法1. 函数曲线与坐标轴相交的情况:对于函数曲线与 $x$ 轴相交的区间,可以根据定义式直接求出该区间内的面积。
对于函数曲线与 $y$ 轴相交的区间,则要将积分区间平移后,再根据定义式计算面积。
2. 利用基本积分法和牛顿-莱布尼茨公式:可以利用基本积分法求出一个函数的原函数,然后利用牛顿-莱布尼茨公式,即$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$,其中 $F(x)$ 是 $f(x)$ 的一个原函数。
3. 利用换元积分法:换元积分法是利用一些特殊的代换,将积分式转化为某些基本形式的积分。
常见的代换包括:$u=g(x), x=h(u)$ 和 $\mathrm{d}u = f(x) \mathrm{d}x$。
分部积分法是将原积分式做一个变形,转化成两个积分乘积的形式,从而更容易求解。
5. 利用定积分的对称性:如积分区间对于 $0$ 对称,或者函数具有四象限对称性等,可以根据对称性减少计算量。
1. 几何应用:用定积分可以求解函数曲线与坐标轴围成的图形的面积、体积和质心等几何特征。
利用定积分可以求解质点运动的速度、加速度、位移和质量等物理量。
定积分知识点总结等价

定积分知识点总结等价在本文中,我们将对定积分的基本概念、性质和求解方法进行总结,希望能够帮助读者更好地理解和运用定积分。
一、定积分的基本概念定积分可以看作是一个区间上面积的度量,它描述了函数在一定区间上的总体变化情况。
在数学上,定积分可以理解为函数在指定区间内的面积或者是曲线的弧长,在物理上可以表示为质量、能量、熵等的总量。
1.1 定积分的定义设f(x)在区间[a, b]上有定义,且[a, b]是有限闭区间,将[a, b]上的分割记作Δ,记Δ的任一分点为x0, x1, ..., xn,对应的区间为[x0, x1], [x1, x2], ..., [xn-1, xn]。
则对应的分割Δ表示为:Δ = {x0, x1, ..., xn}Δ的长度记作δxi = xi - xi-1,假设Δ长度的最大值为δ = max{δxi}。
我们将区间[a, b]分成n个小区间,当n趋于无穷大时,(也就是每个小区间的长度趋于0),则这个过程称为区间[a, b]的分割,也称之为区间[a, b]的划分。
对于函数f(x)在区间[a, b]上的定积分,可以用如下的极限形式定义:∫(a->b)f(x)dx = lim(Δ->0)Σ(i=1->n)f(xi*)δxi其中,xi*是区间[xi-1, xi]上的任意一点。
1.2 定积分的几何意义定积分的几何意义是非常直观的,它表示了曲线与坐标轴以及两条直线之间的面积。
当函数f(x)在区间[a, b]上是非负的时候,定积分表示了曲线y=f(x)与x轴以及直线x=a, x=b之间的面积。
当函数f(x)在区间[a, b]上是有正有负的时候,定积分表示了曲线y=f(x)与x轴之间的面积,其中函数f(x)在区间[a, b]上的正值与负值部分面积互相抵消,最终得到曲线与x轴之间的面积。
1.3 定积分的物理意义在物理上,定积分可以用来描述某一物理量在一定的时间或空间范围内的总量。
例如,对于质量密度为ρ(x)的一根杆在区间[a, b]上的质量总量可以表示为:m = ∫(a->b)ρ(x)dx这里ρ(x)dx表示了杆上长度为dx的小段的质量。
定积分知识点汇总

定积分知识点汇总关键信息项:1、定积分的定义2、定积分的几何意义3、定积分的基本性质4、定积分的计算方法5、定积分的应用1、定积分的定义11 定积分的概念定积分是微积分的重要概念之一。
如果函数 f(x) 在区间 a, b 上连续,用分点 a = x₀< x₁< x₂<< xₙ = b 将区间 a, b 分成 n 个小区间,在每个小区间 xᵢ₋₁, xᵢ上任取一点ξᵢ(i = 1, 2,, n),作和式∑f(ξᵢ)Δxᵢ,当 n 无限增大且Δxᵢ的最大值趋于零时,如果和式的极限存在,这个极限就叫做函数 f(x) 在区间 a, b 上的定积分,记作∫ₐᵇf(x)dx 。
12 定积分的几何定义如果在区间 a, b 上函数 f(x) 连续且非负,那么定积分∫ₐᵇf(x)dx 表示由曲线 y = f(x) 、直线 x = a 、 x = b 和 x 轴所围成的曲边梯形的面积。
如果函数 f(x) 在区间 a, b 上连续且有正有负,那么定积分∫ₐᵇf(x)dx 表示介于 x 轴上方和下方的面积的代数和。
2、定积分的几何意义21 以 x 轴上方的面积为正,x 轴下方的面积为负当函数图像在 x 轴上方时,对应的定积分值为正,表示该部分区域的面积;当函数图像在 x 轴下方时,对应的定积分值为负,表示该部分区域面积的相反数。
22 定积分表示曲线围成的面积对于一般的连续函数,定积分的值等于曲线与 x 轴之间所围成的有向面积。
3、定积分的基本性质31 线性性质若函数 f(x) 和 g(x) 在区间 a, b 上可积,k 为常数,则∫ₐᵇkf(x)dx =k∫ₐᵇf(x)dx ,∫ₐᵇf(x) ± g(x)dx =∫ₐᵇf(x)dx ±∫ₐᵇg(x)dx 。
32 区间可加性若函数 f(x) 在区间 a, c 和 c, b 上都可积,其中 a < c < b ,则∫ₐᵇf(x)dx =∫ₐᶜf(x)dx +∫ᶜᵇf(x)dx 。
定积分知识总结(总9页)

定积分知识总结(总9页)1. 定积分的定义定积分是数学中的一个概念,它表示将一个函数沿着一条给定的路径积累起来的总和。
在数学上,定积分是描述函数在一定区间上的面积、体积、虚功等概念的一种工具。
(1)可加性:若f(x)在[a,b]、[b,c]上可积,则:∫(a,c)f(x)dx=∫(a,b)f(x)dx+∫(b,c)f(x)dx∫(a,b)f(x)dx≥03. 函数可积的充分条件Riemann可积的充分条件有:(1)区间[a,b]上f(x)存在上下积分,且上下积分相等;(2)对任意ϵ>0,可找到划分P及加细之后的划分P1,使得S(P1,f)-s(P1,f)<ϵ,其中S(P1,f)表示P1的上和式,s(P1,f)表示P1的下和式。
4. 定积分的计算方法定积分可以通过换元法、分部积分法、牛顿-莱布尼茨公式等数学方法进行计算。
(1)求曲线下面的面积;(2)求曲线绕x轴或y轴旋转的体积;(3)求物理问题中的虚功;(4)求平均值、方差等统计量。
6. 常用定积分公式$\int x^ndx={x^{n+1}}/{n+1}+C$$\int\sin xdx=-\cos x+C$7. 例题(1)计算定积分: $\int_{0}^{\frac{\pi}{2}}\sin xdx$解:$ \int_{0}^{\frac{\pi}{2}}\sin xdx=\left . -\cos x \right |\begin{matrix} 0\\\frac{\pi}{2} \end{matrix} =1$8. 求导与积分的对应关系如果函数f(x)在区间[a,b]上可导,则:$\int_{a}^{b}f'(x)dx = f(b)-f(a)$微积分是数学的一个分支,其中包括微分和积分两个部分。
微积分对象是函数的导数和原函数。
定积分是微积分中的积分部分,用于计算函数在一定区间内的积累量。
因此,微积分中的求导和积分是密不可分的,两者相辅相成,是微积分学中的核心概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修2-2知识点总结一、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,()用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。
(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
[注]:实际问题的开区间唯一极值点就是所求的最值点;9.求曲边梯形的思想和步骤:分割→近似代替→求和→取极限 (“以直代曲”的思想)10.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1a b dx ba-=⎰1性质5 若[]b a x x f ,,0)(∈≥,则0)(≥⎰b adx x f①推广:1212[()()()]()()()bbbbm m aaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰L L②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰L11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x 轴上方的图形面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x 轴上方图形面积的相反数;(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x 轴上方图形的面积减去下方的图形的面积.12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。
(2)力的积分为功。
二、推理与证明知识点13.归纳推理的定义: 从个别事实....中推演出一般性...的结论,像这样的推理通常称为归纳推理。
归纳推理是由部分到整体..,由个别到一般..的推理。
14.归纳推理的思维过程大致如图:15.归纳推理的特点:实验、观察概括、推广猜测一般性结论①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。
②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。
③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
16.类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。
类比推理是由特殊..的推理。
..到特殊17.类比推理的思维过程18.演绎推理的定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。
演绎推理是由一般..的推理。
..到特殊19.演绎推理的主要形式:三段论20.“三段论”可以表示为:①大前题:M是P②小前提:S是M ③结论:S是P。
其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。
21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。
直接证明包括综合法和分析法。
22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。
23.分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。
要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。
24反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。
25.反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确...,即所求证命题正确。
26常见的“结论词”与“反义词”27.反证法的思维方法:正难则反....28.归缪矛盾 (1)与已知条件....矛盾: (2)与已有公理、定理、定义..........矛盾; (3)自相..矛盾.29.数学归纳法(只能证明与正整数...有关的数学命题)的步骤 (1)证明:当n 取第一个值....()00n n N *∈时命题成立;(2)假设当n=k (k ∈N *,且k ≥n 0)时命题成立,证明当n=k+1.....时命题也成立. 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 [注]:常用于证明不完全归纳法推测所得命题的正确性的证明。
三、数系的扩充和复数的概念知识点30.复数的概念:形如a+bi ....的数叫做复数,其中i 叫虚数单位,a 叫实部, b 叫虚部,数集{}|,C a bi a b R =+∈叫做复数集。
规定:a bi c di +=+⇔a=c ...且.b=d ..., 强调:两复数不能比较大小,只有相等或不相等。
31.数集的关系:0000b Z a b a =⎧⎪≠⎧⎨⎪≠⎨⎪=⎪⎩⎩实数 ()复数一般虚数()虚数 ()纯虚数()32.复数的几何意义:复数与平面内的点或有序实数对一一对应。
33.复平面:根据复数相等的定义,任何一个复数bi a z +=,都可以由一个有序实数对),(b a 唯一确定。
由于有序实数对),(b a 与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。
这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。
实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。
34.求复数的模(绝对值)与复数z 对应的向量OZ 的模r 叫做复数bi a z +=的模(也叫绝对值)记作bi a z +或。
由模的定义可知:22b a bi a z +=+=35.复数的加、减法运算及几何意义①复数的加、减法法则:12z a bi c di =+=+与z ,则12()z z a c b d i ±=±+±。
注:复数的加、减法运算也可以按向量..的加、减法来进行。
②复数的乘法法则:()()()()a bi c di ac bd ad bc i ++=-++。
③复数的除法法则:2222()()()()a bi a bi c di ac bd bc adi c di c di c di c d c d++-+-==+++-++其中c di -叫做实数化因子 36.共轭复数:两复数a bi a bi +-与互为共轭复数,当0b ≠时,它们叫做共轭虚数。
常见的运算规律(1);(2)2,2;z z z z a z z bi =+=-=2222(3);(4);(5)z z z z a b z z z z z R ⋅===+==⇔∈41424344(6),1,,1;n n n n ii iii i++++==-=-=()2211(7)1;(8),,11i i i i i i i i i +-±=±==-=±-+)9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω。