高中数学高考总复习定积分与微积分基本定理习题及详解教学内容

合集下载

高考数学复习: 定积分的概念与微积分基本定理、定积分的简单应用

高考数学复习: 定积分的概念与微积分基本定理、定积分的简单应用

的图形的面积S,正确的是 ( )
A.S= 10 (x-x2)dx C.S= 10 (y2-y)dy
B.S= 10 (x2-x)dx D.S= 10 (y- y )dy
【解析】选A.根据题意,如图所示,阴影部分为曲线 y=x2与y=x所围成的图形,其面积S= 10 (x-x2)dx.
2.(选修2-2P67T7改编)直线y=3x与曲线y=x2围成图形
b a
f(x)dx=_F_(_b_)_-_F_(_a_)_,这个结论叫做微积
分基本定理,又叫做牛顿-莱布尼茨公式.其中F(x)叫做
f(x)的一个原函数.为了方便,常把F(b)-F(a)记成
F(x)|ab ,即
b a
f(x)dx=F(x)
|ab
=F(b)-F(a).
【常用结论】 1.定积分应用的两条常用结论 (1)当曲边梯形位于x轴上方时,定积分的值为正;当曲 边梯形位于x轴下方时,定积分的值为负;当位于x轴上 方的曲边梯形与位于x轴下方的曲边梯形面积相等时, 定积分的值为零.
(1)设函数y=f(x)在区间[a,b]上连续,则
b a
f(x)dx
= ab f(t)dt.
(
)
(2)若函数y=f(x)在区间[a,b]上连续且恒正,
则 ab f(x)dx>0. ( )
(3)若
b a
f(x)dx<0,那么由y=f(x),x=a,x=b以及x轴
所围成的图形一定在x轴下方. ( )
(4)微积分基本定理中的F(x)是唯一的. ( )
第五节 定积分的概念与微积分基本定理、
【知识梳理】 1.定积分的概念与几何意义 (1)定积分的定义 如果函数f(x)在区间[a,b]上连续,用分点 a=x0<x1<…<xi-1<xi<…<xn=b将区间[a,b]等分成n个

专题16 定积分与微积分基本定理 高考复习资料(解析版)

专题16 定积分与微积分基本定理 高考复习资料(解析版)
f(x)
错误!f(x)dx 的几何意义
f(x)≥0
表示由直线 x=a,x=b,y=0 及曲线 y=f(x)所围成的曲边梯形 的面积
f(x)<0
表示由直线 x=a,x=b,y=0 及曲线 y=f(x)所围成的曲边梯形 的面积的相反数
表示位于 x 轴上方的曲边梯形的面积减去位于 x 轴下方的曲边梯 f(x)在[a,b]上有正有负
π
| 【解析】(1)错误!(cos x+1)dx=(sin x+x) =π. 0
(2)【解析】 S a 0
xdx
2
x
3 2
3
a 0
2
a
3 2
3
a ,解得 a
9 4

【解法小结】 运用微积分基本定理求定积分时要注意以下几点:
(1)对被积函数要先化简,再求积分;
(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和;
2
=4,
03
0
2
| c=错误!sin xdx=(-cos x) =1-cos 2<2,则 c<a<b. 0
5.(2019
届江西九江高三第一次十校联考)M=
1 0
1- 2dx,T= 0 sin 2xdx,则 T 的值为(
)
A.1
B.-1
2
2
【答案】 A
C.-1
D.1
【解析】先求出 M= ,
0 sin 2
(3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.
考点二 定积分的几何意义
角度 1 利用定积分的几何意义计算定积分
【例 2-1】 (1)计算:错误!(2x+ 1-x2)dx=________.

高中数学高考高三理科一轮复习资料第2章 2.4 定积分与微积分基本定理

高中数学高考高三理科一轮复习资料第2章 2.4 定积分与微积分基本定理
a
方); (2)如果在[a,b] 上,f(x)≤0,则曲线 y=f(x),x=a,x= b b b(a < b) 和 x 轴围成的曲边梯形的面积为 S = |f(x)|dx =-
a a
f(x)dx(这时曲线全部在 x 轴下方);
(3)如果在[a,b]上,f(x)有正有负,即曲线在 x 轴上方和下 方都有图象,例如:在(a,c)上位于 x 轴上方,在(c,b)上位于 x 轴下方,则曲线 y=f(x),x=a,x=b(a<b)和 x 轴围成的曲 c b 边梯形的面积为 S= f(x)dx+ |f(x)|dx=
b b b 4. f(x)dx, |f(x)|dx, | f(x)dx|三者在几何意义上的不同. 当
i 0 n-1
果和式极限存在,则称和式 In 的极限为函数 f(x)在区间[a,b] b fxdx 上的定积分,记作①______,即 =②________.
a
b (2)在 f(x)dx 中, a 与 b 分别叫做积分下限与积分上限, 区
a
间③________叫做积分区间,函数④________叫做被积函数, ⑤________叫做积分变量,⑥________叫做被积式.
a
曲线 f(x)以及直线 x=a、 x=b 之间的曲边梯形面积的代数和(图 ②中阴影所示),其中在 x 轴上方的面积等于该区间上的积分 值,在 x 轴下方的面积等于该区间上积分值的⑦__________.
3.定积分的基本性质: b (1) kf(x)dx=⑧____________________________.
c a
b f(x)dx- f(x)dx.
c
a

c
2.由曲线 y=f(x),y=g(x)(f(x)>g(x))与直线 x=a,x= b b(a<b)围成的图形的面积为 S= [f(x)-g(x)]dx.

高考数学总复习定积分与微积分基本定理理新人教A讲课文档

高考数学总复习定积分与微积分基本定理理新人教A讲课文档

b1dx=______
a
bkF(x)dx=____________(其中k为常数)
a
b[F1(x)±F2(x)]dx=bF1(x)dx±bF2(x)dx
a
a
a
bF(x)dx=cF(x)dx+bF(x)dx(其中a<c<b)
a
a
c
第九页,共55页。
(1)已知
1
F(x)dx=2,
2
F(x)dx=3,则
D. 6
第十五页,共55页。
[审题视点]
计算
b
F(x)dx的关键是找到满足F′(x)=
a
F(x)的函数F(x),其中F(x)可将基本初等函数的导数公式逆
向使用得到.
第十六页,共55页。
[解析] (1)1-1(x2+Sinx)dx=(13x3-coSx)1-1 =23. (2)由于F(x)=xm+ax的导函数为F′(x)=2x+1,所以
0
0
=2(x-x22)10 =1.
第二十一页,共55页。
例2 若定积分m-2 -x2-2xdx=4π,则m等于(
)
A.-1
B.0
C.1
D.2
第二十二页,共55页。
[审题视点] 被积函数y= -x2-2x 的原函数不易直接 求出,其图象与圆有关,故可用定积分的几何意义求解.
第二十三页,共55页。
[解析] 根据定积分的几何意义知,定积分 m - 2 -x2-2x dx的值,就是函数y= -x2-2x 的图象与x轴及
b
F(x)dx=________,这个结论叫做微
a
积分基本定理,又叫做牛顿——莱布尼兹公式,可以把F(b)
-F(a)记作________,即bF(x)dx=________=______. a

非常好的定积分与微积分基本定理复习讲义

非常好的定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义备考方向要明了考什么怎么考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题.2.考查简单定积分的求解.3.考查曲边梯形面积的求解.4.与几何概型相结合考查.归纳·知识整合1.定积分1 定积分的相关概念:在错误!错误!f x d x中,a,b分别叫做积分下限与积分上限,区间a,b叫做积分区间,f x叫做被积函数,x叫做积分变量,f x d x叫做被积式.2 定积分的几何意义①当函数f x在区间a,b上恒为正时,定积分错误!错误!f x d x的几何意义是由直线x=a,x=b a≠b,y=0和曲线y=f x所围成的曲边梯形的面积左图中阴影部分.②一般情况下,定积分错误!错误!f x d x的几何意义是介于x轴、曲线f x以及直线x=a,x=b之间的曲边梯形面积的代数和右上图中阴影所示 ,其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.3 定积分的基本性质:①错误!错误!kf x d x=k错误!错误!f x d x.②错误!错误!f1x±f2x d x=错误!错误!f1x d x±错误!错误!f2x d x.③错误!错误!f x d x=错误!错误!f x d x+错误!错误!f x d x.探究 1.若积分变量为t,则错误!错误!f x d x与错误!错误!f t d t是否相等提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分错误!错误!f x-g x d x f x >g x的几何意义是什么提示:由直线x=a,x=b和曲线y=f x ,y=g x所围成的曲边梯形的面积.2.微积分基本定理:如果f x是区间a,b上的连续函数,并且F′ x=f x ,那么错误!错误!f x d x=F b-F a ,这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F b-F a记成F x错误!错误!,即错误!错误!f x d x=F x错误!错误!=F b-F a.课前预测:错误!错误!d x等于A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 22.教材习题改编一质点运动时速度和时间的关系为V t=t2-t+2,质点作直线运动,则此物体在时间 1,2 内的位移为3.教材习题改编直线x=0,x=2,y=0与曲线y=x2所围成的曲边梯形的面积为________.4.教材改编题错误!错误!错误!d x=________.5.由y=错误!,直线y=-x+错误!所围成的封闭图形的面积为________考点一利用微积分基本定理求定积分例1 利用微积分基本定理求下列定积分:1 错误!错误! x 2+2x +1 d x ;2 错误!错误! sin x -cos x d x ;3 错误!错误!x x +1 d x ;4 错误!错误!错误!d x ;5 20π⎰ sin 2错误!d x . ——————————————————— 求定积分的一般步骤:1 把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差;2 把定积分用定积分性质变形为求被积函数为上述函数的定积分;3 分别用求导公式找到一个相应的原函数;4 利用牛顿—莱布尼兹公式求出各个定积分的值;5 计算原始定积分的值.强化训练:1.求下列定积分: 1 错误!错误!|x -1|d x ; 2 20π⎰错误!d x .考点二 利用定积分的几何意义求定积分例2 错误!错误!错误!d x =________.变式:在本例中,改变积分上限,求错误!错误!错误!d x 的值.———————————————————利用几何意义求定积分的方法1 当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.2 利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.强化训练:2. 2014·福建模拟 已知函数f x =错误!错误! cos t -sin t d t x >0 ,则f x 的最大值为________.考点三:利用定积分求平面图形的面积例3 2014·山东高考由曲线y=错误!,直线y=x-2及y轴所围成的图形的面积为A.错误!B.4 D.6变式训练:若将“y=x-2”改为“y=-x+2”,将“y轴”改为“x轴”,如何求解———————————————————利用定积分求曲边梯形面积的步骤1 画出曲线的草图.2 借助图形,确定被积函数,求出交点坐标,确定积分的上、下限.3 将“曲边梯形”的面积表示成若干个定积分的和或差.4 计算定积分,写出答案.强化训练:3. 2014·郑州模拟如图,曲线y=x2和直线x=0,x=1,y=错误!所围成的图形阴影部分的面积为考点四:定积分在物理中的应用例4 列车以72 km/h的速度行驶,当制动时列车获得加速度a=- m/s2,问列车应在进站前多长时间,以及离车站多远处开始制动———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v关于时间t的函数是v=v t v t ≥0 ,那么物体从时刻t=a到t=b所经过的路程为错误!错误!v t d t;如果做变速直线运动的物体的速度v关于时间t的函数是v=v t v t≤0 ,那么物体从时刻t=a到t=b所经过的路程为-错误!错误!v t d t.2.变力做功问题物体在变力F x的作用下,沿与力F x相同方向从x=a到x=b所做的功为错误!错误!F x d x.强化训练:4.一物体在力F x=错误!单位:N 的作用下沿与力F x相同的方向运动了4米,力F x做功为A.44 J B.46 J C.48 J D.50 J1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质1 常数可提到积分号外;2 和差的积分等于积分的和差;3 积分可分段进行.3个注意——定积分的计算应注意的问题1 若积分式子中有几个不同的参数,则必须分清谁是积分变量;2 定积分式子中隐含的条件是积分上限不小于积分下限;3 面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点典例 2013·上海高考已知函数y=f x的图象是折线段ABC,其中A 0,0 ,B错误!,C 1,0 .函数y=xf x0≤x≤1 的图象与x轴围成的图形的面积为________.1.本题易写错图形面积与定积分间的关系而导致解题错误.2.本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.3.解决利用定积分求平面图形的面积问题时,应处理好以下两个问题:1 熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形;2 准确确定被积函数和积分变量.变式训练:1.由曲线y=x2,y=x3围成的封闭图形面积为2. 2014·山东高考设a>0.若曲线y=错误!与直线x=a,y=0所围成封闭图形的面积为a2,则a=________.定积分与微积分基本定理检测题一、选择题本大题共6小题,每小题5分,共30分错误!错误!d x=A.ln x+错误!ln2x-12.2012·湖北高考已知二次函数y=f x的图象如图所示,则它与x 轴所围图形的面积为3.设函数f x=ax2+b a≠0 ,若错误!错误!f x d x=3f x0 ,则x0等于A.±1 C.±错误!D.24.设f x=错误!则错误!错误!f x d x=D.不存在5.以初速度40 m/s竖直向上抛一物体,t秒时刻的速度v=40-10t2,则此物体达到最高时的高度为m m m m6.2013·青岛模拟由直线x=-错误!,x=错误!,y=0与曲线y=cos x所围成的封闭图形的面积为B.1二、填空题本大题共3小题,每小题5分,共15分7.设a =错误!错误!sin x d x ,则曲线y =f x =xa x +ax -2在点 1,f 1 处的切线的斜率为________.8.在等比数列{a n }中,首项a 1=错误!,a 4=错误!错误! 1+2x d x ,则该数列的前5项之和S 5等于________.9. 2013·孝感模拟 已知a ∈错误!,则当错误!错误! cos x -sin x d x 取最大值时,a =________.三、解答题 本大题共3小题,每小题12分,共36分10.计算下列定积分: 1 20π⎰ sin 2x d x ; 2 错误!错误!错误!2d x ; 3 120⎰e 2x d x . 11.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.12.如图,设点P 从原点沿曲线y =x 2向点A 2,4 移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S 2,求点P的坐标.备选习题1.一物体做变速直线运动,其v -t 曲线如图所示,则该物体在错误! s ~6 s 间的运动路程为________.2.计算下列定积分:1 31-⎰ 3x 2-2x +1 d x ;2 错误!错误!错误!d x . 3.求曲线y =错误!,y =2-x ,y =-错误!x 所围成图形的面积.4.某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,得到了下面的资料:这家颗粒输送仪生产厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v 单位:m/s 与时间t 单位:s 满足函数关系式v t =错误!某公司拟购买一台颗粒输送仪,要求1 min 行驶的路程超过7 673 m,问这家颗粒输送仪生产厂生产的颗粒输送仪能否被列入拟挑选的对象之一 定积分与微积分基本定理复习讲义答案前测:1.D 2.A 3.错误! 4.错误!π 5.错误!-2ln 2 例1: 1 错误!. 2 2. 3 错误!. 4 错误!e 4-错误!e 2+ln 2. 5 错误!.变式1:解: 1 |x -1|=错误!故错误!错误!|x -1|d x =错误!错误! 1-x d x +错误!错误! x -1 d x =错误!错误!错误!+错误!错误!错误!=错误!+错误!=1. 2 20π⎰错误!d x =20π⎰|sin x -cos x |d x =40π⎰ cos x -sin x d x +24ππ⎰ sin x -cos x d x = sin x +cos x 40π+ -cos x -sin x 24ππ=错误!-1+ -1+错误! =2错误!-2.例2: 自主解答 错误!错误!错误!d x 表示y =错误!与x =0,x =1及y =0所围成的图形的面积由y =错误!得 x -1 2+y 2=1 y ≥0 ,又∵0≤x ≤1,∴y =错误!与x =0,x =1及y =0所围成的图形为错误!个圆,其面积为错误!. ∴错误!错误!错误!d x =错误!.互动:解:错误!错误!错误!d x 表示圆 x -1 2+y 2=1在第一象限内部分的面积,即半圆的面积,所以 错误!错误!错误!d x =错误!.变式2. 错误!-1 例3.C 互动:错误!. 变式3.D 例4: 自主解答 a =- m/s 2,v 0=72 km/h =20 m/s.设t s 后的速度为v ,则v =20-.令v =0,即20- t =0得t =50 s .设列车由开始制动到停止所走过的路程为s ,则s =错误!错误!v d t =错误!错误! 20-d t = 20t -错误!错误!=20×50-×502=500 m ,即列车应在进站前50 s 和进站前500 m 处开始制动.变式4.46典例: 解析 由题意可得f x =错误!所以y =xf x =错误!与x 轴围成图形的面积为120⎰10x 2d x +112⎰ 10x -10x 2 d x =错误!x 3120+错误!112错误!=错误!. 答案 错误! 变式5. 1.A 2. 错误!检测题答案 CBCCAD 7.4+2ln 2 8.错误! 9.错误!10.解: 1 错误!. 2 错误!+ln 错误!. 3 错误!e -错误!.11.解:抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =错误!错误! x -x 2 d x =错误!错误!错误!=错误!. 又错误! 由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以,错误!=错误!错误! x -x 2-kx d x =错误!错误!错误!=错误! 1-k 3.又知S =错误!,所以 1-k 3=错误!,于是k =1- 错误!=1-错误!.12.解:设直线OP 的方程为y =kx ,点P 的坐标为 x ,y ,则错误!错误! kx -x 2 d x =错误!错误! x 2-kx d x ,即错误!错误!错误!=错误!错误!错误!,解得错误!kx 2-错误!x 3=错误!-2k -错误!,解得k =错误!,即直线OP 的方程为y =错误!x ,所以点P 的坐标为错误!. 备选题:1.解析:由题图可知,v t =错误!因此该物体在错误! s ~6 s 间运动的路程为s =612⎰v t d t =112⎰2t d t +错误!错误!2d t +错误!错误!错误!d t =t 2112+2t |错误!+错误!错误!错误!=错误! m . 答案:错误! m 2.解: 1 31-⎰ 3x 2-2x +1 d x = x 3-x 2+x 31-=24.2 错误!错误!错误!d x =错误!错误!x d x +错误!错误!错误!d x +错误!错误!错误!d x=错误!x2错误!错误!+ln x错误!错误!-错误!错误!错误!=错误! e2-1 + ln e-ln 1 -错误!=错误!e2-错误!+错误!.3.解:由错误!得交点A 1,1 由错误!得交点B 3,-1 .故所求面积S=错误!错误!错误!d x+错误!错误!错误!d x =错误!错误!错误!+错误!错误!错误!=错误!+错误!+错误!=错误!.4.解:由变速直线运动的路程公式,可得s=错误!错误!t2d t+错误!错误! 4t+60 d t+错误!错误!140d t=错误!t3错误!错误!+ 2t2+60t错误!错误!+140t错误!错误!=7 133 错误! m <7 676 m .∴这家颗粒输送仪生产厂生产的颗粒输送仪不能被列入拟挑选的对象之一.。

定积分与微积分基本定理》教案

定积分与微积分基本定理》教案

《定积分与微积分基本定理》教案一、教学目标1. 理解定积分的概念,掌握定积分的计算方法。

2. 掌握微积分基本定理,了解其应用。

3. 能够运用微积分基本定理解决实际问题。

二、教学内容1. 定积分的概念:定积分是函数在区间上的积累量,用符号∫表示。

2. 定积分的计算方法:牛顿-莱布尼茨公式、换元法、分部积分法等。

3. 微积分基本定理:微积分基本定理是定积分与导数之间的关系,表述为∫(f'(x)dx) = F(b) F(a),其中F(x) 是f(x) 的一个原函数。

4. 微积分基本定理的应用:求解曲线下的面积、弧长、质心等问题的计算。

三、教学重点与难点1. 教学重点:定积分的概念、计算方法,微积分基本定理的理解与应用。

2. 教学难点:微积分基本定理的证明,定积分的计算方法的综合运用。

四、教学方法1. 讲授法:讲解定积分的概念、计算方法,微积分基本定理的证明。

2. 案例分析法:分析实际问题,引导学生运用微积分基本定理解决。

3. 练习法:课堂练习与课后作业,巩固所学知识。

五、教学安排1. 第一课时:定积分的概念与计算方法。

2. 第二课时:微积分基本定理的证明。

3. 第三课时:微积分基本定理的应用。

4. 第四课时:定积分的综合练习。

六、教学策略1. 互动讨论:鼓励学生提问,师生共同探讨定积分与微积分基本定理的相关问题。

2. 小组合作:同学之间分工合作,共同完成定积分的计算和应用问题。

3. 利用多媒体:通过动画、图像等直观展示定积分的几何意义和应用。

七、教学评价1. 课堂问答:检查学生对定积分概念、计算方法和微积分基本定理的理解。

2. 课后作业:布置有关定积分的计算和应用问题,检验学生掌握程度。

3. 课程报告:要求学生选择一个实际问题,运用微积分基本定理进行解决,以此评估学生的实际应用能力。

八、教学资源1. 教材:选用权威、实用的教材,如《微积分学导论》等。

2. 辅导资料:提供定积分与微积分基本定理的相关习题及解答。

高考数学Ι轮教案及其练习精析《定积分与微积分的基本定理

高考数学Ι轮教案及其练习精析《定积分与微积分的基本定理

高考数学Ι轮精品教案及其练习精析《定积分与微积分的基本定理》教案章节:第一章定积分的概念教学目标:1. 理解定积分的概念,掌握定积分的定义和性质。

2. 学会计算简单的定积分,并能应用定积分解决实际问题。

教学内容:1. 定积分的定义2. 定积分的性质3. 定积分的计算方法4. 定积分的应用教学步骤:1. 引入定积分的概念,引导学生思考如何求解曲线下的面积。

2. 讲解定积分的定义,解释定积分的几何意义和物理意义。

3. 引导学生通过图形和实例理解定积分的性质,如线性性、保号性等。

4. 教授定积分的计算方法,如牛顿-莱布尼茨公式、分部积分法等。

5. 提供实际问题,让学生应用定积分解决实际问题,如计算曲线下的面积、求解弯曲线路的距离等。

教学练习:a. 定积分表示曲线下的面积。

b. 定积分具有线性性。

c. 定积分可以大于曲线下的面积。

a. 定积分的几何意义是曲线下的面积。

b. 定积分的物理意义是曲线下的质量。

c. 定积分的计算方法有牛顿-莱布尼茨公式和分部积分法。

a. ∫(从0到1) x^2 dxb. ∫(从1到2) e^x dx教学评价:1. 学生能够理解定积分的概念和性质。

2. 学生能够掌握定积分的计算方法。

3. 学生能够应用定积分解决实际问题。

教案章节:第二章微积分的基本定理教学目标:1. 理解微积分的基本定理,掌握微积分的基本定理的内容和应用。

2. 学会计算不定积分和定积分,并能应用微积分的基本定理解决实际问题。

教学内容:1. 微积分的基本定理的定义2. 微积分的基本定理的内容3. 微积分的基本定理的应用教学步骤:1. 引入微积分的基本定理,引导学生思考如何求解曲线的原函数。

2. 讲解微积分的基本定理,解释微积分的基本定理的意义和应用。

3. 引导学生通过图形和实例理解微积分的基本定理的应用,如计算曲线的面积、求解曲线与坐标轴的交点等。

4. 教授不定积分和定积分的计算方法,如基本积分表、换元积分法等。

高考数学专题--定积分与微积分的基本定理

高考数学专题--定积分与微积分的基本定理

高考专题--定积分与微积分的基本定理高考考点:1、定积分的计算2、定积分的应用高考中对定积分的考查主要是考查定积分的概念和几何性质,以及利用微积分定理计算定积分、使用定积分求曲边梯形的面积,并能解决一些简单的物理问题等.在解题时要熟练运用微积分定理及定积分的相关运算性质求解,必要时运用数形结合的思想求解. 考点1 定积分的计算题组一 用牛顿—莱布尼茨公式求定积分调研1 已知函数1(10)()πcos (0)2x x f x x x +-≤≤⎧⎪=⎨<≤⎪⎩,则π21()d f x x -=⎰A .12 B .1 C .2 D .32【答案】D 【解析】πππ200222101113()d (1)d cos d ()|sin |1222x f x x x x x x x x ---=++=++=+=⎰⎰⎰,故选D.☆技巧点拨☆1.用牛顿—莱布尼茨公式求定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼茨公式求出各个定积分的值; (5)计算原始定积分的值. 2.分段函数的定积分分段函数求定积分,可先把每一段函数的定积分求出后再相加. 题组二 用定积分的几何意义求定积分 调研2 计算333(cos )d x x x -=⎰.【答案】0【解析】∵3cos y x x =为奇函数,∴333(cos )d 0x x x -=⎰.调研3 若222d 2mx x x -π--=⎰,则m 等于 A .−1 B .0 C .1D .2【答案】B【解析】由已知可得: 22y x x =--的图象为圆:22(1)1x y ++=对应的上半部分,由定积分的几何意义可得0m =,故选B. ☆技巧点拨☆1.求定积分的三种方法(1)利用定义求定积分(定义法),可操作性不强; (2)利用微积分基本定理求定积分;(3)利用定积分的几何意义求定积分.当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.例如,定积分121d x x -⎰的几何意义是求单位圆面积的14,所以120π1d =4x x -⎰.2.奇偶函数的定积分(1)若奇函数y =f (x )的图象在[−a ,a ]上连续,则()d 0aa f x x -=⎰; (2)若偶函数y =g (x )的图象在[−a ,a ]上连续,则0()d 2()d aaag x x g x x -=⎰⎰.考点2 定积分的应用题组一 利用定积分求平面图形的面积 调研1 已知a >0,若曲线y x =、x a =与0y =所围成的封闭区域的面积为2a ,则a =________.【答案】49【解析】由题意322002d |3aa a x x x ==⎰,所以a =49. 调研2 已知{()|,01}1,0x y x y Ω≤≤≤≤=,A 是由直线x =1,y =0和曲线y =x 4所围成的曲边三角形的平面区域,若向平面区域Ω内随机投一点M ,则点M 落在区域A 内的概率为________. 【答案】15【解析】区域Ω对应的是边长为1的正方形,其面积为S =1.区域A 是由直线x =1,y =0和曲线y =x 4围成的曲边三角形,如图中阴影部分,故区域A 的面积为S A =14510011d |55x x x ==⎰.所以点M 落在区域A 内的概率为15. ☆技巧点拨☆利用定积分求平面图形的面积是近几年高考考查定积分的一个重要考查方向,多以选择题、填空题的形式考查.难度一般不大,属中低档题型.常见的题型及其解法如下: 1.利用定积分求平面图形面积的步骤 ①根据题意画出图形;②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.注意:当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零. 2.知图形的面积求参数求解此类题的突破口:画图,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再由已知条件可找到关于参数的方程,从而可求出参数的值. 3.与概率相交汇问题解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算. 题组二 定积分的物理意义调研3 一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度55()51V t t t=-++(t 的单位:s ,v 的单位:m/s)紧急刹车至停止.在此期间火车继续行驶的距离是 A .55ln 10 mB .55ln 11 mC .(12+55ln 7) mD .(12+55ln 6) m【解析】令55501t t -+=+,注意到t >0,得t =10,即行驶的时间为10 s. 行驶的距离s =1021000551(5)d [555ln(1)]|55ln1112t t t t t t -+=-++=+⎰,即紧急刹车后火车继续行驶的距离为55ln 11 m. ☆技巧点拨☆利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求. 强化训练:1.由曲线1xy =与直线y x =,3y =所围成的封闭图形的面积为 A .2ln3-B .ln3C .2D .4ln3-【答案】D2.设()[](]cos ,0,π1,π,2πx x f x x ⎧∈⎪=⎨∈⎪⎩,则()2π0d f x x =⎰A .0B .πC .π-D .π2【答案】B 【解析】由已知得()2πd f x x =⎰π2ππ2π0π0πcos d 1d sin ||πx x x x x +=+=⎰⎰,故选B.3.若π20π22sin d 4n x x ⎛⎫=+ ⎪⎝⎭⎰,则2ny y ⎛⎫+ ⎪⎝⎭的展开式中常数项为A .8B .16C .24D .604.已知平面区域(){,|0π,01}x y x y Ω=≤≤≤≤,现向该区域内任意掷点,则该点落在曲线2sin y x =下方的概率是 A .12B .1π C .2πD .π4【答案】A5.已知函数()f x 的部分图象如图所示,向图中的矩形区域随机投出200粒豆子,记下落入阴影区域的豆子数,通过100次这样的试验,算得落入阴影区域的豆子的平均数为66,由此可估计()2d f x x ⎰的值约为A .9925B .9950 C .310D .35【解析】由定积分的几何意义知()2d f x x ⎰的值即为阴影部分面积S ,再由几何概型可知6620023S=⨯,解得9950S =.故本题选B . 6.()22214d x x -+-=⎰___________.【答案】42π+ 【解析】由题意得()2222222214d 1d 4d x x x x x ---+-=+-⎰⎰⎰,令24y x =-,则()2240x y y +=≥,其图象为半圆,且面积为2π,又22221d |4x x --==⎰,所以填42π+. 7.如图所示,在平面直角坐标系内,四边形ABCD 为正方形且点C 坐标为11,2⎛⎫⎪⎝⎭.抛物线Γ的顶点在原点,关于x 轴对称,且过点C .在正方形ABCD 内随机取一点M ,则点M 在阴影区域内的概率为_________.【答案】238.设曲线cos y x =与x 轴、y 轴、直线π6x =围成的封闭图形的面积为b ,若()22ln 2g x x bx kx =--在[)1,+∞上单调递减,则实数k 的取值范围是__________.【答案】[0,)+∞【解析】由题意可知,ππ660π11cos d sin |sinsin 00622b x x x ===-=-=⎰,则()222ln 22ln g x x bx kx x x kx =--=--,()22g x x k x-'=-, 由()22ln 2g x x bx kx =--在[)1,+∞上单调递减,9.2(1)d x x -=⎰.【答案】0 【解析】2220011(1)d ()|42022x x x x -=-=⨯-=⎰.10.曲线2y x =与直线y x =所围成的封闭图形的面积为 . 【答案】16【解析】由题意可得封闭图形的面积为122310011111()d ()|23236x x x x x -=-=-=⎰. 11.执行如图所示的程序框图,输出的T 的值为 .【答案】错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分与微积分基本定理习题一、选择题1. a =⎠⎛02x d x ,b =⎠⎛02e x d x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.由曲线y =x 2,y =x 3围成的封闭图形面积为( )练习、设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝⎛⎭⎫43,169B.⎝⎛⎭⎫45,169C.⎝⎛⎭⎫43,157 D.⎝⎛⎭⎫45,1373.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64. ⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2πB .3π C.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值 D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎫36,+∞ B .(0,e 21) C .(e -11,e ) D .(0,e 11) 8.如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.函数f (x )=⎩⎪⎨⎪⎧x +2(-2≤x <0)2cos x (0≤x ≤π2)的图象与x 轴所围成的图形面积S 为( ) A.32B .1C .4D.1210.设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12B.14C.13D.25二、填空题13.已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小.1、 [答案] D[解析] a =⎠⎛02x d x =12x 2|02=2,b =⎠⎛02e x d x =e x |02=e 2-1>2,c =⎠⎛02sin x d x =-cos x |02=1-cos2∈(1,2),∴c <a <b .A.112B.14C.13D.7122、[答案] A[解析] 由⎩⎪⎨⎪⎧y =x 2y =x 3得交点为(0,0),(1,1). ∴S =⎠⎛01(x 2-x 3)d x =⎪⎪⎝⎛⎭⎫13x 3-14x 401=112.练习; [答案] A[解析] 设P (t ,t 2)(0≤t ≤2),则直线OP :y =tx ,∴S 1=⎠⎛t (tx -x 2)d x =t 36;S 2=⎠⎛t2(x 2-tx )d x =83-2t +t 36,若S 1=S 2,则t =43,∴P ⎝⎛⎭⎫43,169. 3、[答案] A[解析] S =⎠⎛2x 3d x =⎪⎪x 4402=4.4、[答案] B[解析] ⎠⎛1(sin x +1)d x =(-cos x +x )|-11=(-cos1+1)-(-cos(-1)-1)=2.5、[答案] A[解析] 如右图,S =∫02π(1-cos x )d x =(x -sin x )|02π=2π.6、[答案] B[解析] F ′(x )=x (x -4),令F ′(x )=0,得x 1=0,x 2=4, ∵F (-1)=-73,F (0)=0,F (4)=-323,F (5)=-253.∴最大值为0,最小值为-323. 7、[答案] D ;[解析] f (x )=⎠⎛1x 1td t =ln t |1x =ln x ,a 3=S 3-S 2=21-10=11,由ln x <11得,0<x <e 11.8、[答案] A[解析] 由图可知阴影部分是曲边图形,考虑用定积分求出其面积.由题意得S =⎠⎛0πsin x d x=-cos x |0π=-(cosπ-cos0)=2,再根据几何概型的算法易知所求概率P =S S 矩形OABC =22π=1π.9、[答案] C[解析] 面积S =∫π2-2f (x )d x =⎠⎛0-2(x +2)d x +∫π202cos x d x =2+2=4.10、 [答案] A[解析] 由题意可得,当0<x <1时,[x ]=0,f (x )=x ,当1≤x <2时,[x ]=1,f (x )=x -1,所以当x ∈(0,2)时,函数f (x )有一个零点,由函数f (x )与g (x )的图象可知两个函数有4个交点,所以m =1,n =4,则⎠⎛mn g (x )d x =⎠⎛14⎝⎛⎭⎫-x 3d x =⎪⎪-x 2614=-52.11、[答案] A ;[解析] 方程x 2+2bx +c =0有实根的充要条件为Δ=4b 2-4c ≥0,即b 2≥c , 由题意知,每场比赛中甲获胜的概率为p =⎠⎛01b 2db 1×1=13.12、[答案] C ;[解析] 如图,正方形面积1,区域M 的面积为S =⎠⎛01x 2d x =13x 3|01=13,故所求概率p =13.13、 [答案] -1或13;[解析] ∵⎠⎛1-1f (x )d x =⎠⎛1-1(3x 2+2x +1)d x =(x 3+x 2+x )|-11=4,⎠⎛1-1f (x )d x =2f (a ),∴6a 2+4a +2=4,∴a =-1或13.14、 [答案] -192;[解析] 由已知得a =∫π20(sin x +cos x )d x =(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C 6r ×26-r ×x 3-r ,令3-r =2得,r =1,故其系数为(-1)1×C 61×25=-192.15、[答案] 18[解析] 由方程组⎩⎪⎨⎪⎧y 2=2x y =4-x解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y∴S =⎠⎛2-4[(4-y )-y 22]dy =(4y -y 22-y 36)|-42=18.16、 [答案] 16x -8y +1=0[解析] 由题意知⎠⎛01ax d x =23,∴a =1,设l :y =2x +b 代入y 2=x 中,消去y 得,4x 2+(4b -1)x +b 2=0,由Δ=0得,b =18,∴l 方程为16x -8y +1=0. 17、 [答案] -1[解析] f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0,∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,∴a =-1.18、 [解析] 由题意得S 1=t ·t 2-⎠⎛0t x 2d x =23t 3,S 2=⎠⎛t1x 2d x -t 2(1-t )=23t 3-t 2+13,所以S =S 1+S 2=43t 3-t 2+13(0≤t ≤1).又S ′(t )=4t 2-2t =4t ⎝⎛⎭⎫t -12,令S ′(t )=0,得t =12或t =0. 因为当0<t <12时,S ′(t )<0;当12<t ≤1时,S ′(t )>0.所以S (t )在区间⎣⎡⎦⎤0,12上单调递减,在区间⎣⎡⎦⎤12,1上单调递增.所以,当t =12时,S min =14.。

相关文档
最新文档