高中数学定积分的概念定积分的概念课件人教版
人教版数学高二-新课标 《定积分的概念》精品课件

• [点拨] 利用定积分的几何意义求定积分 就必须准确理解其几何意义,同时要合 理利用函数的奇偶性、对称性来解决问 题,运用数形结合法是关键.
-1-
• 练 2 用定积分的几何意义求下列各式的值:
-1-
[解] (1)由 y= 1-x2得 x2+y2=1(y≥0),其图象是圆
心为原点,半径为 1 的圆的14部分.
• [分析] 按分割、以直代曲(近似代替)、 求和、取极限四个步骤进行.
[解] 令 f(x)=3x+2. (1)分割 在区间[1,2]上等间隔地插入 n-1 个分点,把区间[1,2] 等分成 n 个小区间[n+ni-1,n+n i](i=1,2,…,n)每个小区 间的长度为 Δx=n+n i-n+ni-1=1n
-1-
-1-
(2)已知21xdx=ln2,求证:2(1+1x)(2-x)dx=ln
1
1
4 e.
-1-
[解] (1)∵1(x+1)(x-3)dx=1(x2-2x-3)dx
0
0
=1x2dx-21xdx-13dx,
0
0
0
利用定积分的定义求得
1x2dx=13,1xdx=12,13dx=3,
0
0
0
∴1(x+1)(x-3)=13-2×12-3=-131. 0
个
小
区
间
为
[
2(i-1) n
,
2i n
]
,
第
i
个小区间的面积
ΔSi≈f(2(i-n 1))·2n.
-1-
-1-
• 例2 用定积分的几何意义求下列各式 的值:
-1-
-1-
S 弓形=12×π3×22-12×2×2sin3π=23π- 3, S 矩形=AB·BC=2 3,
《定积分的定义》课件

总结词:定积分具有线性性质、可加性、可减性、可 乘性和可除性。
详细描述:定积分具有一系列的性质,其中最重要的是 线性性质,即两个函数的和或差的积分等于它们各自积 分的和或差;其次,定积分具有可加性和可减性,即函 数在一个区间上的积分等于该区间左端点处的函数值与 区间长度乘积的一半减去右端点处的函数值与区间长度 乘积的一半;此外,定积分还具有可乘性和可除性,即 函数与常数的乘积的积分等于该常数乘以函数的积分, 函数除以常数的积分等于函数乘以该常数的倒数。这些 性质在求解定积分时非常有用。
功的计算
定积分可用于计算力在空间上所做的功,通过将力在空间上进行积 分得到总功。
电磁学中的应用
在电磁学中,电场强度和磁场强度是空间的函数,通过定积分可以 计算电场强度和磁场强度在空间上的分布。
THANKS
感谢观看
微积分基本定理的应用
总结词
微积分基本定理的应用非常广泛,它 为解决各种实际问题提供了重要的数 学工具。
详细描述
通过微积分基本定理,我们可以计算 各种函数的定积分,从而解决诸如面 积、体积、长度、平均值、极值等问 题。此外,它也是微分方程求解的重 要基础。
微积分基本定理的证明
总结词
微积分基本定理的证明涉及到了极限理论、实数性质等深奥的数学知识,是数学严谨性的一个典范。
详细描述
证明微积分基本定理需要利用极限的运算性质和实数完备性等数学知识。其证明过程体现了数学的严 谨性和逻辑性,是数学教学中的重要内容。同时,对于理解微积分的本质和深化数学素养具有重要意 义。
03
定积分的计算方法
直接法
总结词
直接计算定积分的基本方法
详细描述
直接法是计算定积分最基本的方法,它基于定积分的定义,通过将被积函数进行微分和 积分,然后进行计算。这种方法适用于一些简单的定积分计算,但对于一些复杂的定积
人教版高中数学课件定积分的概念

c1 a
f ( x)dx c1
c2 f ( x)dx
c
b ck
f ( x)dx
新课讲授
说明
性质1
b
a 1dx b a
y
y1
Oa b
x
新课讲授
说明
b
c
b
性质4 a f ( x)dx a f ( x)dx c f ( x)dx
(其中a c b)
S曲 边 梯 形 面 积AMNB S S 曲 边 梯 形 面 积AMPC
例题讲解
例2.计算由两条抛物线y2=x 和y=x2所 围成的图形的面积.
课堂练习
计算由曲线y=x3-6x和y=x2所围成的 图形的面积.
课堂小结
定积分的概念; 定义法求简单的定积分; 定积分的几何意义.
课后作业
《学案》与《习案》.
y A
曲 边 梯 形 面 积CPNB
M Oa
CB N
Pb x
例题讲解
例1.计算定积分
2
( x 1)dx.
1
例题讲解
例1.计算定积分
2
( x 1)dx.
1
思考.若改为计算定积分 2 ( x 1)dx 呢 ? 2
课堂练习
计算下列定积分:
5
(1) 0 (2 x 4)dx ;
1
(2) x dx . 1
长 度 为x(x
b
n
a ), 在 每 个 小 区 间[ xi1 ,
xi
]上
取 一点i (i 1,2,, n), 作 和式:
Sn
n i 1
f (i )x
n i 1
ba n
f (i ),
新课讲授
人教课标版《定积分的概念》PPT课件1

ff((bb))
yy==ff((xx))
如何求曲边
ff((aa))
梯形的面积?
OO aa
bb xx
f (b)
y f(x)
f (a)
a
b
注意:曲边梯形的特点:
①、只有一边是曲线 ②、其他三边是特殊直线
例1、求曲线y=x2与直线 y
y=x2
y=0, x=1围成平面图形 1
的面积S .
0
1x
求曲边梯形的面积的方法:以直代曲,近似代替。 ①分割;②近似代替;③求和;④求极限。
割之弥细,所失弥少, 割之又割,以至于不可割, 则与圆合体而无所失矣。
刘徽: 魏晋山东
邹平人
•刘徽是世界上最早使用极限思想 计算圆周率(徽率)的大数学家。 •模拟“割圆术”,感受 “无穷数列的变化趋势”的极限思想。刘 徽(256-321)
刘徽的割圆术
探索无限宇宙 ------人类不懈地追求!
深邃的极限思想
近代数学之王 牛顿 1一世界,一花一天国.
掌上有无穷,瞬时即永恒.
—勃莱克(英国诗人)
“割圆术”涵盖大学高等数学 有关数列极限的基本知识如 极限的定义、无穷小量概念等
提出问题
这些图形的面积 该怎样计算?
课程导读
以直代曲,近似代替
微分研究的是局部的、动态的和瞬时的事物, 是发生在“0”时刻的事件;而数学家则希望 借此来“以暂定久”、“以常制变”、“以局 部驭整体”,这就需要用到定积分!
2000.00 0.3331 0.3336
0.0005
3000.00 0.3332 0.3335
0.0003
10000.00 0.3333 0.3334
0.0001
高中数学153定积分的概念新人教A版选修22PPT课件

3
v
S1 S2
2
vt () S 3 S4
t2 2
f(x)=x2
S1 3
Sj
O
1
x
Sn
根 据 定 积 分 的 定 义 左 边 图 形 的 面 积 为
S
1
v(t)dt
1(t22)dt5
0
0
3
O
1
t
123 j n 1
17
nnn n n
说明:
(1) 定积分是一个数值, 它只与被积函数及积分区间有关, 而与积分变量的记法无关,即
13
定积分的定义: 即 abf(x)dxlni m i n1b naf(i)
定积分的相关名称:
———叫做积分号, y
f(x) ——叫做被积函数, f(x)dx —叫做被积表达式, x ———叫做积分变量, a ———叫做积分下限, O b ———叫做积分上限, [a, b] —叫做积分区间。
b f ( x ) d x c S f ( x ) d x b f ( x ) d x 。
aa c
yf (x)
20
探究:
根据定积分的几何意义,如何用定积分表示图中阴影部分
的面积?
y
yf (x)
b
b
SS1S2af(x)dxag(x)dx
S1
b
y a
fg((xx))dx
b
S2
g(x)dx
y f(x)
a
bx
14
积分上限
b
n
af(x )d x I l i0i m 1f(i) x i
被
被
积
积分下限
积
积
分
函
人教版高考数学课件:定积分的概念

第16课时§1.5.3定积分的概念发 现 问 题类似于距离的计算和曲边梯形的面积,还有许多其他实际问题,例如引力问题、旋转体的体积问题、曲线的弧长问题等等,都属于求与某个变化范围内的变量有关的总量问题。
他们可以归结为先把整体问题通过“分割”化为局部问题,在局部上通过“以直代曲”或“以不变代变”作近似代替,由此得到整体的一个近似值,再通过取极限,便得到所求的量.这个方法的过程我们可简单描述为“分割—代替—求和—取极限”.采用这种方法解决问题时,最后都归结为对某一个函数)(x f 实施相同结构的数学运算和数ini ix f ∆∑=1)(ξ的极限,我们把处理这些问题的数学思维方法加以概括和抽象,便得到定积分的概念.互 动 课 堂知识点1:定积分的概念一般地,设函数()f x 在区间[,]a b 上连续,用分点012a x x x =<<< 1i i x x -<<n x b <<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点i ξ(i =1,2,,)n ,作和式:11()()n nn i i i i b aS f x f n ξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()baS f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限.说明:(1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()ni i b af n ξ=-∑; ④取极限:()1()lim nbi an i b af x dx f nξ→∞=-=∑⎰(3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()b aW F r dr =⎰.知识点2:定积分的几何意义 如果在区间[,]a b 上函数连续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积。
《定积分的概念》ppt课件

f
()(ba)
(ab).
性质7的几何意义:
在[a,b]上至少有 ,一使得 [a,以 b]为底边,以曲
y f (x)为曲边的曲A边a梯 B的 b形 面积等于同一
而高f为 ()的矩形的. 面积
假如函数f〔x〕在闭区间[a,b]上连续,我们
称b1aabf (x)dx
如已知某为地函某数时f自〔0x至〕2在4时[a,天b]上气的温平度均曲值线.为f(t),
曲线 f(x)f((x)0 )、x轴及两条直线x=a,x=b所围 成的曲边梯形面积A等于函数f(x)在区间[a,b]上的定积 分,即
Aabf(x)dx.
质点在变力F(s)作用下作直线运动,由起始位置a 移动到b,变力对质点所做之功等于函数F(s)在[a,b] 上的定积分,即
WabF(s)ds
假如函数f〔x〕在区间[a,b]上的定积分存在, 那么称函数f〔x〕在区间[a,b]上可积.
如果在[a,b]上 f(x)0,此时由曲线y=f(x),直线 x=a,x=b及x轴所围成的曲边梯形位于x轴的下方,则
定积分ab f (x)dx在几何上表示上述曲边梯形的面积A的
相反数.
假如在[a,b]上f〔x〕既可取正值又可取负值,那
么定积ab分f (x)dx 在几何上表示介于曲线y=f〔x〕,
直线x=a,x=b及x轴之间的各部分面积的代数和.
[x0,x1],[x1,x2],,[xi1,xi],,[xn1,xn]
各个小区间的长度为
xi xi xi1
在每一个小[x区 i1,x间 i]上任取一i(点 xi 1ixi),
n
作和 (简式 称积 ) 分 f和 (i)x式 i
i1
记max{xi,x2,...,xn},如果对[a区 ,b]间 任一分法 和小区[x间 i1,xi]上点 i任意取法,只 要0时 当,上
定积分的概念及性质课件

06
定积分的进一步应用
积分变换
积分变换的定义
积分变换是一种将函数在某一区间内的行为转化为另一种函数的方法,常见的积分变换包括傅里叶变换和拉普拉斯变 换等。
积分变换的性质
积分变换具有一些重要的性质,例如线性性质、时间平移性质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
积分变换的应用
积分变换在信号处理、图像处理和控制系统等领域有着广泛的应用,通过积分变换可以将复杂的信号或 系统转换为易于分析和处理的函数形式。
傅里叶变换
傅里叶变换的定义
傅里叶变换是一种将时间域函数转换为频域函数的方法, 它可以将一个时间函数分解成一系列不同频率的正弦和余 弦函数的线性组合。
傅里叶变换的性质
傅里叶变换具有一些重要的性质,例如线性性质、对称性 质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
傅里叶变换的应用
傅里叶变换在信号处理、图像处理和控制系统等领域有着 广泛的应用,通过傅里叶变换可以将复杂的信号或系统转 换为易于分析和处理的频域函数形式。
反常积分
反常积分的定义
反常积分是一种在无穷区间上定 义的积分,它通常用于处理一些 在无穷远处收敛的函数。
符号的意义
定积分的符号表示一个函 数在一个区间上的总值, 其中“∫”表示积分号。
计算公式
定积分可以通过一个公式
来计算x,其中a和b
是区间的端点。
02
定积分的性质
连续函数的积分性质
积分区间可加性
对于任意两个不相交的区间[a,b]和[b,c],有$\int_{a}^{c}f(x)dx = \int_{a}^{b}f(x)dx + \int_{b}^{c}f(x)dx$。