定积分的概念PPT课件
合集下载
1.5定积分的概念(4课时)ppt课件

作业: P45练习:2 .
1.5.3 定积分的概念
问题提出 1.求曲边梯形的面积和求变速直线运
动的路程,都可以通过“四步曲”解决, 这四个步骤是什么?其中哪个步骤是难 点?
分割→近似代替→求和→取极限.
2.求曲边梯形的面积与求变速直线运 动的路程是两类不同的问题,但它们有 共同的解决途径,我们可以此为基点, 构建一个新的数学理论,使得这些问题 归结为某个数学问题来解决,并应用于 更多的研究领域.
x 3)dx
(2x x )dx . 1
0
y sin( .x
)3
0
1
(2x
x 3)dx
0
1
2xdx
0
1x 3dx 1 1 3
0
44
小结作业
1.定积分是一个特定形式和的极限,其 几何意义是曲边梯形的面积,定积分的 值由被积函数,积分上限和下限所确定.
2.在实际问题中,定积分可以表示面积、 体积、路程、功等等,求定积分的值目 前有定义法和几何法两种,有时利用定 积分的性质进行计算,能简化解题过程.
B组:2,3.
i)
,那么
当n→∞时,Sn的极限是否一定存在?
一定存在
思 做考 函数4:f(数x)学在上区,间把[a,nlimb]in上1 b的n定a f积( i )分,叫
记作
b
f (x)dx,即
a b
f (x)dx
a
lim
n
n i1
b
af( n
i)
其中a与b分别叫做积分下限与积分上限,
பைடு நூலகம்
区间[a,b]叫做积分区间,函数f(x)叫
2
(x 1)dx 的值.
1
定积分的概念PPT课件

(3 )
a
f ( x )dx
f ( x )dx
b a
f (x )dx
性质4: 性质5: 性质6:
a
a
b
f ( x )dx 0.
a
dx b a .
b
a
f ( x )dx f ( x )dx .
b
a
思考4:
r 0
2 xdx
2
?
r
2
1
0
1 x dx ?
i 1
b n
a
f ( i ) ,那么
当n→∞时,Sn的极限是否一定存在?
一定存在
n
思考4:数学上,把
n
lim
i 1
b n
a
f( i)
叫
做函数f(x)在区间[a,b]上的定积分, 记作 即
a
b a
b
f (x )dx ,
n
f (x )dx
n
lim
i 1
b n
a
f( i)
b a
f (x )dx 其中
---积分号 a---积分下限 b---积分上限 区间[a,b] ---积分区间 函数f(x) ---被积函数 x---积分变量 f(x)dx---被积式
v=v(t)
n
s
n
lim
i 1
b n
a
v( i )
O a
i
b t
思考3:一般地,如果函数f(x)在区间[a, b]上连续,用分点 a=x0<x1<x2<„<xi<„<xn=b将区 间[a,b]等分成n个小区间,在每个小区 间[xi-1,xi](i=1,2,„,n)上任取一
定积分的概念和性质ppt课件

小区间长度记为:
ti ti ti 1 (i 1 ,2 ,3 , ,n )
n
(2)近似求和:s v(i )ti. i1
(3)取极限:
n
s
lim
0 i1
v(i
)ti
( 表示所有小区间的长度的最大者)
编辑版pppt
8
二、定积分的定义
定义 设函数f(x)在[a,b]上有界, 在[a,b]中任意插入若干个分点:
四、定积分的几何意义
若f(x)≥0,则
b
a
f (x)dx 的几何意义表示
由曲线y=f(x),直线x=a,x=b与x轴所围成
的曲边梯形的面积。
编辑版pppt
12
一般情形,ab f (x)dx 的几何意义为:它
是介于x轴,曲线y=f(x),直线x=a,x=b 之 间的各部分面积的代数和。
y
+
a
0 -
+ bx
性质 7(定积分中值如定果理函) f (数 x)在闭区
间[a,b]上连续,[则 a,b]在 上至少存在一点
,使
b af(x )d x f()b ( a )
( a b )
这个公式叫积分中值公 式。
编辑版pppt
22
证由性6, 质有
b
m (ba)af(x)d xM (ba)
即有 m 1
b
f(x)d xM
这些小区间的长度最大者)时,和式 f (i )xi 的
n
i 1
极限就是A,即
Alim
0 i1
f (i)xi
可见,曲边梯形的面积是一和式的极限
y=f(x) y
0 a x0 x1
f(ξi) x 2 ξi x i x 编1 辑版pi ppt
定积分的概念ppt课件

2
2
b a
(b
x)( x
a)dx
1
2
(b a )2 2
(b a)2
8
.
17
例1 利用定义计算定积分 1 x2dx. 0
解 因为y x2在[0,1]上连续,积分存在.
将[0,1]n 等分,分点为 xi
i ,( i n
0,1,2,
,n
)
小区间[ xi1 ,
xi ]的长度xi
1 ,(i n
b
a
f
(u)du
(2)定义中区间的分法和介点i 的取法是任意的.
(3)当函数 f ( x)在区间[a,b]上的定积分存在时,
称 f ( x)在区间[a, b]上可积. 也称定积分为
Riemann 积分.
11
对定积分的补充规定:
(1)当a
b时, b a
f
(
x)dx
0;
(2)当a
b时, b a
f
( x)dx
1
一、问题的提出
实例1 (求曲边梯形的面积)
y
曲边梯形由连续曲线
y f (x)
y f ( x)( f ( x) 0)、
x轴与两条直线x a 、
x b所围成.
A?
oa
bx
2
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
0
证明 利用对数的性质得
lim n f 1 f 2 f n n n n n
eln lim n n
f
1 n
《定积分课件》课件

03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。
定积分概念、性质ppt课件

上例曲边图形的面积用定积分表示
S1x2d x lin m (n 1 )2 (n 1 )1
0
n 6 n 3
3
注意:据定义有如下说明:
(1)定积分是特殊和式极限,它是一个定数;
(2)定积分的大小仅与区间[a,b]和被积函数f(x)有关;
(3)规定:
a
f(x)d x0,
b
a
f(x)d x f(x)dx
b f (x)dx
b
g ( x)dx
a
a
推2 论 :b
.
f(x)d
x
b
f( x) dx,(ab)
a
a
因f(x)f(x)f(x)
.
性质6(介值定理):设f(x)在[a,b]上可取得最大值M和最
小值m, 于是, 由性质5有
b
m (ba)af(x)d xM (ba)
几何意义也很明显
性质 7(积分中值若定函理 f(数 x)) 在[a: ,b]上连续,
S曲
lim n
n i 1
S i矩
lim
n
(n
1)( 2n 6n 2
1)
1 0.333 3
.
总结:求曲边梯形面积的步骤 v
引例1——曲边梯形的面积(演示) 引例2——变速直线运动的路程
设物体的运动速度 vvt
分割区间 作和
取近似值 取极限
T1
ti-1 i ti T2 t
(1)细分区间 [ T 1 ,T 2 ] [ T 1 ,t 1 ] U [ t 1 ,t2 ] U L U [ tn 1 ,T 2 ]
曲边梯形的面积,即:
n
S曲
.
lim
n i1
定积分的概念和基本性质教学精品PPT课件

10
曲边梯形面积可取极限:
f (i )
y=f(x)
n
S
= lim 0 i=1
f (i ) xi
O a=x0 x1 x2 ... xi-1i xi ...
x
b xn1 xn=
7
引出定义的实例二:求物体作变ቤተ መጻሕፍቲ ባይዱ直线运动所经过的路程
例2.设物体沿直线作变速运动,速度为 v =v (t), 假定v (t)是 t 的连续
(2) 在第i个小区间[xi1, xi]上任取一点i ,用第i个小矩形的面积近似替代
第i个小曲边梯形的面积:Ai f ( i ) xi (i = 1, 2, , n)
(3) 将全部小矩形面积求和后作为
y
曲边梯形面积 S 的近似值。即有
n
S f(i)xi。
i =1
(4) 记=maxx1, x2, xn,为得到
分割 近似 求和 取极限
把整体的问题分成局部的问题 在局部上“以直代曲”, 求出 局部的近似值; 得到整体的一个近似值;
得到整体量的精确值;
6
一般地,求由连续曲线y=f(x)(f(x)0),直线x=a、x=b及 x轴所围成的曲边梯形的面积的方法是:
(1) 用直线 x = xi (i = 1, 2,..., n 1) 把曲边梯形分割为 n 个小曲边梯形。 每个小曲边梯形的底的宽度记为 xi = xi xi1 (i = 1, 2,..., n)。
取极限
得到整体量的精确值;
9
4.3.1 定积分的定义
定义 4.3.1:
将
区间任意分成 n 份,分点依次为
在每一个小区间[xi-1 , xi]上任取一点ci, 作乘积
f (ci )xi (xi = xi xi1) (i = 1,2,, n)
定积分的概念市公开课一等奖省赛课获奖PPT课件

第38页
例 2 比较积分值 2 e xdx和 2 xdx 的大小.
0
0
解 令 f ( x) e x x, x [2, 0]
f ( x) 0,
0 (e x x)dx 0, 2
0 e xdx
0
xdx,
2
2
于是
2 e xdx
2
xdx.
0
0
第39页
例 3
估计积分
1 0 3 sin3
n
i 1
i2
1 n3
n(n
1)(2n 6
1)
1 6
1
1 n
2
1 n
,
0 n
1 x2dx 0
n
lim 0 i1
i 2xi
lim 1 1 1 2 1 1 . n 6 n n 3
第31页
二、定积分几何意义
y f ( x) 0,
y f ( x) 0,
oa
bx
oa
bx
第二节 定积分 (Definite Integral)
(一)
第1页
目标与要求
❖了解定积分概念及性质。 ❖了解定积分作为变上限函数及其求导定理。 ❖熟悉牛顿-莱布尼茨((Newton-Leibuniz)公式。 ❖熟练掌握定积分换元积分法,分部积分法。
第2页
一、 定积分概念
实例1 (求曲边梯形面积)
解
将[0,1]n 等分,分点为 x i
i ,(i n
1,2,, n)
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,, n)
取i xi ,(i 1,2,, n)
n
n
n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解
将[0,1]n 等分,分点为xi
i ,(i n
1,2,
,n)
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,
,n)
取i xi ,(i 1,2, , n)
n
n
n
f (i )xi i2xi xi2xi ,
i 1
i 1
i 1
n
i 1
i n
பைடு நூலகம்
2
1 n
1 n3
n
i 1
i2
1 n3
xi xi xi1,(i 1,2, ),在各小区间上任取
一点i (i xi ),作乘积 f (i )xi (i 1,2, )
n
并作和S f (i )xi ,
i 1
记 max{ x1 , x2 , , xn },如果不论对[a, b]
怎样的分法, 也不论在小区间[ xi1 , xi ]上
A
lim
0
i 1
f
(i )xi
n
s
lim
0
i 1
v(
i
)ti
(1)分割 (2)近似 (3)求和 (4)取极限
一、定积分的定义
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
0
1
2
n1
n
把区间[a, b]分成n 个小区间,各小区间的长度依次为
Ai f (i )xi
近似
曲边梯形面积的近似值为
n
A f (i )xi
i 1
求和
当分割无限加细,即小区间的最大长度
max{x1, x2 , xn }
趋近于零 ( 0) 时,
n
曲边梯形面积为
A lim 0 i1
f (i )xi
取极限
实例2 路程问题(Distance Problem)
而与积分变量的字母无关.
b
a
f
( x)dx
b
a
f
(t )dt
b
a
f
(u)du
(2)定义中区间的分法和
i
的取法是任意的
(3)当函数 f ( x)在区间[a,b]上的定积分存在时, 称 f ( x)在区间[a, b]上可积.
曲边梯形由连续曲线 y f ( x)( f ( x) 0)、
x轴与两条直线x a 、x b所围成.
n(n
1)(2n 6
1)
1 6
1
1 n
2
1 n
,
0 n
1 x2dx
0
n
lim 0 i1
i 2xi
lim 1 1 1 2 1 1 . n 6 n n 3
二、定积分的几何意义
y f ( x) 0,
y f ( x) 0,
oa
bx
oa
bx
b
a
f
( x)dx
A
曲边梯形的面积
b
a f ( x)dx A
曲边梯形的面积 的负值
y
a
A2
o
A1
b
A3
x
它是介于x 轴、函数 f ( x) 的图形及两条 直 线 x a, x b 之 间 的 各 部 分 面 积 的 代数 和 . 在 x 轴 上 方 的 面 积 取 正 号 ;在 x 轴 下 方 的 面 积取负号.
b
a f ( x)dx A1 A2 A3
设某质点作直线运动,速度v v(t ) 是时间 间隔[T1 ,T2 ]上t 的一个连续函数,求物体在这
段时间内所经过的路程.
对于匀速运动,我们有公式 路程=速度X时间
解决变速运动的路程的基本思路
把整段时间分割成若干小时间段,每小段上速 度看作不变,求出各小段的路程的近似值,再相加, 便得到路程的近似值,最后通过对时间的无限细分 过程求得路程的精确值.
其 面积A等 于函 数f ( x)在 区间[a, b]上 的定 积 分, 即
b
A a f ( x)dx
设某质点作直线运动,速度 v v(t)是时间间 隔[T1 ,T2 ]上t 的一个连续函数,物体在这段时
间内所经过的路程.
S T2v(t)dt T1
例1 利用定义计算定积分 1 x2dx. 0
定积分的概念
目的与要求
❖理解定积分的概念及性质。 ❖理解定积分作为变上限的的函数及其求导定理。 ❖熟悉牛顿-莱布尼茨((Newton-Leibuniz)公式。 ❖熟练掌握定积分的换元积分法,分部积分法。
一、 定积分的概念
实例1 (求曲边梯形的面积)
曲边梯形由连续曲线 y
y f (x)
y f (x),( f (x) 0)
(1)分割 T1 t0 t1 t2 tn1 tn T2
(2) 近似 ti ti ti1
si v( i )ti
部分路程值
某时刻的速度
n
(3)求和 s v( i )ti
i 1
(4)取极限 max{t1,t2 , ,tn }
路程的精确值
n
s
lim
0
i 1
v(
i
)ti
n
点i 怎样的取法,只要当 0时,和S 总趋于 确定的极限I , 我们称这个极限I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限
积分和
b a
f ( x)dx
I
lim 0
n i 1
f
(i )xi
被 积分下限 积 函 数
被
积
[a,b] 积分区间
积
分
表
变
达 式
量
注意:
(1) 积分值仅与被积函数及积分区间有关,
个分点,a x0 x1 x2 xn1 xn b,
把区间[a,b] 分成 n y
个小区间[ xi1, xi ], 长度为 xi xi xi1;
分割
在每个小区间[ xi1, xi ]
上任取
一点
,
i
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
A?
x轴与两条直线x a 、
o
a
bx
x b所围成.
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
曲边梯形如图所示, 在区间[a,b]内插入若干
b
f (x)dx
b
g(x)dx
a
a
a
(可推广到有限个的情形.)
3). 若把[a , b]分为两部分[a , c]和[c , b] , 则
b
c
b
a f (x)dx a f (x)dx c f (x)dx
注 : 若分点c在区间[a,b]之外 , 则f (x)在
三、定积分的性质
对定积分的补充规定:
(1)当a
b时, b a
f
(
x)dx
0;
(2)当a
b时, b a
f
( x)dx
a b
f
( x)dx .
说明 在下面的性质中,假定定积分都存 在,且不考虑积分上下限的大小.
1).
b
kf (x)dx k
b
f (x)dx,
(k为常数)
a
a
2).
b
[ f (x) g(x)]dx