第六讲:结构抗风计算概念、顺风效应

合集下载

土木工程中的风载荷效应与结构抗风设计

土木工程中的风载荷效应与结构抗风设计

土木工程中的风载荷效应与结构抗风设计土木工程中的风载荷效应与结构抗风设计引言:风是地球大气系统中重要的一部分,其强度和方向对土木工程结构具有重要影响。

土木工程中的风载荷效应及结构抗风设计是保证工程结构安全可靠的关键。

本文将从风的基本知识、风载荷效应以及结构抗风设计三个方面进行探讨。

一、风的基本知识风的形成:风是由于地球表面温度和压力差异引起的空气运动。

温度差异引起的气压差异形成气压梯度,从而产生风。

风的强度:风的强度可以通过风速来表示,一般以米/秒(m/s)为单位。

根据风速的不同,可以将风分为轻风、微风、和大风等不同等级。

风的方向:风的方向是指风吹过的方向,一般以风向标来表示。

风向的测量可以通过气象仪器或者标志物来进行。

二、风载荷效应风压力:风对建筑物表面产生的压力称为风压力。

风压力的大小与风速和建筑物表面积有关。

一般情况下,风速越大、建筑物表面积越大,所受风压力越大。

风荷载:风对建筑物产生的力称为风荷载。

风荷载是指风对建筑物各部分产生的垂直和水平力。

风荷载的大小与风速、建筑物形状和高度有关。

三、结构抗风设计风荷载计算:结构抗风设计的第一步是计算风荷载。

风荷载计算可以通过风洞试验、数值模拟和规范计算等方法进行。

根据计算结果,确定结构所受的风荷载。

结构抗风设计原则:结构抗风设计的原则是保证结构在风荷载作用下不发生破坏或失稳。

具体设计原则包括增加结构的刚度、增加结构的稳定性、减小结构的风荷载等。

结构抗风设计方法:结构抗风设计方法包括选材、结构形式选择、连接方式选择等。

选材时要选择具有良好抗风性能的材料;在结构形式选择时要考虑结构的刚度和稳定性;在连接方式选择时要选择能够有效传递风荷载的连接方式。

结论:土木工程中的风载荷效应与结构抗风设计是保证工程结构安全可靠的重要因素。

了解风的基本知识,计算风荷载,并根据设计原则和方法进行结构抗风设计,可以有效保证土木工程结构的安全性。

在今后的工程实践中,需要继续深入研究风载荷效应与结构抗风设计,以提高土木工程结构的抗风能力。

建筑结构的抗风设计与控制

建筑结构的抗风设计与控制

建筑结构的抗风设计与控制随着现代建筑技术的不断发展,抗风设计与控制对于建筑结构的安全和可持续发展至关重要。

本文将探讨建筑结构的抗风设计原理、措施与方法,并分析其对建筑的影响和作用。

1. 抗风设计的重要性建筑结构的抗风设计是指在建筑物的设计与施工过程中,考虑到气象条件和气候特点,采取相应的措施和设计原则,使建筑物能够抵御风力的作用,确保其在长期使用中的稳定性和安全性。

抗风设计对于建筑结构来说至关重要,不仅直接关系到人民的生命财产安全,还关系到建筑物的使用寿命和经济效益。

2. 抗风设计原理抗风设计的基本原理是通过减小风力对建筑物的影响,降低风力对建筑物结构的作用,增强建筑物的抵抗力和稳定性。

其主要原理包括:2.1 稳定原理:通过设计合理的结构形式、选择适当的材料和构造,使建筑具有足够的抗倾覆和抗倒塌能力。

2.2 减小风力影响原理:通过合理的立面设计、减小建筑物与风的迎角、设置遮挡物等方法,降低风力对建筑物的作用。

2.3 控制风振原理:通过合理选择阻尼系统、增加刚度和强度,控制风振的产生和传递,保证建筑物结构在风载荷作用下的稳定性。

3. 抗风设计的措施与方法为了实现建筑结构的良好抗风性能,需要采取一系列的措施与方法。

以下是一些常见的措施与方法:3.1 合理的建筑形态设计:选择具有较小风力影响的建筑形态,如流线型、圆形、卵形等,并避免棱角过多的设计。

3.2 优化构造设计:通过合理的结构配置和布置,提高结构的稳定性和抗风性能。

例如增加立杆、加强柱子和梁的抗风刚度。

3.3 选择合适的材料:选用具有良好抗风性能的材料,例如高强度混凝土、结构钢等。

3.4 设置风挡和遮阳装置:在建筑物的外立面或周边设置适当的风挡和遮阳装置,减小风力对建筑物的直接作用。

3.5 增加阻尼措施:在建筑物结构中增加适当的阻尼系统,如阻尼器、减震墩等,以减小风振效应。

4. 抗风设计对建筑的影响与作用抗风设计不仅可以提高建筑结构的抗风能力,还可以对建筑物的整体性能和舒适度产生积极影响。

顺风向结构风效应

顺风向结构风效应

第四节顺风向结构风效应顺风向风效应= 平均风效应一、顺风向平均风效应1. 风载体型系数结构表面风压与同一高度来流风速对应的风压的比值实际风到达工程结构物表面并不能理想地使气流停滞,而是让气流以不同方式在结构表面绕过。

但伯努利方程仍成立,即:风洞试验图:气流通过拱形屋顶房屋示意图复杂结构产生正负压风载体型系数:由于气流会以不同的方式在结构表面流过,故实际结构物所受的风压不能直接按照风速与风压的关系计算,而需要对其修正,其修正系数与结构物的体型有关,故称为风载体型系数封闭式双坡屋面的风荷载体型系数风荷载体型系数+0.8而不是+1.0?注意:侧风面-0.7,背风面-0.5Pressure from wind on windward surfacesWind directionPressureWind damage scenarioSuction on roof surfaces Wind directionSuction on side wallWind directionWind damage scenarioWind directionSuction on leeward wallWind damage scenario建筑结构荷载规范(GB50009-2012)有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)(GB50009-2012)建筑结构荷载规范4-10轻钢规范CECS2002目前风洞试验是确定复杂结构风荷载(尤其是脉动风荷载)的唯一可靠方法相同大气环境下(即同一地区):不同地貌在梯度风高处的风速应相同,即:任意地貌任意高度z a的风压(书:任意地貌基本风压)与标准地貌的基本风压的关系:2.风压高度变化系数为何引入此概念?或3.平均风下结构的静力风载:任意粗糙度任意高度的风压与标准粗糙度下标准高度处的基本风压的比值任意地貌10米高度(z a )的风压(书:任意地貌基本风压)与标准地貌的基本风压的关系:z a =z s =10 米zμ风压高度变化系数考虑到近地面风速的不确定性较高,规范还分别规定了四类地貌的风压高度变化系数截断高度,对应A 、B 、C 、D 类地貌分别取5m 、10m 、15m 和30m ,即风压高度变化系数取值分别不小于1.09、1.00、0.65和0.51。

风对结构的作用及抗风防护措施

风对结构的作用及抗风防护措施

风对结构的作用及抗风防护措施刘宏睿摘要:风灾害是发生频繁的自然灾害.每年会给人类造成重大的生命和财产损失。

工程结构的风灾损失主要形式是结构的开裂、损坏和倒塌。

因此.工程抗风设计计算是工程安全的关键,本文研究了风的特性、风对结构的作用、风设计的主要内容和方法、防风减灾措施。

关键词:风灾;工程结构;抗风设计;防灾措施;一.引言风灾是自然灾害中影响最大的一种。

据有资料显示,从1947~1980年全球十种主要自然灾害中,由台风造成的死亡人数为4919万,占全球自然灾害死亡总人数的41%,比地震造成的死亡人数还多。

1970年11月12~13日袭击孟加拉的一个台风(当地称风暴),死亡人数达30万。

1973年9月14日,7314台风登陆海南岛时风速达60米每秒,使琼海县城夷为废墟。

1992年8月24日安德鲁飓风登陆美国佛罗里达,经济损失高达300亿美元。

2007年10月台风罗莎造成福建省42.91万人受灾,房屋倒塌130间,直接经济损失4.6亿元。

2007年11月孟加拉遭强热带风暴袭击至少1108人死亡,数千人受伤或失踪,数十万人无家可归。

对于工程结构,风灾主要引起结构的开裂、损坏和倒塌,特别是高、细、长的柔性结构。

因此,工程结构的抗风设计是关系到工程安全的重要因素。

本文结合我国有关工程抗风设计的规范,介绍了风对工程结构的作用、抗风设计的主要研究内容和方法和防风减灾措施。

二.风风的形成乃是空气流动的结果,是空气相对于地面的运动。

地球上任何地方都在吸收太阳的热量,但是由于地面每个部位受热的不均匀性,空气的冷暖程度就不一样,于是,暖空气膨胀变轻后上升;冷空气冷却变重后下降,这样冷暖空气便产生流动,形成了风。

1.风形成的原因在气象上,风常指空气的水平运动,并用风向、风速(或风力)来表示。

空气产生运动,主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。

在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。

顺风向脉动风效应和顺风向总风效应

顺风向脉动风效应和顺风向总风效应

二、顺风向脉动风效应三、顺风向总风效应假定:在脉动风作用下,(竖向悬臂形)结构主要按第一振型振动,按照随机振动理论分析。

高度大于30m 且高宽比大于1.5的房屋基本自振周期T 1大于0.25s 的高耸结构21z z 21s 100q R 1)z ()z (B m )z (B I w 21+⋅=φμωμσ)z (B w )z (R 1B gI 2)z (P 0z s 2z 10d μμ+=2z 10R 1B gI 21)z (++=β主结构:阵风系数围护结构:有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)风致动力响应(a)风速或风荷载时程(b)高频结构的响应时程(周期短的结构)(c)低频结构的响应时程(周期长的结构)对体型和质量沿高度均匀分布的高层建筑和高耸结构,可按下式计算:有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)空间相关系数——空间相关性脉动风荷载的空间相关系数:(1)竖直方向的相关系数可按下式计算:(2)水平方向的相关系数可按下式计算:(3) 对迎风面宽度较小的高耸结构,水平方向相关系数可取。

对于低多层建筑结构(对于高层建筑结构(对于高耸结构(结构的顺风向风荷载可按下式计算:z高度处的风振系数βz可按下式计算:知识拓展:如何减小结构风效应??-> 加强结构,其它方法?上海中心(总高632米)——“上海慧眼”(位于583.4米)一个重达1000吨的“超级巨无霸”,它由吊索、质量块、阻尼系统和主体结构保护系统四个部分组成,是目前世界上最重的摆式阻尼器质量块(调频质量阻尼器,tuned mass damper ,TMD )。

抗风设计ppt课件

抗风设计ppt课件

0.84
1.80
1.42
1.00
1.92
1.56
1.13
2.03
1.67
1.25
2.12
1.77
1.35
2.20
1.86
1.45
2.27
1.95
1.54
2.34
2.02
1.62
2.40
2.09
1.70
2.64
2.38
2.03
2.83
2.61
2.30
2.99
2.80
2.54
3.12
2.97
2.75
3.12
年、50 年、100 年基本风压 w0 分布。
《高层建筑混凝土结构技术规程》(JGJ3-2010)进一步规定基本风压重现期 及其使用情况
基本风压重现期及其使用情况
重现期 10 年 50 年 100 年
适用情况 舒适度控制 抗风设计 抗风设计
6
7
几点说明 (1)考虑到房屋高度大于60m的高层建筑对风荷载比较敏感,承载力设计时风荷载计算可
按基本风压的1.1倍采用。 (2)对于房屋高度不超过60m的一般高层建筑,其基本风压是否提高,可由设计人员根据
实际情况确定。 相对02规程,本次修订: (1)取消了“特别重要”的高层建筑的风荷载增大要求,主要因为对重要的建筑结构,其
重要性已在结构重要性系数体现在结构作用效应的设计值中; (2)对正常使用极限状态设计,其要求可比承载力设计适当降低,一般仍可采用基本风压
横风向:动力 扭转:对称结构,一般可以忽略。 细长柔性结构,横风向可能产生很大的动力效应.
4
一、顺风力(平均风力+风振力)
《建筑结构荷载规范》(GB50009-2011)规定:垂直作用于

顺风向脉动风效应和顺风向总风效应

顺风向脉动风效应和顺风向总风效应

二、顺风向脉动风效应三、顺风向总风效应假定:在脉动风作用下,(竖向悬臂形)结构主要按第一振型振动,按照随机振动理论分析。

高度大于30m 且高宽比大于1.5的房屋基本自振周期T 1大于0.25s 的高耸结构21z z 21s 100q R 1)z ()z (B m )z (B I w 21+⋅=φμωμσ)z (B w )z (R 1B gI 2)z (P 0z s 2z 10d μμ+=2z 10R 1B gI 21)z (++=β主结构:阵风系数围护结构:有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)风致动力响应(a)风速或风荷载时程(b)高频结构的响应时程(周期短的结构)(c)低频结构的响应时程(周期长的结构)对体型和质量沿高度均匀分布的高层建筑和高耸结构,可按下式计算:有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)空间相关系数——空间相关性脉动风荷载的空间相关系数:(1)竖直方向的相关系数可按下式计算:(2)水平方向的相关系数可按下式计算:(3) 对迎风面宽度较小的高耸结构,水平方向相关系数可取。

对于低多层建筑结构(对于高层建筑结构(对于高耸结构(结构的顺风向风荷载可按下式计算:z高度处的风振系数βz可按下式计算:知识拓展:如何减小结构风效应??-> 加强结构,其它方法?上海中心(总高632米)——“上海慧眼”(位于583.4米)一个重达1000吨的“超级巨无霸”,它由吊索、质量块、阻尼系统和主体结构保护系统四个部分组成,是目前世界上最重的摆式阻尼器质量块(调频质量阻尼器,tuned mass damper ,TMD )。

土木工程结构抗风设计 南航6

土木工程结构抗风设计 南航6

最大风振力为:
对于第l振型,上式变成
高耸结构设计规范建议取 L 0.25
一、烟囱
检查共振风速是否属于跨临界范围。烟囱属于空 心的结构,50m以上的烟囱平均外直径一般在4-12m之 间,周期在0.5-2.5s之间,斯脱罗哈数通常可取0.2。 由前所述,共振风速在24-40m/s之间,这样的风速在 实际工程中是能够出现的。又根据雷诺数的计算式, 雷诺数当在3.5X106以上。所以可以发生横风向旋涡脱 落共振。分析时应予以考虑。
图6-1 高耸结构的变形
二、按无限自由度体系的自振周期计算
对于变截面结构,振型方程应按任意截面 方程直接解出,从而求出自振频率或周期。
假定质量与 正比。当然,实际结构是千变万化的,如需精度 极高的频率及振型,应按结构动力学原理直接进 行计算。
lx 2 ( z )成正比,刚度EI(z)与lx 4 ( z ) 成
三、按有限自由度体系的自振周期计算
(1)按质量总数分散集中到点上。
这种按质星相等集中法,对质量数较多,例如超过 3个时,精确度尚能满足要求,但当质量数很小,例如 2个甚至1个,即产生十分可观的误差。当按质量总值 集中法集中一个质量于是臂型结构顶端时,对频率或 周期可以严生30.2%的误差。
(2)按动能相等原则为基础。
由以上各项简化,临界风速变成
第j振型的最大位移为:
Lj u Lj j ( z ) w0 x j max ( z ) 2 j
Lj 1 2 j
所以,有
对于第l振型,上式积分部分积分值为1.56, 如近似取1.6,则上式变成
c2 L D j ( z ) x1max ( z ) 2000 1m12
(1)只针对圆形截面高耸结构,如烟囱等。 (2)只验算跨临界范围,非跨临界范围不需验 算,只通过构造措施解决。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为简化计算,将建筑沿高度划分为5个计算区段,每个 区段20m高,区段中点位置风荷载值作为该区段的平均 风荷载值。 解: 1、体型系数。 迎风面 0.8(压),背风面-0.5(吸) -0.7 顺风向总体型系数 μs=1.3 2、风压高度变化系数μz 城市市区、地面粗糙度类别C 各区段风压高度及 μz 值如下
3.4 顺风向结构风效应
3.4.1 顺风向平均风效应
1、风荷载体型系数(μS)
(Style)
工程结构物不能理想地使自由气流停滞,而是让气流 以不同方式在结构表面绕过,因此需对风压计算公式进 行修正,修正系数与结构物的体型有关,称为风荷载体 型系数。 外区(伯努利式) 完全从理论上确定任意受 气流影响的物体表面的压 力尚做不 到。 一般通过试验方法(风洞 (内区) 试验、实际测量风压分布 粘性、湍 流影响 )确定μS 。
3.3 结构抗风计算的几个重要概念
3.3.1 结构的风力与风效应:
1、风力---作用于物体表面的风压沿表面积分,将得到三种 力的成分:顺风向力PD、横风向力PL、扭风力矩PM。 2、结构风效应—— 由风力产生的结构位移、速度、加速 度响应。
3.3.2 顺风向平均风与脉动风:
顺风向风速成分 长周期成分(10min) 顺风向风效应 平均风(稳定风) 短周期成分(几秒)
V>V0或V=0 μS〈 0
V<V0或V=0 0〈μS ≤1
实用时将同一部位的μS
值进行平均,作为该部位 的风荷载体形系数代表值
2、平均风下结构的等效静风压
平均风对结构的作用可等效为静力荷载,考虑高度、体 型修正,等效静风压为:
3.4.1 顺风向脉动风效应
顺风向脉动风作用下结构的动力响应--风振计算应按随 机振动理论进行,结构的自振周期应按结构动力学计算。 规范条件:对于基本自振周期T1大于0.25 s的工程结构, 如房屋、屋盖及各种高耸结构,以及对于高度大于30m 且高宽比大于1.5的高柔房屋。 在原则上应考虑多个振型的影响。
ξ ---- 脉动增大系数(表3-10) υ ---- 脉动影响系数 (表3-11、12、13) φz ---- 振型系数(应按实际工程由结构力学计算)
例题---顺风向风效应 已知城市市区一矩形 平面RC高层建筑,平 面沿高度保持不变。 H=100m,B=33m。 基本风压w0=0.44kN/m2, 结构自振周期T1=2.5s。 求风产生的建筑底部 弯矩。
对于一般悬臂型结构,例如构架、塔架、烟囱 等高耸结构,以及对于高度大于30m,高宽比 大于1.5且可忽略扭转影响的高层建筑(由于 频谱比较稀疏,第一振型起到绝对的影响),均 可仅考虑第一振型影响,结构的风荷载可通过 风振系数βz计算。
将顺风向平均风压与脉动风压之和表达为 顺风向总风压w(z)
w(z)=β(z)μs(z)μz(z)w0 βz =1+ξυφz/μz
4、各区段中点高度处风压值( wk=βzμs μz w0 ) Wk1=1.02 ×1.3 ×0.74 ×0.44=0.43(kN/m2) Wk2=1.126 ×1.3 ×1.00 ×0.44=0.64(kN/m2) Wk3=1.225 ×1.3 ×1.25 ×0.44=0.88(kN/m2) Wk4=1.342 ×1.3 ×1.45 ×0.44=1.11(kN/m2) Wk5=1.393 ×1.3 ×1.62 ×0.44=1.29(kN/m2) 计算单位宽度内底部弯矩 mk =0.43×10+0.64×30 +0.88×50+1.11×70+1.29×90 =261.3 (kN.m/ m2) Mk =261.3 ×20 ×33=1.72 ×105 (kN.m)
脉动风(阵风脉动)
顺风向风效应特点 平均风: 对结构的动力影响很小,可等效为静力作用。 脉动风:使结构产生动力响应。是引起结构顺风向振动 的主要原因。
地面粗糙度大的上空 平均风 风速小 地面粗糙度小的上空 风速大
脉动风
脉动风幅值大且频率高
脉动风幅值小且频率低
脉动风速一般处理为随机过程[vf(t),t∈T] 工程上常假定为零均值正态平稳随机工程。
-0.5
+0.8 -0.7 高度 10
30
50
70
90
μz
0.74
1.00
1.25
1.45
1.62

3、风振系数 (βz =1+ξυφz/μz ) 。 ξ ---- 脉动增大系数(表3-10)(C类w0 ×0.62) w0T12=0.44×0.62 ×2.52 =1.705 ξ =1.51 υ ---- 脉动影响系数 (表3-13) H=100m,B=33m H/B=3.03 C类 υ =0.49 φ z ---- 振型系数(规范表F1.2 ) φ z1~5 =0.02,0.17,0.38,0.67,0.86 βz1 =1+1.51 ×0.49 ×0.02/ 0.74=1.02 βz2 =1+1.51 ×0.49 ×0.17/ 1.00=1.126 βz3 = 1+1.51 ×0.49 ×0.38/ 1.25=1.225 βz4 = 1+1.51 ×0.49 ×0.67/ 1.45=1.342 βz5 = 1+1.51 ×0.49 ×0.86/ 1.62=1.393
脱体
压力可 按伯努 利方程 式确定
脱体点
p0+½ ρv02 = p +½ ρv 2 w=p-p0=(1-v2/v02)½ρv02 = μS w0 μS =1-v2/v02
• μS = w/ w0 = w实际/ w计算
μS查荷载规范表7.3.1
• 验算围护构件及其连接的强度时,采用局部风压体型
系数 • 一、外表面 • 正压区- 查表; • 负压区-对墙面,取-1.0; -对墙角边,取-1.8; -屋面局部,取-2.2; -对檐口、雨蓬、遮阳板等突出构件,取-2.0。 二、内表面 对封闭式建筑物,按外表面风压的正负情况取-0.2或0.2
相关文档
最新文档