非线性振动与混沌简介1讲解

合集下载

非线性电路振荡周期的分岔与混沌实验讲解

非线性电路振荡周期的分岔与混沌实验讲解
非线性电路振荡周期的分岔与混沌1963年美国气象学家Lorenz在分析天气预模型时,首先发现空气动力学中混沌现象,该现象只能用非线性动力学来解释。从此人们对事物运动认识不再只局限于线性范围。非线性动力学及分岔与混沌现象的研究已成为热门课题,人们对此领域进行了深入研究,发现混沌现象涉及的领域极广,如:物理学,电子学,经济学,生物学,计算机科学等。本实验通过对非线性电路混沌现象的观察,从而了解和理解非线性混沌现象的本质。
3.把实验仪右上角内的电源九芯插头插入实验仪面板上对应的九芯插座上,注意插头
插座的方向应一致。然后插上电源,按实验仪面板右边的钮子开关,对应的±15V
16mH L
指示灯点亮。
4.调节W1粗调电位器和W2细调电位器,改变(RV1+RV2 C移向器中电阻的阻值,观测相图周期的变化,观测倍周期分岔,阵发混沌,三倍周期,吸引子(混沌和双吸引子(混沌现象,及相应的扫描波形。
图2逻辑斯蒂映射的分岔图:k从2.8增大到4。
从图中可看出周期倍增导致混沌。混沌区突然又出现周期3, 5, 7„奇数及其倍周期6, 10, 14„的循环,混沌产生有序,或秩序从混沌中来。
其实以上的这些特性适用于任何一个只有单峰的单位区间上的迭代,不是个别例子特有的,具有一定的普适性。从而揭示了混沌现象涉及的领域比较广泛。混沌是非线性系统中存在的一种普遍现象它也是非线性系统中所特有的一种复杂状态。混沌是指确定论系统(给系统建立确定论的动力学方程组中的内在不确定行为。混沌现象对初值极为敏感使非线性系统的长期行为具有不可预测性。
混沌控制的目标有两种:一种是对混沌吸引子内存在的不稳定的周期轨道进行有效的稳定控制,根据人们的意愿逐一控制所需的周期轨道。这一类控制的特点是并不改变系统中原有的周期轨道。另一种控制目标则不要求必须稳定控制原系统中的周期轨道,而只要通过可能的策略,方法及途径,达到有效控制,得到我们所需的周期轨道即可,或抑制掉混沌行为,即通过对系统的控制获得人们所需的新的动力学行为,包括各种周期态及其它图样等。混沌的应用主要有以下两种:①研究确定论的非线性系统中的混沌现象,并应用混沌控制法消除或抑制这种混沌不稳定现象。②混沌现象的直接应用。

非线性振动与混沌简介.

非线性振动与混沌简介.

6
类似地,当令0=0, 2 4 g ,则解为 0
0 cos

2
l
最高点( = ),非稳平衡,运动非唯一性。 ★ 对于一般单摆的运动方程(受周期性驱动力作 用的阻尼单摆) :
d d ml 2 l mg sin F cos t dt dt
2
●一个复杂的非线性系统。其解更为复杂。 结论:对于一个非线性系统,在确定的初始条件 下,其解可能具有不可预测的随机性。
1
为省时间,洛仑兹将上次记录的中间数据作为初值输 入重新计算,指望重复出现上次计算的后半段结果, 然后再接下去往前算。然而经过一段重复后,计算机 却偏离了上次的结果。 他第二次输入时去掉了小数点后面三位:
0.506127 0.506
混沌的初值敏感性
2
●蝴蝶效应
洛仑兹吸引子(奇怪吸引子)
3
非线性振动系统及混沌的基本概念 一、任意摆角情况下单摆的运动


相轨线






相轨线
12
2n
2
三维相空间
2(n 1)
2n
环形相空间
●相轨线在彭加勒截面上的交点的集合就称为 彭加勒截面图。 ★通过分析相轨线在彭加勒截面上的交点的分布 规律,就可了解到在长时间周期性的演变过程 中系统的运动规律。


相轨线



7
二、确定性系统中的内在随机性
●在一个确定性的系统中,由于其本身的非线性 性质所产生的运动随机性称为确定性系统的内在 随机性。 例如,上述非线性单摆的运动。 ★支配整个系统运动的因素是严格确定的(具有确 定的运动方程),系统完全不存在随机力的作用。 ★然而经过时间的演化,在这种确定性系统中出现 了随机行为,产生出完全不可预测的、极为复杂的 结果来,最后得到一条完全随机的运动轨道。

物理学中的非线性和混沌现象

物理学中的非线性和混沌现象

物理学中的非线性和混沌现象在自然界中,很多现象都具有非线性和难以预测的混沌特性。

而在物理学中,研究非线性和混沌现象也成为一门重要的学科。

本文将对非线性和混沌现象进行介绍和讨论。

一、什么是非线性?所谓非线性,就是指物理系统的变化不遵循线性关系。

简单来说,就是当输入变化时,输出不是简单地按比例变化。

举个例子,我们可以拿弹簧来说明。

在弹簧的弹性范围内,当我们给它施加一个力时,它的伸长量就是线性关系。

但是,当受力超过了弹性范围,弹簧就会变形。

这时,伸长量和受力之间的关系就不再是线性的了。

也就是说,非线性就是指当系统受到的输入越来越大时,输出会出现不同的反应,而且这种反应不是线性的。

二、什么是混沌?所谓混沌,就是指物理系统表现出的不规则、难以预测的运动。

混沌系统的特征是微小输入的差异可能导致系统演化发生巨大的变化,不同初始条件下的演化轨迹可能发生分叉,最终导致输出完全不同。

混沌系统看似无序,但实际上却有一定的规律性可循。

三、非线性和混沌的联系非线性和混沌之间有着紧密的联系。

在物理学中,混沌现象往往与非线性密切相关。

当系统呈现出非线性的特征时,它很容易出现混沌现象。

在一些物理系统中,只要其非线性程度足够高,就会出现混沌现象。

三个著名的混沌系统被称为洛伦兹吸引子、哈特曼-赫劳-曼吸引子和拉蒙诺夫吸引子。

这些吸引子的形状都很奇特,非常像一些有趣的图形。

四、物理系统中的非线性和混沌现象现在我们将介绍一些常见的物理系统中存在的非线性和混沌现象。

1.非线性振动非线性振动是指振动系统中存在的非线性项所导致的现象。

在简单振动中,振动的周期只依赖于振动系统的特性,而与振幅无关。

但是,当振幅超过一定范围时,振动系统就会呈现出非线性特性,出现倍周期振动、基频振幅受限振动、合频振动等现象。

2.混沌系统混沌系统是指那些表现出混沌特性的物理系统,比如双摆、电路、混沌发生器等。

混沌系统中往往会存在大量的非线性和未知因素,使得它们产生不可复制的运动轨迹。

理论力学中的非线性振动与混沌理论研究

理论力学中的非线性振动与混沌理论研究

理论力学中的非线性振动与混沌理论研究在理论力学中,振动和混沌是两个重要的研究领域。

非线性振动和混沌理论的研究对于理解自然界的复杂现象以及应用于工程实践具有重要的意义。

本文将探讨理论力学中的非线性振动和混沌理论的研究进展及其应用。

一、非线性振动的基本概念与理论非线性振动是相对于线性振动而言的,而线性振动是振动系统中的基本概念。

在线性振动中,振动系统的响应与外部激励之间存在线性关系,振动的特征可以由线性微分方程描述。

然而,在实际的振动系统中,往往存在着非线性因素的影响,例如摩擦、弹性的非线性等。

非线性振动的研究旨在揭示非线性振动系统的特点与行为规律。

在非线性振动的研究中,常常使用多尺度分析方法。

多尺度分析的基本思想是根据振动系统的性质和具体问题的需求,选择合适的变量和时间尺度,并将振动系统的行为分解为各个尺度下的变化。

常用的多尺度分析方法包括平均法、正则变换法等。

非线性振动的研究不仅限于理论分析,还包括实验研究和数值模拟。

实验可以通过测量振动系统的响应来验证理论预测,并获得系统的动力学行为;数值模拟可以通过模拟振动系统的微分方程,得到系统的时间演化过程。

实验和数值模拟的结果可以相互印证,从而更加全面地理解非线性振动系统。

二、混沌理论的发展与应用混沌理论是上世纪70年代发展起来的,并在之后的几十年中得到了广泛的应用。

混沌现象是指一个动力系统的演化在初态非常微小的扰动下会发生显著的变化,导致系统行为无法准确预测。

混沌理论的研究对于理解非线性系统的复杂性、探索系统演化规律以及开展实际应用具有重要的意义。

混沌理论的研究方法一般包括分岔图、Lyapunov指数、Poincaré截面等。

分岔图是通过调整系统参数并观察系统响应的变化来研究系统周期解和混沌解之间的转变。

Lyapunov指数是用来刻画系统演化的敏感程度,通过计算系统的特征指数来衡量系统的混沌程度。

Poincaré截面则是通过选择适当的截面来研究振动系统的相轨迹和相空间的结构。

非线性振动系统的分岔与混沌现象研究

非线性振动系统的分岔与混沌现象研究

非线性振动系统的分岔与混沌现象研究引言非线性系统是物理领域中一个重要而复杂的研究领域,其具有许多特殊的现象和行为。

其中分岔与混沌现象是非线性系统研究中非常引人注目的方面。

本文将从物理定律到实验准备、过程以及对实验的应用和其他专业性角度进行详细解读。

1. 物理定律的基础非线性振动系统的分岔与混沌现象研究的基础是几个重要的物理定律,包括但不限于以下几点:1.1 非线性定理非线性定理表明了在存在非线性项的情况下,振动系统的演化方程不再是线性的。

这导致了系统的行为变得更加复杂,可能会出现分岔和混沌现象。

1.2 余弦定律余弦定律描述了振动系统中的力和位移之间的关系。

对于非线性振动系统,该定律可以通过泰勒级数展开来表示非线性项。

1.3 哈密顿定律哈密顿定律是描述系统演化的基本定律,在非线性振动系统中也起到了重要作用。

它基于能量守恒和哈密顿函数,描述了系统的演化方程。

2. 实验准备为了研究非线性振动系统的分岔与混沌现象,我们需要准备一系列的实验设备和工具。

以下是主要的实验准备工作:2.1 实验装置搭建一个具有非线性特性的振动系统,如双摆、自激振荡器或混沌电路。

确保实验装置具备调节参数和监测系统状态的能力。

2.2 测量设备使用合适的测量设备来精确测量实验过程中的振动幅度、频率和相位等关键参数。

常用的测量设备包括振动传感器、频谱分析仪和示波器等。

2.3 数据采集与记录选择适当的数据采集与记录系统,以记录实验过程中得到的数据。

使用计算机或数据采集卡等设备,能够高频率、高精度地采集数据并存储。

3. 实验过程在实验过程中,我们将通过对振动系统的参数进行调节和测量,观察和分析系统的行为以及分岔与混沌现象。

以下是实验过程的主要步骤:3.1 参数调节与测量首先,通过调节振动系统的参数(如频率、振幅、阻尼等),使得系统处于不同的运动状态。

通过测量系统的参数,如振幅和频率,可以获取实验数据。

3.2 观察分岔现象通过在一定范围内改变系统的某一参数(如驱动频率或振幅),观察并记录系统的运动状态。

非线性振动系统及混沌的基本概念概述:混沌的发现.pdf

非线性振动系统及混沌的基本概念概述:混沌的发现.pdf

θ
=
ω
ω
=

γ
m
ω

g l
sinθ
+
F ml
cos
Ωt
显含t ,在二维相空间中为非自治系统。
10
引入新变量φ = Ω t ,可将方程化为 ω
ω
=

γ
m
ω

g l
sinθ
+
F ml
cosφ
φ = Ω
θ
θ
O
自治系统的相空间与相轨线
●一个自治系统在其相空间上的相轨线不会相交, 即通过每一相点的轨线是唯一的。
令β =0,退化为线性方程
d2x dt 2

dx dt
+αx
=
f
cos Ωt
三种情况: a. f=δ = β = 0;b. f = β =0;c. β =0,相
应得出简谐振动、阻尼和受迫振动方程。
★简谐振动的相轨线:闭合圈---周期环---。
★阻尼振动的相轨线:从外向内收缩的螺旋线,最终停 止于中点---不动点吸引子--- 。
从周期运动到倍周期分岔
◎当 f = 0.8,系统的运动仍是 一个简单的周期运动。
17
◎当 f =0.89,其结果为一个二倍周期的运动,即出 现了倍周期分岔。
说明:图中看上去的每一条曲 线实际上是完全重合的两条曲 线,它们的初始值略有差异:
a. x0=1,υ0=0; b. x0=1.001,υ0=0.001.
1
为省时间,洛仑兹将上次记录的中间数据作为初值输 入重新计算,指望重复出现上次计算的后半段结果, 再接下去往前算。然而经过一段重复后,计算机却偏 离了上次的结果。

04非线性振动与混沌简介

04非线性振动与混沌简介

非线性系统(描述系统运动状态 的方程为非线性方程),当其非线 性程度足够高时,系统将出现混沌 状态。
14
二、确定性系统中的内在随机性
●在一个确定性的系统中,由于其本身的非线性 性质所产生的运动随机性称为确定性系统的内在 随机性。 例如,上述非线性单摆的运动。 ★支配整个系统运动的因素是严格确定的(具有确 定的运动方程),系统完全不存在随机力的作用。 ★然而经过时间的演化,在这种确定性系统中出现 了随机行为,产生出完全不可预测的、极为复杂的 结果来,最后得到一条完全随机的运动轨道。

d g sin 2 dt l
2
A
故自由单摆为非线性振动系统:
O

l
m
N

d 0 , , , ,以及 t 0 0 dt

则上式变为
2 g 2 2 2 c o s 1 c o s 0 0 l 2
2
11

O

自治系统的相空间与相轨线 ●一个自治系统在其相空间上的相轨线不会相交, 即通过每一相点的轨线是唯一的。 而非自治系统中相轨线则会相交。如上述系统在二 维 ( ) 相平面上相轨线有相交情况。
18
4. 彭加勒截面图
若沿方向截取一系列截面,则根据该自治系统的 性质,每个截面上只有一个交点,即相轨线一次 性的穿过每一个截面。 因 ,若以2 为周长,将相空间弯成 t 2 n 一圆环,则在该环形相空间上所取的任一固定截面 称为彭加勒截面。


相轨线






相轨线
19
2 n
2
三 维 相 空 间
2 ( n 1 )

物理学中的非线性动力学和混沌理论

物理学中的非线性动力学和混沌理论

物理学中的非线性动力学和混沌理论物理学中的非线性动力学和混沌理论是近年来备受关注的研究领域,其中包括了混沌现象、复杂性和非线性动力学的研究,以及分形和复杂网络的研究等方向。

这些研究领域为我们认识自然界中的各种现象提供了新的视角和思路。

一、非线性动力学传统的物理学研究的是线性系统,即系统在受到外界作用时只会产生与外力大小成比例的反应,这种响应也被称为线性响应。

然而,在实际的自然界中,很多系统的响应并不是线性的,而是出现了非线性现象。

非线性动力学就是研究非线性系统行为的一门科学。

与线性系统不同,非线性系统的行为往往会因为多种因素的复杂作用而产生不稳定、不规律、激烈或混乱的现象。

非线性动力学的研究内容包括了相变现象、自激振荡、混沌现象等。

以相变现象为例:当一个系统受到一个连续性的变化时,它可能发生相变,出现新的状态。

而这个过程不是线性的,相反,它往往是突变的,不能用连续函数来描述。

非线性动力学提供了研究这些相变现象的工具和方法。

二、混沌理论混沌理论是研究非线性系统行为的一个分支,主要研究的是混沌现象。

混沌现象的最重要特征是灵敏依赖初值,也就是说,初始条件的微小变化可能会导致系统最终出现完全不同的行为状态。

这一性质被称为“蝴蝶效应”。

在混沌理论中,研究的核心是混沌现象的产生机制和控制方法。

混沌现象的产生通常是由于非线性系统中的复杂相互作用导致系统行为出现无序、不可预测的特点,而混沌控制则是通过外部控制手段,通过稳定系统的特定状态来达到对混沌现象的控制。

混沌控制的研究对于现代工程、物理和生物学方面的技术应用都非常重要,例如,通过对人工心脏的非线性动力学行为的深入认识和控制,可以有效提高人工心脏的工作效率和稳定性。

三、非线性动力学在物理学中的应用非线性动力学的研究成果在物理学中的应用非常广泛,例如,在统计物理学中,非线性动力学的方法被成功地应用于研究非平衡态的物理行为。

在材料科学中,非线性动力学的研究可以帮助我们更好地理解材料的形变和变形行为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性振动系统及混沌的基本概念
概述:混沌的发现 ●非线性系统的运动现象 ●蝴蝶效应 1961年冬的一天,美国麻省理工学院的气象学家爱德 华·洛仑兹在计算机上模拟天气情况,他的真空管计 算机速度约每秒做6次乘法。 经简化后的洛仑兹气象模型为
( y x) x (r z ) x y y z xy bz
1
为省时间,洛仑兹将上次记录的中间数据作为初值输 入重新计算,指望重复出现上次计算的后半段结果, 然后再接下去往前算。然而经过一段重复后,计算机 却偏离了上次的结果。 他第二次输入时去掉了小数点后面三位:
0.506127 0.506
混沌的初值敏感性
2
●蝴蝶效应
洛仑兹吸引子(奇怪吸引子)
3
非线性振动系统及混沌的基本概念 一、任意摆角情况下单摆的运动
x
(a)
t
v v
x
(c)
(d)
v
x
(b)
x
●混沌吸引子体现出混沌运动的内存规律性。
20
初值悬殊的 三个吸引子
x
t
v v v
结论 ◐混沌行为具有 极为敏感的初值 依赖性;
x
x
x
◐然而混沌的全局特征——混沌吸引子却具有不依 赖于初值的、确定的规则。 ●貌似随机的混沌运动,其长期的演化行为遵从确 定的规律---混沌运动的内在规律性。 ◐这是混沌运动区别于真实随机运动的重要标志。
2

O

◐简谐振动是周期运动,每隔一定的时间运动又复原, ) 所以相轨线 ( 为一闭合曲线。
9
3. 自治系统与非自治系统
●不显含时间 t 的动力学方程称为自治系统,而显含 时间 t 的动力学方程称为非自治系统。
◐由线性单摆 方程可得
(角谐振动)
不显含 t ,在二维相 2 空间中为自治系统。
讨论 运动的演变 1. 线性近似下的单摆运动
15
2
令 =0,退化为线性方程
三种情况: a. f= = = 0;b. f = =0;c. =0,相 应得出简谐振动、阻尼和受迫振动方程。 ◐简谐振动的相轨线:闭合圈---周期环---。
◐阻尼振动的相轨线:从外向内收缩的螺旋线,最 终停止于中点---不动点吸引子--- 。 ◐受迫振动:经过暂 态之后趋于一稳定的 闭合圈---周期吸引子 或极限环。
(a)
v
v
v
x x
(d)
19
x
(b) (c)
混沌的内在规律性----混沌吸引子 图(a)中两条曲线的运动完全各异,但它们的彭加勒 截面图 [(c) 和 (d)] 却又是完全相同的。把混沌的相轨 线在彭加勒截面上的这种点集称为混沌吸引子。
◎混沌吸引子是非 线性耗散系统混沌 的特征,表明耗散 系统演化的归宿。 ◐代表混沌行为的 全局特征。
周期三窗口
24

1
框内部分放大得下页图
25
2
框内再放大得下页图
26
3
27
2
1 3 混沌内部的自相似结构
28
b. 自相似结构
看似混乱的混沌体系中,包含着丰富有序的内部结 构。 ◐任何局部的小区域都包含着整体的信息,具有与 整体完全相似的规律。 ●在混沌内部所包含的这种在不同尺度上的相似结 构称为自相似性。 ◎从拓扑空间上来讲,自相似结构的维数往往不是 整数维,而是分数维的,也就是具有分形的性质。
从周期运动到倍周期分岔 ◎当 f = 0.8,系统的运动仍是 一个简单的周期运动。
17
◎当 f =0.89,其结果为一个二倍周期的运动,即出 现了倍周期分岔。
说明:图中看上去的每一条曲 线实际上是完全重合的两条曲 线,它们的初始值略有差异: a. x0=1,0=0; b. x0=1.001,0=0.001. 结论: ●初始条件的微小差别对周期性运动不产生影响, 或者说周期运动对初值不敏感。 混沌运动 继续增大 f,当 =1.3,随机性运动取代了周期性运动, 表明系统已进入混沌状态。 18
g F sin cos t m l ml
10
◐由受阻力 和周期策动 力作用的非 线性单摆方 程可得
显含 t ,在二维相空间中为非自治系统。
引入新变量 = t ,可将方程化为三维相空间中的 自治系统:
g F sin cos m l ml


相轨线






相轨线
12
2n
2
三维相空间
2(n 1)
2n
环形相空间
●相轨线在彭加勒截面上的交点的集合就称为 彭加勒截面图。 ◐通过分析相轨线在彭加勒截面上的交点的分布 规律,就可了解到在长时间周期性的演变过程 中系统的运动规律。


相轨线
= 2.5029078750958928
例如,图中
an lim = n a n 1
注意:当不满足 n ,则比值只是近似的。
注意:常数 并不只限于单摆公式,而是对所有同 一类的变换,所得的 值都精确地相同。 ● 的数值只与系统的某种非线性性质有关,而与 各个系统的其他具体细节无关。 ●反映出混沌演化过程中所存在的一种普适性. ●是混沌内在规律性的另一个侧面反映。
30
费根鲍姆常数
标度因子 在倍周期分岔序列图中,同次周期分岔中上下的各 对周期点之间的距离之比,以及第相邻两次周期分 岔中的各对周期点之间的距离之比又趋于另一个常 数 ,称为标度因子或普适常数:
混沌带的合并 --从逆着混沌演化的方向,可找到混沌 带合并的规律:
2n 16 8 4 2 1 0
29
c. 普适性 若将第n倍周期分岔(或混沌带合并)时对应的参 数记为n,则相继两次分岔(或合并)的间隔之 比趋于同一个常数:
n n1 lim 4.66920160910299067 n n 1 n
6
类似地,当令0=0, 2 4 g ,则解为 0
0 cos

2
l
最高点( = ),非稳平衡,运动非唯一性。 ◐ 对于一般单摆的运动方程(受周期性驱动力作 用的阻尼单摆) :
d d ml 2 l mg sin F cos t dt dt
2
●一个复杂的非线性系统。其解更为复杂。 结论:对于一个非线性系统,在确定的初始条件 下,其解可能具有不可预测的随机性。
m
4
若 为任意值, (sin ) 而 sin(1 2 ) sin 1 sin 2
A
故自由单摆为非线性振动系统:
O

d ,以及 t 0, 0 , 0 , dt
d g sin 2 dt l
2

N
l
m
则上式变为
2g 2 2 2cos 1 cos 0 0 l 2
注意:图 (a) 中的两条运动曲线的初值分别为 x0=1 , 0= 0和 x0=1.00001,0=0.00001。误差仅在小数点 后面第五位上,而给运动带来的差别正可谓“差之 毫厘,失之千里”。
●处于混沌状态时,系统的行为对于初值十分敏感, 称这一特性为混沌的初值敏感性。 x ---蝴蝶效应--运动的随机性 t ●相图(b)反映出混 沌运动的随机性。 即相轨道(运动状态) 完全不可预测。






相轨线
2n
2
三维相空间
2(n 1)
2n
环形相空间
13
讨论:
●单周期振动,每隔2运动状态复原, 即相轨线每次都从同一点穿过彭加勒截 面,◐在彭加勒截面图上只有一个不动 点; ●倍周期的运动,彭加勒截面图上有 两个不动点; …。 ●运动无周期性,则彭加勒截面图上有无穷多个点。
8
三、混沌的基本概念
1. 混沌定义(物理学上):在确定性系统中所表现出 来的内在随机行为。是一个决定论的系统中所存在的 运动的不可预测性。 2. 相图 ●描述系统运动的各状态参量之间的关系图。 例:自由单摆(简谐振动)
d 2 0 2 dt Asin t A cos t ,
7
二、确定性系统中的内在随机性
●在一个确定性的系统中,由于其本身的非线性 性质所产生的运动随机性称为确定性系统的内在 随机性。 例如,上述非线性单摆的运动。 ◐支配整个系统运动的因素是严格确定的(具有确 定的运动方程),系统完全不存在随机力的作用。 ◐然而经过时间的演化,在这种确定性系统中出现 了随机行为,产生出完全不可预测的、极为复杂的 结果来,最后得到一条完全随机的运动轨道。
线性系统(数学定义): 若 f ( x ) 满足 f ( x1 x2 )
f ( x1 ) f ( x2 ) 则 f ( x) 是线性的; 若 g ( x) 为非线性,则 A g ( x1 x2 ) g ( x1 ) g ( x2 )
◐自由单摆的运动方程:
O d 2 g 当 很小, sin l 2 dt l 2 N d g 线性近似: (sin ) 2 dt l 按级数展开,取第一项而得.
16
d 2x dx x f cos t 2 dt dt
2. 非线性近似下的单摆运动 混沌
d 2x dx 3 x x f cos t 2 dt dt
◐方程代表复杂的非线性振动系统。 为简化问题,在四个参数中只改变 f 的值。
数值模拟发现,随着 f 的逐渐增大,该振动系统产 生了由简单的周期运动到出现倍周期分岔,再进 入混沌的演化过程。
14
四、单摆与混沌
d 2x dx 单摆方程 ml l mg sin x F cos t 2 dt dt 1 按泰勒级数 sin x x x 3 取前两项近似, 6
相关文档
最新文档