等效剪切波速计算
习题解答20101101

解: (1)初判 : 工程地质年代属Q4:考虑液化影响; 查液化土特征深度表:
do 8
饱和土 类别
烈度
do db 3 8 2 3 7 1.0 dw do db 2 8 2 2 8 0 du
7 6m
8 7m
9 8m
粉土
砂土
7m
8m
9m
确定di、dsi和 Wi的示意图
标贯所代表的土层厚度di 的计取方法: 1、一般情况取相邻上、下两标贯深度差的一半。 2、有非液化土夹层时,邻近夹层的标贯计算到非 液化土上、下界线。 3、不同的砂层,相邻标贯各自计算到分层界线, 层内含有不同状态的夹层时,按相邻上、下两 标贯深度差的一半计取。 4、液化等级判别按总趋势评判,不强求平均,只能 判为某一等级,不能给范围。可以分区的要分 区判别。
(2)确定覆盖层厚度
(3)确定建筑场地类别 属于Ⅲ类场地
等效剪切波速 (m/s)
vse 500
500 vse 250
d0 20.7m
场 Ⅰ 0 Ⅱ
地
类
型 Ⅲ Ⅳ
250 vse 140
140 vse
5m 3m 3m
5m
3~50 3~15
50
15 ~80
(2)标准贯入试验判别:
1) 按式 N cr N o [0.9 0.1(d d )] 3
地下水位为1.5m,故上界为1.5m,下 界为(2.0+3.0)/2=2.5m,从而土层厚为: 计算 2.5-1.5=1.0(m) s w c
=8*(0.9+0.1*(2-1.5))*SQRT(3/4) IlE=(1-Ni/Ncri)diWi 该层中点深度不大于 N0=8(7度、第二组), dw =1.5m。 5m,采用10 。 =(1-5/6.6)*1*10 =1.5+1.0/2=2.0
剪切波速在各类工程项目场地类别划分中的应用

剪切波速在各类工程项目场地类别划分中的应用摘要:本文简要介绍了XG-I型悬挂式波速测井仪的测试原理及方法,以及通过对比剪切波速成果在建筑、公路及铁路工程项目场地类别划分中的应用实例,分析剪切波速在不同的工程项目场地类别划分上的异同。
关键词:剪切波速场地类别应用异同0引言根据《浙江省防震减灾条例》(2021年3月26日修正)的有关规定,重大建设工程和可能发生严重次生灾害的建设工程应当进行地震安全性评价,其中包括高度超过一百米的建筑工程,特大桥梁,长度大于一千米的隧道,城市轨道交通工程,三级以上医院的门诊楼、病房楼等等。
依据国家标准《工程场地地震安全性评价》(GB 17741—2005)技术规范要求,需要开展工程场地地震工程地质条件勘测工作,包括进行钻孔分层岩土剪切波速的原位测试,并给出场地钻孔剖面岩土分层剪切波速随深度的变化情况和各钻探孔处的场地类别划分,以获取实际场地条件与环境下的土层剪切波速资料,确保场地地震反应计算中所建立的场地力学模型的合理性。
剪切波速测试,可以采用的方法有单孔法、跨孔法和面波法,而实际工程中最常用的方法是单孔检层法,比较常用的测试仪器为XG-I型悬挂式波速测井仪。
然而同样的剪切波速测试成果,对于在不同的工程项目中,所划分的场地类别也不一样,这时我们需要依据不同工程的抗震设计规范去进行场地类别划分。
本文简要介绍XG-I型悬挂式波速测井仪的测试原理及方法,剪切波速成果在不同工程项目场地类别划分中的应用实例,从而找出不同的工程项目在场地类别划分上的异同。
1XG-I型悬挂式波速测井仪的测试原理及方法1.1 仪器介绍XG-I悬挂式波速测井仪由廊坊开发区大地工程检测技术开发有限公司研发与生产。
该仪器是自动化程度较高的剪切波速测试设备,主要由主机、井中悬挂式探头及连接电缆等组成(见图1)。
井中悬挂式探头,主要由全密封(防水)电磁式激振源、两个独立的全密封检波器及高强度连接软管等组成。
图1 XG-Ⅰ型波速测井仪系统仪器主要技术指标如下:通道数:1至3道可选;采样间隔:0.02ms-4ms可选;采样点数:512-4096可选;各道时间一致性:≤0.1ms;各道振幅一致性:<3%;频率范围:5-1000Hz;前放增益:18-60dB可选;A/D转换精度:14位;输入阻抗:≤10kΩ;触发方式:脉冲、通断;延时:0-8000ms可选。
场地类型判断例题

例2.1 已知某建筑场地的钻孔地质资料如下表所示,试确定该场地的类别。
解:(1)确定场地覆盖层厚度d ov 和计算深度d 0因为地表9.5m 以下土层的剪切波速v s =540 m/s >500 m/s , 故场地覆盖层厚度d ov =9.5m 。
因场地覆盖层厚度d ov =9.5m<20m , 故场地计算深度d 0=9.5m 。
(2)计算等效剪切波速 s V d t ni si i 034.03604.42805.32100.21=++==∑=v se = d 0 /t =9.5/0.034=279.41 m/s (3)场地类别判定v se 位于250~500 m/s 之间,且d ov =9.5m >5m ,因此该场地的类别为Ⅱ类。
例2.2 下表为某场地钻孔地质资料,试确定该场地类别。
解:(1)确定场地覆盖层厚度d ov 和计算深度d 0因为地表26m 以下土层的剪切波速v s =560 m/s >500 m/s , 故场地覆盖层厚度d ov =26m 。
因场地覆盖层厚度d ov =26m >20m , 故场地计算深度d 0=20m 。
(2)计算等效剪切波速 s V d t ni sii 06.04204.83806.72000.41=++==∑=v se = d 0 /t =20/0.06=333.33 m/s (3)场地类别判定v se 位于250~500 m/s 之间,且d ov =26m >5m ,因此该场地的类别为Ⅱ类。
作业2.1 已知某建筑场地的钻孔地质资料如下表所示,试确定该场地的类别。
2.2 已知某建筑场地的钻孔地质资料如下表所示,试确定该场地的类别。
工程地质

等效剪切波速、覆盖层厚度、确定场地类别和特征周期。
计算场地等效剪切波速 式中:vse -土层等效剪切波速(m/s);
d0-计算深度(m),取覆盖层厚度和20m 二者的较小值;
t -剪切波在地面至计算深度之间的传播时间(s);
di -计算深度范围内第i 土层的厚度(m);
vsi -计算深度范围内第i 土层的剪切波速(m/s);
n -计算深度范围内土层的分层数。
特征周期是根据覆盖层厚度H 和土层剪切波速Vs 按公式T =4H/Vs 计算的周期
例:两个建筑场地在特征周期第2分区,土层波速测试成果如下表所示,试判定各土层的场地土类型、确定场地的覆盖层厚度、计算深度、等效剪切波速、场地类别、场地特征周期
影响砂土液化的因素主要有:土的类型和性质,包括:土颗粒粒径(以平均粒径d50表示)、密实度、土的成因和堆积年代;液化土体的埋藏条件,包括:上覆不透水土层厚度、地下水的埋藏深度;地震动的强度和历时。
崩塌和滑坡的区别: ①运动方式 ②破坏形式 ③地形条件 ④是否脱离母体,存在滑动面 ⑤规模、速度
泥石流的形成条件:地形(有陡峻便于集物、集水的适当地形)、地质(上游堆积有丰富的松散固体物质)和水文气象条件(短期内有突然性大量水的来源)
标贯与圆锥动力触探的区别主要是:(1)探头不同;可取扰动样;(2)标贯是连续贯入,分段计锤击数
岩石质量指标(RQD )分类:用直径为75mm 的金钢石钻头和双层岩芯管在岩石中钻进,连续取芯,回次钻进所取岩芯中,长度大于10cm 的岩芯段长度之和与该回次进尺的比值,以百分数表示。
目力鉴别方法对土的描述等级
t d v se /0=∑==n
i si i v d t 1)/(。
钻孔等效剪切波速计算表

中密 可塑 硬塑 可塑 硬塑 密实 密实 密实 密实 密实 密实 密实 密实 密实
松散 稍密 中密 密实 强风化
中硬土 中软土 中硬土 中软土 中硬土 岩石 岩石 岩石 岩石 岩石 岩石 岩石 岩石 岩石 软弱土 中软土 中硬土 中硬土 岩石
280 140 280 140 280 510 600 800 510
厚度和20m中的较小 值,一般取≤20m的钻 孔深度,且至波速大于 500m/s的地层顶面)
1 2 3 4 5 6 7 8 9 10
单孔等效剪 切波速Vse (m/s)
合计
280.00
计算结果
漂石 粉质粘土 粉质粘土 砂质粘性土 砂质粘性土 全风化花岗岩 强风化花岗岩 中等风化花岗岩 全风化砂岩 强风化砂岩
550
传播时间 (s)
0.0043
中等风化砂岩 全风化板岩 强风化板岩 中等风化板岩
细砂 中砂 中砂 中砂 砂质泥0 510
输入项
自动计算项
计算结果
序号
第i层土层的剪切 第i层土层的厚 波速(经验值或 各土层内传播 度(从孔口地面开 测得值) 时间(s) 始计)(m) υ s(m/s) 1.2 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 280 140 280.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.0043 0.0000 0 0 0 0 0 0 0 0 0.0043 1.2 输入计算深度d0 (m) (取覆盖层
剪切波速计算表

t s
d0 m
K2
3-1 3-2 3-3 1
200 140 110
250.0 190.0 160.0 100.0
0.1156
20.0
K5
3-1 3-2 3-3 1 2-1 2-2 2-3 2-4 2-5 2-6
200 140 110
250.0 190.0 160.0 135.0 230.0 180.0 230.0 450.0 500.0 1.0
0.1170
20.0
0.0708
15.5
1. 剪切波在各层的传播时间计算公式为ti=di/vsi; 注 2. 土层等效剪切波速计算公式为vse=d0/t ; 3. 计算深度d0取覆盖层厚度和20m二者的较小值。
览表
土层的 等效剪 切波速
vse m/s
173
171
218.84 土层的等效剪切波速按《建筑抗震设计规范》(GB50011-2010)第4.1.5条 式中Vae--土层等效剪切速度(m/s) d0--计算深度(m),取覆盖层厚度和20m二者的较小值 t--剪切波在地面至计算深度之间的传播时间 di--计算深度范围内第i层土层的厚度(m) vsi --计算深度范围内第i层土的剪切波速(m/s) n--计算深度范围内土层的分层数
fak kPa
vsi m/s 100.0 —— 软弱土 中软土 中软土 中软土 软弱土 中软土 中软土 中软土 软弱土 中软土 中软土 中软土 中硬土 中硬土 软弱土
ti s 0.0290 0.0288 0.0216 0.0363 0.0310 0.0256 0.0279 0.0325 0.0259 0.0157 0.0106 0.0087 0.0100 0.0000 0.0000
波速测试报告

A3-A11号楼按设计整平标高及环境标高整平后,场地内土层厚度一般2.5~19.2m,最厚处位于场地西侧,土层厚度19.2m,上部为人工填土,下部为碎石土。
根据地区经验值,土层剪切波速取值:人工填土Vs=110m/s、碎石土Vs=250 m/s。
根据《建筑抗震设计规范》(GB50011-2010)计算场地内土层等效剪切波速。
计算公式: V se=do/t t=∑(d i/V si)式中 V se——土层等效剪切波速(m/s)do ——计算深度(m), 取覆盖层厚度和20m二者的较小值;t ——剪切波在地面至计算深度之间的传播时间;d i——计算深度范围内第i土层的厚度(m)按整平后最大土层厚度计算得出各拟建安置房位置土层的等效剪切波速,据《建筑抗震设计规范》(GB50011-2001)2008年版表4.1.6划分场地类别、建筑抗震地段及设计特征周期。
(见下表4.1)表4.1 场地类别划分表A12-A16号楼按设计整平标高及环境标高整平后,场地内土层厚度一般6~13m,最厚处位于场地南侧,土层厚度15.8m,上部为人工填土,下部为碎石土。
根据地区经验值,土层剪切波速取值:人工填土Vs=110m/s、碎石土Vs=250 m/s。
根据《建筑抗震设计规范》(GB50011-2010)计算场地内土层等效剪切波速。
计算公式: V se=do/t t=∑(d i/V si)式中 V se——土层等效剪切波速(m/s)do ——计算深度(m), 取覆盖层厚度和20m二者的较小值;t ——剪切波在地面至计算深度之间的传播时间;d i——计算深度范围内第i土层的厚度(m)经计算,场地土层等效剪切波速为203m/s,为中软土,故场地类别为Ⅱ类。
本场地抗震设防烈度为7度,地震动峰值加速度值为0.10g,地震动反应谱特征周期为0.40s。
注:上面报告表4.1《场地类别划分表》中标红部分为需要对应补充编制波速测试报告的参考数据,其他资料参考图件及报告。
剪切波速计算

剪切波速计算剪切波速是地震学中的一个重要概念,用于描述地震波在岩石中传播的速度。
它对地球内部结构的研究具有重要意义,可以帮助科学家们了解地球的内部构造和地震活动的特征。
剪切波速是指沿着岩石中的切向传播的地震波的速度。
它是地震波中的一种类型,也被称为S波。
与剪切波相对的是纵波,也称为P 波,它是沿着岩石中的纵向传播的地震波。
剪切波和纵波是地震波中最常见的两种类型,它们的传播速度和传播方向有着明显的区别。
剪切波的传播速度取决于岩石的物理性质,主要包括岩石的密度和弹性模量。
弹性模量是描述岩石弹性性质的一个重要参数,它反映了岩石对外部力的响应能力。
密度则是岩石内部物质分布的一个重要指标。
这两个参数的数值将直接影响剪切波在岩石中的传播速度。
剪切波速度的计算可以基于弹性波理论和岩石物理学的原理。
根据弹性波理论,剪切波的传播速度与岩石的密度和剪切模量有关。
剪切模量是描述岩石抵抗切变力的能力的一个重要参数,它是岩石的刚度指标。
通过测量剪切波的传播速度和密度,可以间接计算出岩石的剪切模量。
剪切波速度的计算通常采用地震勘探方法。
地震勘探是一种利用地震波在地下传播的特性来获取地下信息的技术。
在地震勘探中,震源会向地下发送一系列地震波,然后通过地震仪器记录地震波在地下传播的过程。
通过分析地震波在岩石中传播的速度和路径,可以推断出地下岩石的性质和结构。
剪切波速度的计算还可以基于实验室测试。
实验室测试通常使用剪切波速度仪器来测量岩石样本中剪切波的传播速度。
通过在不同条件下进行实验,可以获得不同岩石类型和岩石结构中剪切波速度的数据。
这些数据可以用于建立剪切波速度与岩石性质之间的关系模型,从而进行剪切波速度的计算。
剪切波速度的计算在地震学和地球物理学研究中具有重要的应用价值。
它可以用于确定地下岩石的性质和结构,帮助科学家们了解地球内部的构造和岩石变形的特征。
此外,剪切波速度还可以用于地震勘探和地震监测,帮助人们预测地震活动和评估地震灾害的风险。