深圳市中考数学试题及答案
2020年深圳市中考数学试卷(含答案)

2020年深圳市中考数学试卷->选择题(毎小题3分。
共12小题■満分36分)L 2020的相反数足()3. 2020年6月30H∙深圳市总工会启动“订万职工消费扶贫采购节••活动.预计撬动扶贫泊费额约150OOoOOO元•将150000000用科学记数法表示为()A. 0∙15χl(ΓB・ L5 X IO7C∙ 15 X IO7D∙ L5 × IO R4.分别观蔡卜处丿L何体,其屮主视图.左视图和俯视图完全和直的是(5・某同学在今年的中考体冇测试中选考跳绳・考IW—周.他记录了白己五次跳绳的成线(次数/分钟),247, 253, 247, 255, 263∙这五次成绩的平均数和中位数分别足()・• • • • ♦A. 253. 253B. 255. 253C. 253. 247D. 255. 247A. 2020B.120202.下列图形既是轴对称图形又是中心刘称图形的是(6・下列运算正碗的是()A. Λ +2Λ =3Λ2B. a2∙ a3 = a5C.(砧)'=ab;C. -20202020圆性D三梭柱DA 200tan70°米 B米 C -200sin70°米D需米7.如图,将直尺与30。
角的三角尺叠放在一起,若Zl = 40\川Z2的大小是()&如图,在A45C 中,ΛB AC.在,4B ∖∕4C 上分別截取AP. AQ .使WP"Q∙再分别以点F 、Q 为圆心,以大于£尸0的长为半径作弧,两弧在ZBAC 内交丁-点&作射^AR ,交BC T 点Q .若Be=6,10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的Q 两点分別测定对岸一棵树厂的位置• 7•在P 的正北方向.Ry 在O 的北偏弭70。
方r⅛∙则河宽(P 厂的长)可以表示为()A. 40。
A. 2B. 3 D- 59.以下说法正确的是()A.平行四边形的对边和等C.分式方程一L==王二-2的解为T = 2X — 2 X - 2B.圆周仙等于圆心佯的一半D •三角形的一个外角等于两个内角的和D. 80。
2021年广东省深圳市数学中考真题含答案解析(含答案)

2021年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2021年广东深圳)9的相反数是( )A.﹣9B.9C.±9D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2021年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是( ) A.B.C.D.考点:中心对称图形。
轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误。
B、此图形不是中心对称图形,是轴对称图形,故此选项正确。
C、此图形是中心对称图形,也是轴对称图形,故此选项错误。
D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2021年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2021年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为( )A.4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数。
当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2021年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是( )A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2021年广东深圳)在﹣2,1,2,1,4,6中正确的是( )A.平均数3B.众数是﹣2C.中位数是1D.极差为8考点:极差。
2020年广东省深圳市中考数学试题及参考答案(word解析版)

深圳市2020年初中毕业生学业考试数学试卷(满分100分,考试时间90分钟)一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,2476.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a67.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.59.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.18.(6分)先化简,再求值:÷(2+),其中a=2.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣【知识考点】相反数.【思路分析】直接利用相反数的定义得出答案.【解答过程】解:2020的相反数是:﹣2020.故选:C.【总结归纳】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答过程】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.【总结归纳】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答过程】解:将150000000用科学记数法表示为1.5×108.故选:D.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【知识考点】简单几何体的三视图.【思路分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【解答过程】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【总结归纳】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,247【知识考点】算术平均数;中位数.【思路分析】根据中位数、众数的计算方法,分别求出结果即可.【解答过程】解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.【总结归纳】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【解答过程】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.【总结归纳】本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【知识考点】平行线的性质.【思路分析】根据平角的定义和平行线的性质即可得到结论.【解答过程】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.【总结归纳】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.5【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】依据等腰三角形的性质,即可得到BD=BC,进而得出结论.【解答过程】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.【总结归纳】本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和【知识考点】分式方程的解;平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【思路分析】根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.【解答过程】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【解答过程】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.【总结归纳】此题考查了解直角三角形的应用﹣方向角问题,掌握方向角与正切函数的定义是解题的关键.11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根【知识考点】根的判别式;二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c 与直线y=n+1无交点,可对D进行判断.【解答过程】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.【总结归纳】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【知识考点】三角形的面积;矩形的性质;翻折变换(折叠问题).【思路分析】连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.【解答过程】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.【总结归纳】本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.【解答过程】解:m3﹣m=m(m2﹣1),=m(m+1)(m﹣1).【总结归纳】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.【知识考点】概率公式.【思路分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.【解答过程】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.【知识考点】反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【解答过程】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.【总结归纳】本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.【知识考点】角平分线的性质;解直角三角形.【思路分析】通过作辅助线,得到△ABC∽△ANM,△OBC∽△ODM,△ABC∽△DAN,进而得出对应边成比例,再根据tan∠ACB=,=,得出对应边之间关系,设AB=a,DN=b,表示BC,NA,MN,进而表示三角形的面积,求出三角形的面积比即可.【解答过程】解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.【总结归纳】本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.【解答过程】解:原式=3﹣2×+3﹣13﹣+﹣1=2.【总结归纳】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.(6分)先化简,再求值:÷(2+),其中a=2.【知识考点】分式的化简求值.【思路分析】先将分式进行化简,然后代入值即可求解.【解答过程】解:原式=÷=÷=×=当a=2时,原式==1.【总结归纳】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.【解答过程】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【知识考点】三角形中位线定理;切线的性质.【思路分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解答过程】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【知识考点】一元一次方程的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.【解答过程】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【总结归纳】本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.【知识考点】相似形综合题.【思路分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD=90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,求出AG=6,AD=12,证明△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP =∠PAE=90°,连接EG,BD,由勾股定理可求出答案.【解答过程】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【总结归纳】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)将点A(﹣3,0)、B(1,0)代入抛物线的解析式得到关于a、b的方程组即可;(2)分三种情况:①0<t<1时,②1≤t<时,③≤t≤3时,可由面积公式得出答案;(3)令F(﹣1,t),则MF=,ME=﹣n,得出,可求出n=.则得出答案.【解答过程】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,若B'C'与y轴交于点F,∵OO'=t,OB'=1﹣t,∴OF=3OB'=3﹣3t,∴S=×(C'O'+OF)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).【总结归纳】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。
2024年深圳市宝安第一外国语学校中考数学试卷试题(含答案详解)

初三年级5月数学学科学情反馈一、选择题(共10小题,每小题3分,共30分)1.有理数这个概念最早源自《几何原本》,以下各数中,有理数为()A .19B .C .πD .2.024*********…2.下列英文字母中,为中心对称图形的是()A .B .C .D .3.2024年春节前夕,全国多地、多趟列车受冰雪天气影响,“春运”第70年见证了“高铁速度,绿皮温度”,据统计,全国铁路春运期间发送旅客4.8亿人次,数据4.8亿用科学记数法表示正确的是()A .104.810⨯B .94.810⨯C .84810⨯D .84.810´4.下列运算正确的是()A .224a a a +=B a=C .224a a a ⋅=D .842a a a ÷=5.如图是某家具店出售的黄色木椅的侧面图,其中130,,60ABD CD EF E ∠=︒∠=︒∥,则BDC ∠=()A .70︒B .60︒C .50︒D .40︒6.数学的应用无处不在,如图,某机场的告示牌中,提示随身携带行李的规则,其中提到每件行李重量限制“8≤千克”,则将表示行李限额的不等式表示在数轴上为()A .B .C .D .7.为纪念北京奥运会成功举办,国务院批准从2009年起,将每年8月8日设置为“全民健身日”.因为为了认真发展体育运动,增强人民体质,贯彻执行《中华人民共和国体育法》,网上各种健身项目层出不穷.如图是侧抬腿运动,可以保证全身得到锻炼!已知小敏大腿根部距脚尖90cm ,即90cm OA =,当其完成图中一次动作时,脚尖划过的轨迹长度为()cm .A .45π2B .45π4C .45πD .4528.以下说法正确的是()A有意义,则3x ≠B .将抛物线23y x =-向左平移1个单位,得到抛物线()231y x =--的图象C .对于反比例函数2y x=,y 随x 的增大而减小D .到三角形三边距离相等的点是三边角平分线的交点9.山西刀削面作为国家级非遗美食,吸引了大批游客品尝!为了更好地传承这种非遗美食,同时解放人的双手,某公司推出了一款刀削面机器人,宣传标语如下:机器化时代,帮您解决一切人工问题!速度更快:每台削面机器人比一个削面师傅每分钟多削160刀!效率更高:每台削面机器人削660刀的时间和一个削面师傅削180刀的时间相同!机器铸造未来,让生活美美的偷个懒!根据该宣传,求每台削面机器人每分钟能削多少刀面.设每台削面机器人每分钟能削x 刀面,根据题意可列方程为()A .660180160x x =+B .660180160x x=+C .660180160x x=-D .660180160x x =-10.如图,动点P 、Q 在平行四边形ABCD 的边和对角线上运动,动点P 的运动轨迹为折线O A D O ---,动点Q 的运动轨迹为折线O C B O ---,两动点同时开始运动,且运动速度均为1cm/s .设动点运动时间为x 秒,两动点间距离为cm y ,x 与y 的函数关系式如图所示.当点P 在平行四边形ABCD 的边上运动时,两动点间的最短距离为m ,此时运动时间为32)秒,则m 的值为().AB C D .32二、填空题(共5小题,每小题3分,共15分)11.因式分解:34x x -=.12.若一元二次方程250x x m -+=有两个不相等的实数根,则满足条件的正整数m 的值为.(只需要填一个)13.化学课上,同学们将元素周期表中的前5位化学元素(氢氦锂铍硼)制成了一副互不重复的元素扑克牌(共5张,每张上记录一种化学元素).小明从中先任意抽取一张记录下来,不放回,然后再从中抽取一张记录,则小明两次抽到的元素中含稀有气体的概率为.14.一束光从空气中以不同的角度摄入水中,会发生反射和折射现象,如图①是光束在空水中的径迹.如图②,现将一束光以一定的入射角α(4tan 3α=)射入水面GK ,此时反射光线与折射光线夹角恰为90︒,直线l 为法线,若水深为3m ,则线段CD =m .15.在四边形ABCD 中,9045BAD BCD ABC ∠=∠=︒∠=︒,,点E 为对角线BD 的中点,连接AE 并延长交线段BC 于点F ,64CF BF ==,,则CD 的长为.三、解答题(共7小题,共55分)16.计算:()11π202422cos302-⎛⎫--+--︒⎪⎝⎭17.先化简,再求值:229816131x x x x x ⎛⎫--+-÷⎪+-⎝⎭,其中2x =.18.春节热映档电影《热辣滚烫》给我们每个人都上了一课:只要心中有梦想,只要自己不放弃不服输,一切都有可能!所以停止内耗,开始行动,愿我们每个人都能拥有热辣滚烫的人生!这部电影折射出的道理点醒了很多人,也唤醒了无数喜欢内耗拖延的人!因此,为了了解身边人对这部电影的评价,小尚在周边随机选取了20名亲朋好友进行调查,并按一定的分类标准将其平均分成甲乙两组,对该电影进行打分(百分制,分数为x ,x 为整数).通过对数据进行整理分析,描述如下:信息一:甲组成员的影评成绩如下表:分数8085A x ≤<:8590B x ≤<:9095C x ≤<:95100D x ≤≤:频数22其中9095C x ≤<:这组的成绩数据为:92,92,92,94.信息二:乙组成员的影评成绩分布见如下扇形统计图:其中在9095C x ≤<:这组的成绩数据为:93,93,93.信息三:组号平均数众数中位数甲90.6m n 乙92.310093根据以上提供的三个信息,回答下列问题:(1)m =________,n =________,=a ________;(2)影评分数在95100D x ≤≤:区间的视为“电影铁粉”,若乙组中共有200人参与此次影评活动,则乙组中有________人为“电影铁粉”.(3)由于甲组成员不掺杂粉丝膜拜心理,仅仅针对电影内容做出评价,故评价更为客观.现将甲乙两组平均数按7:3的比例进行加权,得到此次影评的最终成绩为________.19.投壶是中国古代的一种弓箭投掷游戏,弓箭投入壶内、壶耳会得到不同的分数,落在地上不得分.小龙与小华每人拿10支箭进行游戏,游戏结果如下:投入壶内投入壶耳落在地上总分小龙3支4支3支27分小华3支3支4支24分(1)求一支弓箭投入壶内、壶耳各得几分?(2)小丽也加入游戏,投完10支箭后,有2支弓箭落到了地上,若小丽赢得了比赛,则她至少投入壶内几支箭?20.如图,以平行四边形ABCD 的一边AB 为直径的圆交边BC 于点E ,交对角线AC 于点F ,G 是边CD 上的一点,连接AG ,且BE DG =.(1)请在以下三个条件中任选一个:________,证明:直线AG 是圆M 的切线.①AGD ACB ∠=∠:②F 是弧AE 的中点:③E 是BC 的中点.(2)在第(1)问的条件下,若直径为4,连接BF 并延长交AG 于点N , 3AN =,求四边形ABCD 的面积.21.根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m ,拱顶离水面5m .据调查,该河段水位在此基础上再涨1.8m 达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm 长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m ;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m ;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.22.剪纸在中国是历史悠久,并且流传很广的一种民间艺术形式.剪纸虽然制作简便,造型单纯,但由于其能够充分反映百姓的生活内涵,具有浓郁的民俗特色,因此是中国众多民间美术形式的浓缩与夸张.学完全等和相似以后,一个小组的同学拿着一张边长为5的正方形纸片,在BC 边上取一点E ,使得2CE =,过点E 所在直线剪掉一个直角三角形,点E 所在直线交CD 于点F ,过点F 所在直线再剪掉一个直角三角形,使得剪掉的两个三角形全等.甲同学认为只有一种剪法;乙同学认为有两种剪法;丙同学认为有三种剪法(1)你认为哪位同学的说法是正确的________(填“甲”或“乙”或“丙”),请在下图中画出一种正确的画法,并直接写出所画图中CF 的长度________.(2)按照上面的条件,使剪掉的两个直角三角形相似(点F 不与D 重合),过点F 所在直线交AD 于点G ,设CF x DG y ==,.①求出y 与x 的函数关系式:②当DG 最大时,则tan BFE ∠=________.(3)将一张矩形纸片ABMN AB BM <(),先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD ;其中90,24,20,15,7A AB BC CD AD ∠=︒====,则AN =________________.(画出示意图)1.A【分析】本题考查了无理数的概念,熟练掌握知识点是解题的关键.无理数是无限不循环小数,根据定义判断即可.【详解】解:A 、19是分数,为有理数,故本选项符合题意;B 、开方开不尽,是无理数,故本选项不符合题意;C 、π是无限不循环小数,是无理数,故本选项不符合题意;D 、2.024*********…是无限不循环小数,是无理数,故本选项不符合题意.故选:A .2.B【分析】本题考查中心对称图形的识别,根据中心对称图形的概念:在平面内,把一个图形绕着某个点旋转180︒,旋转后的图形能与原来的图形重合,那么这个图形是中心对称图形.进行判断即可.【详解】解:A 选项:它不是中心对称图形;B 选项:它是中心对称图形;C 选项:它不是中心对称图形;D 选项:它不是中心对称图形.故选:B 3.D【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:4.8亿480000000=,∴8480000000 4.810=⨯,故选:D .4.C【分析】本题考查了同底数幂的乘除法,合并同类项,二次根式的性质,熟练掌握知识点是解题的关键.依次根据合并同类项法则,二次根式的性质,同底数幂的乘除法进行化简计算即可.【详解】解:A 、2222a a a +=,故本选项不符合题意;Ba =,故本选项不符合题意;C 、224a a a ⋅=,故本选项符合题意;D 、844a a a ÷=,故本选项不符合题意.5.A【分析】本题考查了平行线的性质,三角形的外角定理,熟练掌握知识点是解题的关键.先根据平行线的性质定理得到60BCD ∠=︒,再由三角形的外角定理即可求解.【详解】解:∵CD EF ∥,∴60BCD E ∠=∠=︒,∵ABD BCD BDC ∠=∠+∠,∴1306070BDC ∠=︒-︒=︒,故选:A .6.C【分析】此题考查了在数轴上表示不等式的解集,(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.根据数轴表示不等式的方法表示即可.【详解】解:由题意得每件行李重量的取值范围为08x ≤≤,故选:C .7.A【分析】本题考查了弧长公式,熟练掌握知识点是解题的关键.根据弧长公式180n rl π=,代入计算即可.【详解】解:由题意得,轨迹长为:4590451802ππ⨯⨯=,故选:A .8.D【分析】本题考查了分式,二次根式有意义的条件,二次函数的平移,反比例函数的性质,角平分线性质定理逆定理,熟练掌握知识点是解题的关键.A 、根据分式和二次根式有意义的条件即可求解;B 、根据二次函数左右平移规律为“左加右减”求解;C 、根据反比例函数性质求解;D 、根据角平分线性质定理逆定理即可求解.【详解】解:A有意义,则3030x x -≥⎧⎨-≠⎩,解得3x >,故本选项不符合题意;B 、将抛物线23y x =-向左平移1个单位,得到抛物线()231y x =-+的图象,故本选项不符合题意;C 、对于反比例函数2y x=,在每一象限内,y 随x 的增大而减小,故本选项不符合题意;D 、由角平分线的性质定理逆定理可得到三角形三边距离相等的点是三边角平分线的交点,故本选项符合题意.9.D【分析】本题考查了分式方程的应用,正确理解题意是建立方程的关键.设每台削面机器人每分钟能削x 刀面,则由每台削面机器人削660刀的时间和一个削面师傅削180刀的时间相同建立方程.【详解】解:设每台削面机器人每分钟能削x 刀面,根据题意可列方程为:660180160x x =-.故选:D .10.B【分析】本题考查函数图象,平行四边形的性质,全等三角形的判定及性质,勾股定理.根据图象可得AC =P 在AD 上,点Q 在BC 上运动时,过点O 作EF AD ⊥于点E ,交BC 于点F ,则EF 的长为AD ,BC 间的距离.通过“ASA ”证明AOE COF △≌△,得到AE CF =,从而当点P 运动至点E 时,点Q 运动至点F ,此时PQ EF m ==,根据勾股定理求出EO 的长,即可得到EF ,从而解答.【详解】解:由图可知,当点P 从点O 向点A ,点Q 从点O 向点C 运动时,PQ 间距离y 逐渐增大,当点P 运动到点A ,点Q 运动到点C 时,由图象可知y PQ ==∴AC =∵四边形四边形ABCD 是平行四边形,∴12OA OC AC ===)1s=,当点P在AD上,点Q在BC上运动时,过点O作EF AD⊥于点E,交BC于点F,则EF的长为AD,BC间的距离∵在平行四边形ABCD中,AO CO=,AD BC∥,∴EAO FCO∠=∠,∵AOE COF∠=∠,∴()ASAAOE COF≌,∴AE CF=,∵点P,Q的运动速度相同,∴当点P运动至点E时,点Q运动至点F,此时PQ EF m==,根据图象可知点P从点A运动至点E()33s22+=,∴33122AE=⨯=,∵EF AD⊥,∴Rt AEO△中,EO===∵AOE COF△≌△,∴2FO EO==,∴E F即m=.故选:B11.(2)(2)x x x+-【分析】本题考查了因式分解,应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【详解】解:324(4)(2)(2)x x x x x x x -=-=+-.故答案为:(2)(2)x x x +-.12.1(答案不唯一)【分析】本题考查了一元二次方程根的的情况,解一元一次不等式,熟练掌握知识点是解题的关键.由方程两个不相等的实数根,得到0∆>,再求不等式的解集即可.【详解】解:由题意得,2540m ∆=->,解得:254m <,则满足条件的正整数m 的值有:6,5,4,3,2,1,填写一个即可,故答案为:1(答案不唯一).13.25【分析】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.先画树状图,找出所有的等可能结果数,再找出小明两次抽到的元素中含稀有气体(氦)的结果数,最后利用概率公式求解即可.【详解】解:由题意可画树状图为:∴有20种等可能的结果数,符合题意的有8种,∴小明两次抽到的元素中含稀有气体(氦)的概率为82205=,故答案为:25.14.74【分析】本题考查了平行线的性质,解直角三角形,等角的三角函数值相等,熟练掌握知识点是解题的关键.可得2EOD α∠=∠=,则4tan 3ED EOD OE ∠==,4tan 23OE CE ∠==,则4ED =,94CE =,即可求解.【详解】解:如图,由题意得,90,1,,,3EOK BOC GK ED OE ED OE α∠=∠=︒∠=⊥=∥,∴1BOK BOK KOC ∠+=∠+∠,∴1KOC α∠=∠=,∵GK ED ∥,∴2KOC α∠=∠=,∵AOF EOD α∠=∠=,4tan 3α=,∴4tan 3ED EOD OE ∠==,4tan 23OE CE ∠==,而3OE =,∴4ED =,94CE =,∴974m 44CD =-=,故答案为:74.15.【分析】如图所示,过点D 作DT BC ∥交AF 于T ,过点A 作AH BC ⊥于H ,延长AD BC ,交于G ,证明()AAS BFE DTE ≌,得到4DT BF ==;再证明ABG DCG △,△都是等腰直角三角形,得到CD CG =,设2CD CG x ==,则102BG x =+,5AH HG x ==+;证明ADT AGF △∽△,得到DT AD FG AG =,进一步证明AH CD ∥,得到AD CH AG HG =,则DT CH FG HG =,即452625x x x x+-=++,解方程即可得到答案.【详解】解:如图所示,过点D 作DT BC ∥交AF 于T ,过点A 作AH BC ⊥于H ,延长AD BC ,交于G ,∵DT BC ∥,∴EDT EBF ETD EFB ==∠∠,∠∠,∵点E 为对角线BD 的中点,∴BE DE =,∴()AAS BFE DTE ≌,∴4DT BF ==,∵9045BAD BCD ABC ∠=∠=︒∠=︒,,∴4590G DCG =︒=︒∠,∠,∴ABG DCG △,△都是等腰直角三角形,∴CD CG =,∵AH BC ⊥,∴12BH GH AH BG ===;设2CD CG x ==,则102BG BF CF CG x =++=+,∴5AH HG x ==+;∵DT BC ∥,∴ADT AGF △∽△,∴DT AD FG AG=,∵90AHG DCG ==︒∠∠,∴AH CD ∥,∴AD CH AG HG =,∴DT CH FG HG =,即452625x x x x+-=++,解得x =x =,∴2CD x ==故答案为:【点睛】本题主要考查了相似三角形的性质与判定,平行线分线段成比例定理,全等三角形的性质与判定,等腰直角三角形的性质与判定等等,解题的关键在于正确作出辅助线构造全等三角形与相似三角形.16.3-【分析】本题考查了含有特殊角的三角函数值的实数的运算,熟练掌握知识点是解题的关键.分别根据零指数幂,去绝对值,负整数指数幂,特殊角的三角函数值进行化简计算即可.【详解】解:原式(1222=----⨯=122=-+-3=-17.14x x --,12【分析】本题考查了分式的化简求值,熟练掌握知识点是解题的关键.先化简括号内分式,再将除法转化为乘法计算即可.【详解】解:原式()2239134x x x x x +-+-=+-()()()243134x x x x x -+-=-⋅+-14x x -=-,当2x =时,原式12=.18.(1)92,92,40(2)80(3)91.11【分析】(1)C 中有4人,且分数为92分的有3人,D 中有102242---=人,因此众数为92;为中位数是第5,6两人评分的平均数,第5,6两人评分都是92分,因此中位数是92;101020%1010%34-⨯-⨯-=,因此有410100%40%÷⨯=;(2)用总人数乘以所占百分比即可;(3)根据甲乙两组平均数所占百分比以及甲乙两组平均数,列式计算即可.【详解】(1)解:由题意得在甲组10人中,A 中有2人,B 中有2人,C 中有4人,且分数为92分的有3人,D 中有102242---=人,因此众数为92;甲组10人,因此中位数是第5,6两人评分的平均数,将分数排列,可知第5,6两人评分都是92分,因此中位数是92;101020%1010%34-⨯-⨯-=,因此有410100%40%÷⨯=,故答案为:92,92,40;(2)解:20040%80⨯=(人),故答案为:80;(3)解:90.670%92.330%91.11⨯+⨯=,故答案为:91.11.【点睛】本题考查了扇形统计图,频数分布表,中位数,众数,用样本估计总体,以及加权平均数的概念,熟练掌握知识点是解题的关键.19.(1)一支弓箭投入壶内得5分,投入壶耳得3分(2)她至少投入壶内2支箭【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,正确列出方程组和不等式是解答本题的关键.(1)设一支弓箭投入壶内得x 分,投入壶耳得y 分,根据小龙得了27分,小华得了24分列方程组求解即可;(2)根据小丽赢得了比赛列不等式求解即可.【详解】(1)设一支弓箭投入壶内得x 分,投入壶耳得y 分,根据题意得34273324x y x y +=⎧⎨+=⎩解得53x y =⎧⎨=⎩答:一支弓箭投入壶内得5分,投入壶耳得3分;(2)设投入壶内m 支箭,根据题意可得()5310227m m +-->解得:32m >∵m 需取整数∴min 2m =答:她至少投入壶内2支箭.20.(1)②,证明见解析(2)38425【分析】此题考查了切线的判定、圆周角定理、菱形的判定和性质等知识,证明四边形ABCD 是菱形是解题的关键.(1)选择②F 是弧AE 的中点,连接,AE BF ,证明()ASA ABF CBF ≌,得到AB BC =,再证明()SAS ACE ACG ≌,得到90AGC AEC ∠=∠=︒,AB 为直径,即可得到结论;(2)由勾股定理得到5BN =,由等积法求出125AB AN AF BN ⋅==,则165BF =,得到2425AC AF ==,求出1192225ABC S AC BF =⋅= ,即可得到答案.【详解】(1)解:选择②,证明:连接,AE BF ,∵F 是弧AE 的中点,∴ABF CBF ∠=∠,∵AB 为直径,∴90AFB AEB BFC AEC ∠=∠=∠=∠=︒,∵BF BF =,∴()ASA ABF CBF ≌∴AB BC =,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,AB CD∴BC CD =,BAF ACG ∠=∠,∵BE DG =.∴CE CG =,∴90BAF ABF CBF ACE ∠+∠=∠+∠=︒,∴BAF ACE ∠=∠,∴ACG ACE ∠=∠,又∵AC AC=∴()SAS ACE ACG ≌,∴90AGC AEC ∠=∠=︒∵AB CD∴18090BAG AGC ∠=︒-∠=︒∴AB AG⊥∵AB 为直径,∴直线AG 是圆M 的切线.(2)如图,由勾股定理得到5BN =,∵1122ABN S AF BN AB AN =⋅=⋅ ∴125AB AN AF BN ⋅==∴165BF ==∵AB BC =,∴2425AC AF ==∴112416192225525ABC S AC BF =⋅=⨯⨯= ,∴四边形ABCD 的面积为192384222525ABC S =⨯= .21.任务一:见解析,2120y x =-;任务二:悬挂点的纵坐标的最小值是 1.8-;66x -≤≤;任务三:两种方案,见解析【分析】任务一:根据题意,以拱顶为原点,建立如图1所示的直角坐标系,待定系数法求解析式即可求解;任务二:根据题意,求得悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-,进而代入函数解析式即可求得横坐标的范围;任务三:有两种设计方案,分情况讨论,方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼;方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m ,根据题意求得任意一种方案即可求解.【详解】任务一:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且经过点(10,5)-.设该抛物线函数表达式为2(0)y ax a =≠,则5100a -=,∴120a =-,∴该抛物线的函数表达式是2120y x =-.任务二:∵水位再上涨1.8m 达到最高,灯笼底部距离水面至少1m ,灯笼长0.4m ,∴悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-,∴悬挂点的纵坐标的最小值是 1.8-.当 1.8y =-时,211.820x -=-,解得16x =或26x =-,∴悬挂点的横坐标的取值范围是66x -≤≤.任务三:有两种设计方案方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼.∵66x -≤≤,相邻两灯笼悬挂点的水平间距均为1.6m ,∴若顶点一侧挂4盏灯笼,则1.646⨯>,若顶点一侧挂3盏灯笼,则1.636⨯<,∴顶点一侧最多可挂3盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂7盏灯笼.∴最左边一盏灯笼悬挂点的横坐标是 4.8-.方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m ,∵若顶点一侧挂5盏灯笼,则0.8 1.6(51)6+⨯->,若顶点一侧挂4盏灯笼,则0.8 1.6(41)6+⨯-<,∴顶点一侧最多可挂4盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂8盏灯笼.∴最左边一盏灯笼悬挂点的横坐标是 5.6-.【点睛】本题考查了二次函数的应用,根据题意建立坐标系,掌握二次函数的性质是解题的关键.22.(1)乙,52或3,作图见详解(2)①102y x =-或21522=-+y x x ,6tan 13BFE ∠=(3)16或25或32【分析】(1)有两种剪法,①在DC 上取点F ,使得52DF CF ==,在AD 上取点G ,使得2DG CE ==;②在DC 上取点F ,使得2DF CE ==,则3CF =,在AD 上取点G ,使得3DG CF ==;(2)①当FEC FGD ∠=∠时,FEC FGD △∽△,则25x y x =-,化简得102y x=-,当FEC GFD ∠=∠时,FEC GFD △∽△,则25x x y =-,化简得21522=-+y x x ;②对于102y x=-,由05x <<得DG y =无最大值;对于21522=-+y x x ,则21525228y x ⎛⎫=--+ ⎪⎝⎭,故当52x =时,DG y =最大,且最大值为258DG =;过点E 作EH BF ⊥于点H ,由勾股定理得=BF ,可证EBH FBC △∽△,则EH BH ==FH =6tan 13EH BFE FH ∠==;(3)连接BD ,由勾股定理求得BD ,再根据勾股定理的逆定理得90BCD ∠=︒,根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可得出答案.【详解】(1)解:乙说法正确,CF 的长度52或3,作图如下,如图①,在DC 上取点F ,使得52DF CF ==,在AD 上取点G ,使得2DG CE ==;如图②,在DC 上取点F ,使得2DF CE ==,则3CF =,在AD 上取点G ,使得3DG CF ==;故答案为:乙,52或3.(2)解:①当FEC FGD ∠=∠时,如图:∵四边形ABCD 是正方形,∴90C D ∠=∠=︒,∴FEC FGD △∽△,∴CECFDG DF =,∴25xy x =-,∴102y x =-,当FEC GFD ∠=∠时,如图:∵四边形ABCD 是正方形,∴90C D ∠=∠=︒,∴FEC GFD △∽△,∴CE CF DF DG=,∴25x x y =-,∴21522=-+y x x ;②对于102y x =-,∵05x <<,∴DG y =无最大值;对于21522=-+y x x ,则2215152522228y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴当52x =时,DG y =最大,且最大值为258DG =;过点E 作EH BF ⊥于点H ,∵90C ∠=︒,∴由勾股定理得:BF ==∵90BHE C ∠=∠=︒,∵EBH FBC ∠=∠,∴EBH FBC△∽△∴EH BE BH FC BF BC==,∴EH BH ==∴FH ==∴6tan 13EH BFE FH ∠==;(3)解:连接BD ,90A ∠=︒ ,7AD =,24AB =,222724625BD ∴=+=,20BC = ,15CD =,22222015625BC CD ∴+=+=,222BC CD BD ∴+=,90DCB ∴∠=︒,①如图所示,由已知可得,DNM MCB △∽△,则DN MN DM MC CB MB==,设DN x =,CM y =,则2415207x y y x +==+,解得1815x y =⎧⎨=⎩,71825AN ∴=+=;②如图所示,由已知可得,DCN NMB △∽△,则DCCNDNNM MB NB ==,设NC m =,ND n =,则1524720m nn m ==++,解得2025m n =⎧⎨=⎩,72532AN ∴=+=,32AN ∴=;③如图所示:同(2)得DCN CBM ∽,∴DC DN CNCB CM BM ==,设,DN x CM y ==,则1524207x yy x -==+,解得:912x y =⎧⎨=⎩,AN∴16故答案为:16或25或32.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,二次函数求最值,锐角三角函数,正方形的性质,矩形的性质,勾股定理及逆定理,正确添加辅助线,熟练掌握知识点是解题的关键.。
2024年深圳市中考数学复习与检测试卷(解析版)

2024年深圳市中考数学复习与检测试卷(解析版)一、选择题(本大题共有10个小题,每小题3分,共30分)1. 2024的倒数是()A.12024B.2024 C.2024−D.12024−【答案】A【分析】本题主要考查了倒数,解题的关键是熟练掌握倒数的定义,“乘积为1的两个数互为倒数”.【详解】解:2024的倒数1 2024.故选:A.2. 下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【详解】A、是轴对称图形,也是中心对称图形,故本选项符合题意,B、是轴对称图形,不是中心对称图形,故本选项不合题意,C、不是轴对称图形,是中心对称图形,故本选项不合题意,D、是轴对称图形,不是中心对称图形,故本选项不合题意,故选:A.3.随着2024年2月第十四届全国冬季运动会临近,吉祥物成为焦点,某日通过搜索得出相关结果约为16000000个.将“16000000”用科学记数法表示为()A .61610×B .71.610×C .81.610×D .80.1610×【答案】B 【分析】本题考查了科学记数法;根据科学记数法计算方法计算即可;解题的关键是掌握科学记数法的计算方法.【详解】解:716000000 1.610=×4 . 某校10名篮球队员进行投篮命中率测试,每人投篮10次,实际测得成绩记录如下表: 命中次数(次)5678 9人数(人) 1 4 3 1 1由上表知,这次投篮测试成绩的中位数与众数分别是( )A .6,6B .6.5,6C .6,6.5D .7,6【答案】B【分析】根据中位数及众数可直接进行求解.【详解】解:由题意得:中位数为67 6.52+=,众数为6; 故选B .5.实数,a b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A .55a b −>−B .66a b >C .a b −>−D .0a b −>【答案】C【分析】根据数轴判断出,a b 的正负情况以及绝对值的大小,然后解答即可.【详解】由图可知,0b a <<,且b a <,∴55a b −>−,66a b >,a b −<−,0a b −>,∴关系式不成立的是选项C .故选C .6 . 某学校将国家非物质文化遗产——“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图所示,若将左图抽象成右图的数学问题:在平面内,AB CD ,DC 的延长线交AE 于点F ;若7535BAE AEC ∠=°∠=°,,则DCE ∠的度数为( )A .120°B .115°C .110°D .75°【答案】C 【分析】根据平行线的性质得到75EFC BAE ∠=∠=°,根据三角形外角性质求解即可. 【详解】解:∵AB CD ,75BAE ∠=°, ∴75EFC BAE ∠=∠=°, ∵35DCE AEC EFC AEC ∠=∠+∠∠=°,,∴110DCE ∠=°, 故选:C .7 . 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.521y x x y −= −=B . 4.521x y x y −= −=C . 4.512x y y x −= −= D . 4.512y x y x −= −= 【答案】D【分析】设木头长为x 尺,绳子长为y 尺,根据“用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设木头长为x 尺,绳子长为y 尺, 由题意可得 4.512y x y x −= −=. 故选:D .8. 赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A. 20mB. 28mC. 35mD. 40m【答案】B【解析】 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R ,()7m OD OC CD R ∴=−=−,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===, 在Rt △ADO 中,222AD OD OA +=,()2223772R R ∴+−= , 解得:156528m 56R =≈, 故选B9 . 如图,DE 是ABC 的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A. 132B. 7C. 152D. 8【答案】C【解析】【分析】根据三角形中中位线定理证得DE BC ∥,求出DE ,进而证得DEF BMF ∽,根据相似三角形的性质求出BM ,即可求出结论.【详解】解:DE 是ABC 的中位线,DE BC ∴∥,116322DE BC ==×=, DEF BMF ∴ ∽, ∴22DEDF BF BM BF BF===, 32BM ∴=, ∴152CM BC BM =+=. 故选:C .10.如图,已知开口向上的抛物线2y ax bx c ++与x 轴交于点()1,0−,对称轴为直线1x =.下列结论: ①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >. 其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】D 【分析】利用二次函数图象与性质逐项判断即可.【详解】解:∵抛物线开口向上,∴0a >,∵抛物线与y 轴交点在负半轴,∴0c <,∵对称轴为12b x a=−=, ∴20b a −=<,∴0abc >,故①正确;∵抛物线的对称轴为=1x , ∴12b a−=, ∴2=0a b +,故②正确;∵函数2y ax bx c ++与直线1y =−有两个交点.∴关于x 的方程210ax bx c +++=一定有两个不相等的实数根,故③正确;∵=1x −时,0y =即0a b c −+=, ∵=2b a ,∴20a a c ++=,即3a c −=, ∵1c <−,∴31a −<−, ∴13a >, 故④正确,故选:D二、填空题(本大题共有5个小题,每小题4分,共20分)11.分解因式:2441a a −+= .【答案】()221a −【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的两倍, 本题可以用完全平方公式.【详解】原式()()2222221121a a a =−××+=−. 故答案为:()221a −.12. 一只不透明的袋中装有2个白球和n 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为14,那么黑球的个数是 . 【答案】6【分析】根据概率公式建立分式方程求解即可【详解】∵袋子中装有2个白球和n 个黑球,摸出白球的概率为14, ∴22n +=14, 解得n =6,经检验n =6是原方程的根,故答案为:613. 已知关于x 的一元二次方程()2230x m x −++=的一个根为1,则m = . 【答案】2【分析】把1x =代入方程计算即可求出m 的值.【详解】解:把1x =代入方程得:1(2)30m −++=, 去括号得:1230m −−+=, 解得:2m =,故答案为:214. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为 .【答案】43π 【分析】延长FA 交⊙A 于G ,如图所示:根据六边形ABCDEF 是正六边形,AB =2,利用外角和求得∠GAB =360606°=°,再求出正六边形内角∠FAB =180°-∠GAB =180°-60°=120°, 利用扇形面积公式代入数值计算即可.【详解】解:延长FA 交⊙A 于G ,如图所示:∵六边形ABCDEF 是正六边形,AB =2,∴∠GAB =360606°=°, ∠FAB =180°-∠GAB =180°-60°=120°, ∴2120443603603FAB n r S πππ××===扇形, 故答案为43π. 15 . 如图,图1是一盏台灯,图2是其侧面示意图(台灯底座高度忽略不计),其中灯臂40cm AC =,灯罩30cm CD =,灯臂与底座构成的60CAB ∠=°. CD 可以绕点C 上下调节一定的角度.使用发现:当CD 与水平线所成的角为30°时,台灯光线最佳,则此时点D 与桌面的距离是________.(结果精确到1cm 1.732)【答案】50cm【分析】过点D 作DH AB ⊥,交AB 延长线于点H ,过点C 作CF AH ⊥于F ,过点C 作CE DH ⊥于E , 分别在Rt ACF 和Rt CDE △中,利用锐角三角函数的知识求出CF 和DE 的长,再由矩形的判定和性质得到CF EH =,最后根据线段的和差计算出DH 的长,问题得解.【详解】过点D 作DH AB ⊥,交AB 延长线于点H ,过点C 作CF AH ⊥于F ,过点C 作CE DH ⊥于E ,在Rt ACF 中,60A ∠=°,40cm AC =, ∵sin CF A AC=∴sin 60CF AC =°=,在Rt CDE △中,30DCE ∠=°,30cm CD =, ∵sin DE DCE CD∠=, ∴sin 3015DE CD=°=(cm), ∵DH AB ⊥,CF AH ⊥,CE DH ⊥, ∴四边形CFHE 是矩形, ∴CF EH =,∵DH DE EH =+,∴1550DH DE EH +≈(cm).答:点D 与桌面的距离约为50cm .三、解答题(本大题共有6个小题,共50分)16. 计算:101()2cos 451)4π−°−+−−−. 【答案】2【详解】分析:代入45°角的余弦函数值,结合“负整数指数幂和零指数幂的意义及绝对值的意义”进行计算即可.详解:原式=)4211−++=411−+,=2−.17. 先化简,再求值:(1﹣31x +)÷2441x x x −++,其中x =3. 【答案】1,12x −. 【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解. 【详解】解:原式=()2213111x x x x x −+ −÷ +++, =()22112x x x x −+⋅+−, =12x −, 当x =3时,原式=11 32=−.18.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【答案】(1)600;(2)见解析;(3)3200;(4)1 4【详解】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图,(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图;共有12种等可能的情况,其中他第二个吃到的恰好是C粽的有3种,∴P(C粽)=312=14.答:他第二个吃到的恰好是C粽的概率是14.19.某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?【答案】(1)y=﹣10x+540;(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【分析】(1)设函数关系式为y =kx +b ,由销售单价为28元时,每天的销售量为260个; 销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利润=每个遮阳伞的利润×销售量,列出函数关系式,再由二次函数的性质求解即可;【详解】(1)解:设一次函数关系式为y =kx +b ,由题意可得:2602824030k b k b =+ =+, 解得:10540k b =− =, ∴函数关系式为y =﹣10x +540;(2)解:由题意可得:w =(x ﹣20)y =(x ﹣20)(﹣10x +540)=﹣10(x ﹣37)2+2890,∵﹣10<0,二次函数开口向下,∴当x =37时,w 有最大值为2890,答:当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元.20. 已知:如图,在ABC 中,AB BC =,D 是AC 中点,BE 平分ABD ∠交AC 于点E ,点O 是AB 上一点,O 过B 、E 两点,交BD 于点G ,交AB 于点F .(1)试说明直线AC 与O 的位置关系,并说明理由;(2)当2BD=,1sin2C=时,求⊙O的半径.解:(1)证明:如图,连接OE,∵AB=BC且D是BC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠ABE=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∴OE⊥AC,∴AC与⊙O相切.(2)∵BD=2,sinC=12,BD⊥AC,∴BC=4,∴AB=4,设⊙O的半径为r,则AO=4-r,∵AB =BC ,∴∠C =∠A ,∴sinA =sinC =12,∵AC 与⊙O 相切于点E ,∴OE ⊥AC∴sinA =142r r =−, ∴r =43, 经检验:r =43是原方程的解. 21. 如图,抛物线2y x bx c =−++交x 轴于A ,B 两点,交y 轴于点C ,直线BC 的表达式为3y x =−+.(1) 求抛物线的表达式;(2) 动点D 在直线BC 上方的二次函数图像上,连接DC ,DB ,设四边形ABDC 的面积为S ,求S 的最大值;(3) 当点E 为抛物线的顶点时,在x 轴上是否存在一点Q ,使得以A ,C ,Q 为顶点的三角形与BCE 相似?若存在,请求出点Q 的坐标.【答案】(1)223y x x =−++ (2)758(3)存在,Q 的坐标为()0,0或()9,0 【分析】(1)用待定系数法即可求解;(2)由DFB AOC COFD SS S S =++△△梯形,即可求解;(3)分AQC ECB ∽、QAC ECB △∽△、ACQ ECB △∽△三种情况,分别求解即可.【详解】(1)解:∵直线BC 的表达式为3y x =−+, 当0x =时,得:3y =,∴()0,3C ,3OC =,当0y =时,得:03x =−+,解得:3x =, ∴()3,0B ,3OB =,∵抛物线2y x bx c =−++交x 轴于A ,B 两点,交y 轴于点C , ∴9303b c c −++= =, 解得:23b c = = , ∴抛物线的表达式为223y x x =−++; (2)过点D 作DF x ⊥轴于点F ,设()2,23D x x x −++,∴(),0F x ,OF x =,3BF x ,∴223DF x x =−++,∵抛物线223y x x =−++交x 轴于A ,B 两点, 当0y =时,得:2230x x −++=,解得:11x =−,23x =,∴()1,0A −,1OA =,∵DFB AOC COFD SS S S =++△△梯形()()()2211132332313222x x x x x x =−+++−−+++×× 23375228x =−−+ , 又∵302−<,即抛物线的图像开口向下, ∴当32x =时,S 有最大值,最大值为758.(3)存在,理由:∵()222314y x x x =−++=−−+, ∴()1,4E ,又∵()0,3C ,()3,0B ,∴CEBC =BE =∴((22222220CE BC BE ++===,∴90ECB ∠=°, 如图所示,连接AC ,①()1,0A −,()0,3C ,∴1OA =,3OC =,AC === ∴13AO EC CO BC ==, 又∵90AOC ECB ∠=∠=°, ∴AOC ECB ∽,∴当点Q 的坐标为()0,0时,AQC ECB ∽; ②过点C 作CQ AC ′⊥,交x 轴与点'Q , ∵Q AC ′ 为直角三角形,CO AQ ⊥′,∴90ACQ AOC ′∠=∠=°,90AQ C CAQ ACO ′′∠=°−∠=∠, ∴ACQ AOC ′ ∽,又∵AOC ECB ∽,∴ACQ ECB ′ ∽,∴AQ EB AC EC ′== 解得:10AQ ′=,∴()9,0Q ′;③过点A 作AQ AC ⊥,交y 轴与点Q ,∵ACQ 为直角三角形,CA AQ ⊥,∴90QAC AOC ∠=∠=°,90ACQ CQA OAQ ∠=°−∠=∠, ∴QAC AOC △∽△,又∵AOC ECB ∽,∴QAC ECB △∽△,∴QC AC EB CB ==, 解得:103QC =, ∴103Q −,, 此时点Q 在y 轴上,不符合题意,舍去. 综上所述:当在x 轴上的点Q 的坐标为()0,0或()9,0时,以A ,C ,Q 为顶点的三角形与BCE 相似.22. 综合与探究在矩形ABCD 的CD 边上取一点E ,将BCE 沿BE 翻折,使点C 恰好落在AD 边上的点F 处.(1) 如图①,若2BC BA =,求CBE ∠的度数;(2) 如图②,当5AB =,且10AF FD ⋅=时,求EF 的长; (3) 如图③,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NFAN FD =+时,请直接写出AB BC的值. 【答案】(1)15° (2)3 (3)35 【分析】(1)由折叠的性质得出BC BF =,FBE CBE ∠=∠,根据直角三角形的性质得出30AFB ∠=°,可求出答案;(2)证明FAB EDF △∽△,由相似三角形的性质得出AF AB DE DF=,可求出2DE =,得出3EF =,由勾股定理求出DF =AF ,即可求出BC 的长; (3)过点N 作NG BF ⊥于点G ,证明NFG BFA △∽△,12NG FG NF BA FA BF ===,设AN x =,FG y =,则2AF y =,由勾股定理得出()()()222222x y x y +=+,解出43y x =,则可求出答案. 【详解】(1)解:∵四边形ABCD 是矩形, ∴90C ∠=°,∵将BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴BC BF =,FBE CBE ∠=∠,90C BFE ∠=∠=°, ∵2BC AB =,∴2BF AB =,∴30AFB ∠=°, ∵四边形ABCD 是矩形,∴AD BC ∥,∴30CBF AFB ∠=∠=°, ∴1152CBE FBC ∠=∠=°,∴CBE ∠的度数为15°;(2)∵将BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴90BFE C ∠=∠=°,FE CE =, 又∵矩形ABCD 中,90A D ∠=∠=°, ∴90AFB DFE∠+∠=°,90DEF DFE ∠+∠=°, ∴AFB DEF ∠=∠, ∴FAB EDF △∽△, ∴AF AB DE DF=, ∴AF DF AB DE ⋅=⋅,∵10AF DF ⋅=,5AB =, ∴2DE =,∴523CE DC DE =−=−=,∴3EFEC ==, ∴EF 的长为3;(3)过点N 作NG BF ⊥于点G ,∵NFAN FD =+, ∴1122NF AD BC ==, ∵BC BF =,∴12NF BF =, ∵NFG BFA ∠=∠,90NGF BAF ∠=∠=°, ∴NFG BFA △∽△, ∴12NG FG NF BA FA BF ===, 设AN x =,∵BN 平分ABF ∠,AN AB ⊥,NG BF ⊥,∴NGAN x ==,2AB x =, 在Rt BNG △和Rt BNA 中, NG NA BN BN= = , ∴()Rt Rt HL BNG BNA △≌△∴2BGAB x ==, 设FG y =,则2AF y =, 在Rt BAF △中,222AB AF BF +=, ∴()()()222222x y x y +=+, 解得:43y x =, ∴410233BF BG GF x x x =+=+=, ∴231053AB AB x BC BF x ===, ∴AB BC 的值为35.。
广东深圳市2022年中考试卷-数学(解析版)

广东深圳市2022年中考试卷-数学(解析版)(本试卷满分100分,考试时刻90分钟)第一部分选择题一.选择题(共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.(2020广东深圳3分)-3的倒数是()A.3 B.-3 C.13D.13【答案】D。
【考点】倒数。
【分析】解:∵(﹣31)×(﹣3)=1,∴-3的倒数是﹣31.故选D.2.(2020广东深圳3分)第八届中国(深圳)文博会以总成交额143 300 000 000 元再创新高,将数143 300 000 000 用科学记数法表示为()A.1.433×1010B.1.433×1011C.1.433×1012D.0.1433×1012【答案】B。
【考点】科学记数法—表示较大的数。
【分析】解:143 300 000 000=1.433×1011;故选B.3.(2020广东深圳3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D 【答案】A。
【考点】中心对称图形和轴对称图形。
【分析】解:依照轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A、是中心对称图形,也是轴对称图形,故本选项正确.B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.图 160° 12故选A .4.(2020广东深圳3分)下列运算正确的是( )A .2a +3b = 5abB .a 2·a 3=a 5C .(2a ) 3 = 6a 3D .a 6+a 3= a 9 【答案】B 。
【考点】合并同类项;幂的乘方与积的乘方;同底数幂的乘法。
【分析】依照合并同类项,同底幂乘法和除法,幂的乘方和积的乘方运算法则逐一运算作出判定:解:A .2 a 与3b 不是同类项,不能合并成一项,因此A 选项不正确; B .a 2·a 3=a 5,因此B 选项正确; C .(2a ) 3 = 8a 3,因此C 选项不正确;D .a 6与a 3不是同类项,不能合并成一项,因此D 选项不正确. 故选B .5.(2020广东深圳3分)体育课上,某班两名同学分别进行5次短跑训练,要判定哪一名同学的成绩比较稳固,通常需要比较这两名学生成绩的【 】 A .平均数 B.频数分布 C.中位数 D.方差 【答案】D 。
2024年广东省深圳市中考真题数学试卷含答案解析

2024年广东省深圳市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列用七巧板拼成的图案中,为中心对称图形的是()A .B .C .D .【答案】C【分析】本题主要考查了中心对称图形的识别.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:选项A 、B 、D 均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C 能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C .2.如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为()A .aB .bC .cD .d【答案】A【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,0a b c d <<<<,则最小的实数为a ,故选:A .3.下列运算正确的是()A .()523m m -=-B .23m n m m n ⋅=C .33mn m n-=D .()2211m m -=-【答案】B【分析】本题考查了同底数幂的乘法,合并同类项,积的乘方,完全平方公式.根据同底数幂的乘法,合并同类项,积的乘方,完全平方公式法则进行计算即可求解.【详解】解:A 、()6523m m m -=≠-,故该选项不符合题意;B 、23m n m m n ⋅=,故该选项符合题意;C 、33mn m n -≠,故该选项不符合题意;D 、()2221211m m m m -=-+≠-,故该选项不符合题意;故选:B .4.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A .12B .112C .16D .145.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为()A .40︒B .50︒C .60︒D .70︒【答案】B【分析】本题考查了平行线的性质,根据CD AB ⊥,56∠=∠,则1250∠=∠=︒,再结合平行线的性质,得出同位角相等,即可作答.【详解】解:如图:∵一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,∴CD AB ⊥,56∠=∠,∴152690∠+∠=∠+∠=︒,则1250∠=∠=︒,∵光线是平行的,即DE GF ,∴2450∠=∠=︒,故选:B .6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是()A .①②B .①③C .②③D .只有①【答案】B【分析】本题考查了尺规作图,全等三角形的判定与性质解决问题的关键是掌握角平分线的判定定理.利用基本作图对三个图形的作法进行判断即可.在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,可证明AFM AEN ≌,有AMD AND ∠=∠,可得ME NF =,进一步证明MDE NDF △≌△,得DM DN =,继而可证明ADM ADN △≌△,得MAD NAD ∠=∠,得到AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.【详解】在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,在AFM △和AEN △中,AE AF BAC BAC AM AN =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AFM AEN ≌,∴AMD AND ∠=∠,AM AE AN AF -=- ME NF∴=在MDE 和NDF 中AMD AND MDE NDF ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS MDE NDF ≌,∴DM DN =,∵,AD AD AM AN ==,∴()SSS ADM ADN ≌,∴MAD NAD ∠=∠,∴AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.则①③可得出射线AD 平分BAC ∠.故选:B .7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为()A .()7791x y x y +=⎧⎨-=⎩B .()7791x y x y +=⎧⎨+=⎩C .()7791x y x y-=⎧⎨-=⎩D .()7791x y x y+=⎧⎨+=⎩【答案】A【分析】本题考查了由实际问题抽象出二元一次方程组.设该店有客房x 间,房客y 人;每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:()7791x yx y +=⎧⎨-=⎩,故选:A .8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m【答案】A【分析】本题考查了解直角三角形,与俯角有关的解直角三角形,矩形的判定与性质,先证明四边形EFDG 、EFBM 、CDBN 是矩形,再设m GM x =,表示()5m EM x =+,然后在Rt tan AMAEM AEM EM∠=,,以及Rt tan AN ACN ACN CN ∠= ,,运用线段和差关系,即∵MEF EFB CDF ∠=∠=∠∴四边形EFDG 是矩形∵90MEF EFB B ∠=∠=∠=∴四边形EFBM 是矩形同理得四边形CDBN 是矩形故选:A二、填空题9.已知一元二次方程230x x m -+=的一个根为1,则m =.【答案】2【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解: 关于x 的一元二次方程230x x m -+=的一个根为1,1x ∴=满足一元二次方程230x x m -+=,130m ∴-+=,解得,2m =.故答案为:2.10.如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是.(写出一个答案即可)∴正方形DEFG 的边长GH DE CD <<,即13DE <≤,∴正方形DEFG 的边长可以是2,故答案为:2(答案不唯一).11.如图,在矩形ABCD 中,BC =,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为.12.如图,在平面直角坐标系中,四边形AOCB 为菱形,tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0ky k x=≠上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A B 、作x 轴的垂线,垂足分别为D E 、,然后根据特殊三角函数值结合勾股定理求得232A ⎛⎫ ⎪⎝⎭,,52OA =,再求得点()42B ,,利用待定系数法求解即可.【详解】解:过点A B 、作x 轴的垂线,垂足分别为D E 、,如图,∵4tan 3AOC ∠=,∴43AD OD =,∴设4AD a =,则3OD a =,∴点()34A a a ,,∵点A 在反比例函数3y x=上,∴343a a ⋅=,∴12a =(负值已舍),则点232A ⎛⎫⎪⎝⎭,,∴2AD =,32OD =,∴2252OA OD AD =+=,∵四边形AOCB 为菱形,13.如图,在ABC 中,AB BC =,tan 12B ∠=,D 为BC 上一点,且满足5BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.∵85BD DC =,AB BC =,设13AB BC x ==,∴85BD x DC x ==,,∵5tan 12B ∠=,AH CB ⊥,∴cos DM CD =⋅∵DE AD ⊥,CM ∴MC DE ∥,∴CE DM ==三、解答题14.计算:()1012cos 45 3.1414π-⎛⎫-⋅︒+-+ ⎪⎝⎭.15.先化简,再求值:221111a aa a-+⎛⎫-÷⎪,其中1a=+16.据了解,“i深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50,50学校B:(1)学校平均数众数中位数方差A①________4883.299B 48.4②________③________354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.【答案】(1)①48.3;②25;③47.5(2)小明爸爸应该预约学校A ,理由见解析【分析】本题考查求平均数,中位数和众数,利用方差判断稳定性:(1)根据平均数,中位数和众数的确定方法,进行求解即可;(2)根据方差判断稳定性,进行判断即可.【详解】(1)解:①()1283040454848484848505048.310++++++++++=;②数据中出现次数最多的是25,故众数为25;③数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=;填表如下:学校平均数众数中位数方差A 48.34883.299B 48.42547.5354.04(2)小明爸爸应该预约学校A ,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼.17.背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?18.如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若56AB =5BE =,求O 的半径.【答案】(1)见解析(2)35【分析】本题考查切线的性质,圆周角定理,中垂线的判定和性质,矩形的判定和性质:(1)连接BO 并延长,交AD 于点H ,连接OD ,易证BO 垂直平分AD ,圆周角定理,切线的性质,推出四边形BHDE 为矩形,即可得证;(2)由(1)可知5DH BE ==,勾股定理求出BH 的长,设O 的半径为r ,在Rt AOH △中,利用勾股定理进行求解即可.【详解】(1)证明:连接BO 并延长,交AD 于点H ,连接OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,∴BH AD ⊥,AH DH =,∵BE 为O 的切线,∴HB BE ⊥,∵AC 为O 的直径,∴90ADC ∠=︒,19.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x ,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.观察图象知,函数为二次函数,20.垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,AF =2CE =,则AE =________;AB =________;(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由;(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具);②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE,请直接写出PE的值.第二种情况:作ABC ∠的平分线,取CH CB =线BA 上取AF AB =,连接DF 故A 为BF 的中点;第三种情况:作AD BC ∥,交BE 的延长线于点在DA 延长线上取点F ,使则A 为DF 的中点,同理可证明12AD BC =,从而②若按照图1作图,∠=∠,由题意可知,ACB ACP四边形ABCD是平行四边形,ACB PAC∴∠=∠,∴∠=∠,PAC PCA延长CA 、DF 交于点G ,同理可得:PGC 是等腰三角形,连接PA ,GF BC ∥ ,故答案为:3414PE =或3412.【点睛】本题考查了垂中平行四边形的定义,平行四边形的性质与判定,相似三角形的判定与性质,勾股定理,尺规作图,等腰三角形的判定与性质等,熟练掌握以上知识点,读懂题意并作出合适的。
【真题】2020年深圳市中考数学试卷含答案解析(2)(Word版)

2020年广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B.C.D.62.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)图中立体图形的主视图是()A.B. C.D.4.(3.00分)观察下列图形,是中心对称图形的是()A. B.C.D.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,106.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B.C.D.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA ∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9=.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2020﹣π)0.18.(6.00分)先化简,再求值:,其中x=2.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A 和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2020年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B.C.D.6【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)图中立体图形的主视图是()A.B. C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)观察下列图形,是中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、+无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B.C.D.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b >0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA ∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,),∴BP=|﹣n|,∴S△BOP=|﹣n|×m=|12﹣mn|∵PA∥x轴,∴A(,n),∴AP=|﹣m|,∴S△AOP=|﹣m|×n=|12﹣mn|,∴S△AOP =S△BOP,故②正确;如图,过点P作PF⊥OA于F,PE⊥OB于E,∴S△AOP =OA×PF,S△BOP=OB×PE,∵S△AOP =S△BOP,∴OB×PE=OA×PE,∵OA=OB,∴PE=PF,∵PE⊥OB,PF⊥OA,∴OP是∠AOB的平分线,故③正确;如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,∴四边形OMPN 是矩形, ∵点A ,B 在双曲线y=上,∴S △AMO =S △BNO =6, ∵S △BOP =4, ∴S △PMO =S △PNO =2, ∴S 矩形OMPN =4, ∴mn=4, ∴m=, ∴BP=|﹣n |=|3n ﹣n |=2|n |,AP=|﹣m |=,∴S △APB=AP ×BP=×2|n |×=8,故④错误;∴正确的有②③, 故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8.【分析】根据正方形的性质得到AC=AF,∠CAF=90°,证明△CAE≌△AFB,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE==,连接CF,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠FAE,∴△AEF∽△AFC,∴,∴AC===,故答案为.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2020﹣π)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×++1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)先化简,再求值:,其中x=2.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=把x=2代入得:原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100人,a=0.25,b=15.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A 和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN 全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,∵cosB==,在Rt△AMB中,BM=1,∴AB==;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得,即OP=FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点代入,解得:a=1,∴抛物线的解析式为:;(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴,设点P(t,﹣2t﹣1),则:解得,,由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳市 2006 年初中毕业生学业考试数学试卷说明: 1.全卷分第一卷和第二卷,共 8 页.第一卷为选择题,第二卷为非选择题.考试时间 90 分钟,满分 100 分. 2.答题前,请将姓名、考生号、科目代号、试室号和座位号填涂在答题卡上;将考场、试室号、座位号、考生号和姓名写在第二卷密封线内.不得在答题卡和试卷上做任何标记. 3.第一卷选择题(1-10),每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,凡答案写在第一卷上不给分;第二卷非选择题 (11-22)答案必须写在第二卷题目指定位置上.4.考试结束,请将本试卷和答题卡一并交回.第一卷(选择题,共 30 分)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分) 每小题给出4个答案,其中只有一个是正确的.请用2B 铅笔在答题卡上将该题相对应的答案标号涂黑.1.-3的绝对值等于A. 3B.3C. 1 3D. 1 32.如图1所示,圆柱的俯视图是图1ABCD3.今年 1—5 月份,深圳市累计完成地方一般预算收入 216.58 亿元,数据 216.58 亿精确到A.百亿位B.亿位C.百万位D.百分位4.下列图形中,是.轴对称图形的为ABCD5.下列不等式组的解集,在数轴上表示为如图2所示的是A.x x1 0 20B.x x1 0 20C.x x1 0 20D.x x1 0 20图21/16.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示.那么这六位学生学习时间的众数与中位数分别是A.4 小时和 4.5 小时B.4.5 小时和 4 小时 C.4 小时和 3.5 小时 D.3.5 小时和 4 小时学生姓名 学习时间(小时)小丽 小明 小颖 小华 小乐 小恩46 34 587.函数 y k (k 0) 的图象如图 3 所示,那么函数 y kx k 的图象大致是yxyyyyOxoxoxoxox图3ABCD8.初三的几位同学拍了一张合影作留念,已知冲一张底片需要 0.80 元,洗一张相片需要 0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足 0.5 元,那么参加合影的同学人数A.至多6人B.至少6人C.至多5人D.至少5人9.如图 4,王华晚上由路灯 A 下的 B 处走到C处时,测得影子 CD 的长为1米,继续往前走3米到达E处时,测得影子 EF 的长为 2 米,已知王华的身高是 1.5 米,那么路灯 A 的高度 AB 等于A.4.5 米B.6 米C.7.2 米D.8 米10.如图 5,在□ABCD 中,AB: AD = 3:2,∠ADB=60°,那么 cosA的值等于A. 3 6 6B. 3 2 2 6C. 3 6 6D. 3 2 2 6AB 图4CD E FDCAB图51/1深圳市 2006 年初中毕业生学业考试数学试卷题二号11~得分三02122第二卷(非选择题,共 70 分)得分 阅卷人二、填空题(本大题共 5 小题,每小题 3 分,共 15 分) 请将答案填在答题表一内相应的题号下,否.则.不.给.分..题号11答题表一12131415答案11.某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球 各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是 答案请填在上面答题表一内 .12.化简:2m m2 91 m3答案请填在上面答题表一内.13.如图 6 所示,在四边形 ABCD 中, AB=BC=CD=DA , B对角线 AC 与 BD 相交于点 O.若不增加任何字母与辅 助线,要使得四边形 ABCD 是正方形,则还需增加的一个条件是 答案请填在上面答题表一内 .图6AODC14.人民公园的侧门口有 9 级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别 为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依 次为1、2、3、5、8、13、21……这就是著名的斐波那契数列.那么小聪上这9级台阶共 有 答案请填在上面答题表一内种不同方法.15 . 在 △ ABC 中 , AB 边 上 的 中 线 CD=3 , AB=6 , BC+AC=8 , 则 △ ABC 的 面 积 为 答案请填在上面答题表一内.1/1三、解答题(本大题有 7 题,其中第 16、17 题各 6 分;第 18 题7分;第 19、20 题各8分;第 21、22 题各 10 分,共 55 分)得分 阅卷人 16.(6 分)计算: 22 8 sin 45 21 (3.14 )0解:原式=得分 阅卷人17.(6 分)解方程: 2 x 1 1 x3 3x解:别忘了 验根哦!得分 阅卷人 证明:18.(7分)如图 7,在梯形 ABCD 中,AD∥BC, AB DC AD, ADC 120 .(1)(3分)求证: BD DCAD(2)(4分)若 AB 4 ,求梯形 ABCD 的面积.解:BC图7得分 阅卷人1/119.(8 分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学 四类.在“深圳读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各 类图书的借阅量进行了统计,图 8-1 和图 8-2 是图书管理员通过采集数据后,绘制的两幅不完整的频 率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:借阅量/册频率分布表 图书种类 频数频率1000 800自然科学4000.20600文学艺术 1000 0.50400社会百科5000.25200数学0自然科学 文学艺术 社会百科 数学图书图 8-1图 8-2(1)(2 分)填充图 8-1 频率分布表中的空格.(2)(2 分)在图 8-2 中,将表示“自然科学”的部分补充完整.(3)(2 分)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适? 解:(4)(2 分) 根据图表提供的信息,请你提出一条合理化的建议.得分 阅卷人1/120.(8 分)工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八 五折销售该工艺品 8 件与将标价降低 35 元销售该工艺品 12 件所获利润相等. (1)(4 分)该工艺品每件的进价、标价分别是多少元?(2)(4 分)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品 100 件.若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售, 每天获得的利润最大?获得的最大利润是多少元?得分 阅卷人21.(10 分)如图 9,抛物线 y ax2 8ax 12a(a 0) 与 x 轴交于 A 、 B 两点 (点 A 在点 B 的左侧),抛物线上另有一点 C 在第一象限,满足∠ ACB 为直1/1角,且恰使△ OCA ∽△ OBC . (1)(3 分)求线段 OC 的长.解:(2)(3 分)求该抛物线的函数关系式. 解:yCOABx图9(3)(4 分)在 x 轴上是否存在点 P ,使△ BCP 为等腰三角形?若存在,求出所有符合条件的 P 点的坐标;若不存在,请说明理由. 解:得分 阅卷人22.(10 分)如图 10-1,在平面直角坐标系 xoy 中,点 M 在 x 轴的正半轴上, ⊙ M 交 x 轴于 A、B 两点,交 y 轴于 C、D 两点,且 C 为 AE 的中点, AEy1/1CEG交 y 轴于 G 点,若点 A 的坐标为(-2,0), AE 8 (1)(3 分)求点 C 的坐标.解:(2)(3 分)连结 MG、BC ,求证: MG ∥ BC证明:(3)(4分) 如图 10-2,过点 D 作⊙ M 的切线,交 x 轴于点 P .动点 F 在⊙ M 的圆周上运动时, OF 的比值是否发生变化,若不变,求出比值;若变化,说明变化规律. PF解:y ECGp A OM FBxD图10-2深圳市 2006 年初中毕业生学业考试数学试题1/1答案及评分意见一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)题号 12345678910答案 BCCDDACBBA二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)答题表一题号111213答案131 m3AC BD 或 AB BC 或ABD=45o……等等1415557三、解答题(本大题有 7 题,其中第 16、17 题各 6 分;第 18 题7分;第 19、20 题各8分;第 21、22 题各 10 分,共 55 分)16.解:原式= 4 2 2 2 1 1 22= 4 2 1 1 2= 3 217.解:去分母: (2 x) x 3 1……1+1+1+1分 ……5分 ……6分……2分化简得: 2x 4 x2经检验,原分式方程的根是: x 2 .……4分 ……6分18. (1) 证明: AD∥BC, ADC 120 , C 60 又 AB DC AD ABC C 60 ,……1 分A BABD ADB DBC 30 ……2 分DC E BDC 90 , BD DC…… 3 分(2)解:过 D 作 DE BC 于 E, 在 Rt DEC 中, C 60 , AB DC 4 DE sin 60 , DE 2 3 (1分) DC1/1在 Rt BDC 中, DC sin 30 BCBC 2DC 8(2分)S梯形1(AD 2BC) DE 123(4分)19. (1)(频数)100,(频率)0.05……2分(2)补全频率分布直方图(略)……4分(3) 10000×0.05=500 册……6 分(4) 符合要求即可.……8 分20. (1) 解.设该工艺品每件的进价是 x 元,标价是 y 元.依题意得方程组: y x 45 8y 0.85 8x ( y 35) 12 12x……2 分解得:x 155 y200……3 分答:该工艺品每件的进价是 155 元,标价是 200 元.(2) 解: 设每件应降价 a 元出售,每天获得的利润为W 元. 依题意可得 W 与 a 的函数关系式:W (45 a)(100 4a)……2 分……4 分W 4a2 80a 4500配方得:W 4(a 10)2 4900当 a 10 时,W最大 =4900……3 分答:每件应降价 10 元出售,每天获得的利润最大,最大利润是 4900 元. ……4 分21.(1)解:由 ax 2 -8ax+12a=0(a<0)得x 1 =2,x 2 =6 即:OA=2,OB=6 ∵△OCA∽△OBC∴OC 2 =OA·OB=2×6……1 分 ……2 分∴OC=2 3 (-2 3 舍去)∴线段OC的长为2 3(2)解:∵△OCA∽△OBC∴ AC OA 2 1 BC OC 2 3 3……3 分 y1/1C Ap由AC2+BC2=AB2得k2k)2=(6-2)2解得k=2(-2舍去)……1分过点C作CD⊥AB于点D∴OD=12OB=3……2分将C点的坐标代入抛物线的解析式得∴抛物线的函数关系式为:2……3分(3)解:①当P1与O重合时,△BCP1为等腰三角形∴P1的坐标为(0,0)……1分②当P2B=BC时(P2在B点的左侧),△BCP2为等腰三角形∴P2,0)……2分③当P3为AB的中点时,P3B=P3C,△BCP3为等腰三角形∴P3的坐标为(4,0)……3分④当BP4=BC时(P4在B点的右侧),△BCP4为等腰三角形∴P4,0)∴在x轴上存在点P,使△BCP为等腰三角形,符合条件的点P的坐标为:,0)……4分22.解(1)方法(一)∵直径AB⊥CD∴CO=12CD ……1分 AD =AC∵C为AE 的中点∴AC =CE∴AE =CD∴CD=AE ……2分∴CO=12CD=4 ∴C点的坐标为(0,4) ……3分 方法(二)连接CM,交AE于点N∵C为AC 的中点,M为圆心∴AN=12AE=4 ……1分 CM⊥AE∴∠ANM=∠COM=90°在△ANM和△COM中:CMO AMN ANM COM AM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ANM≌△COM ……2分∴CO=AN=4∴C点的坐标为(0,4) ……3分解(2)设半径AM=CM=r,则OM=r-2由OC2+OM2=MC2得:42+(r-2)2=r2解得:r=5 ……1分∵∠AOC=∠ANM=90°∠EAM=∠MAE ∴△AOG∽△ANM ∴OG AO MN AN= ∵MN=OM=3 即234OG =∴OG=32……2分∵1.5348 OGOC==38OMOB=∴OG OM OC OB=∵∠BOC=∠BOC∴△GOM∽△COB∴∠GMO=∠CBO∴MG∥BC……3分(说明:直接用平行线分线段成比例定理的逆定理不扣分)解(3)连结DM,则DM⊥PD,DO⊥PM∴△MOD∽△MDP,△MOD∽△DOP∴DM2=MO·MP;DO2=OM·OP(说明:直接使用射影定理不扣分)即42=3·OP∴OP=163……1分当点F与点A重合时:2316523OF AOPF AP===-当点F与点B重合时:8316583OF OBPF PB===+……2分当点F不与点A、B重合时:连接OF、PF、MF∵DM2=MO·MP∴FM2=MO·MP∴FM MP OM FM=∵∠AMF=∠FMA∴△MFO∽△MPF∴35 OF MOPF MF==∴综上所述,OFPF的比值不变,比值为35……4分说明:解答题中的其它解法,请参照给分。