空间向量复习PPT教学课件

合集下载

空间向量基本定理--课件(共25张PPT)

空间向量基本定理--课件(共25张PPT)
都叫做基向量.空间任意三个不共面的向量都可以构成空间的一个
基底.
3.单位正交基底:如果空间的一个基底中的三个基向量两两垂直,
且长度都为1,那么这个基底叫做单位正交基底,常用 ,,
表示.
由空间向量基本定理可知,对空间中的任意向量a,均可以分解
为三个向量xi,yj,zk,使a=xi+yj+zk,像这样,把一个空间向量
1 2
1
A. a- b+ c
2 3
2
1 1 1
C. a+ b- c
2 2 2
2 1
1
B.- a+ b+ c
3 2
2
2 2 1
D. a+ b- c
3 3 2
答案:B
1
2
2
1
1
解析:显然 = − = 2 ( + )-3 =-3a+2b+2c.
探究一
探究二
探究三
当堂检测
应用空间向量基本定理证明线线位置关系
解析:只有不共面的三个向量才能作为一个基底,在三棱柱中,
,,1 不共面,可作为基底。
激趣诱思
知识点拨
微判断
判断下列说法是否正确,正确的在后面的括号内打“√”,错误
的打“×”.
(1)空间向量的基底是唯一的.(
)
(2)若a,b,c是空间向量的一个基底,则a,b,c均为非零向
量.(
)
(3)已知A,B,M,N是空间四点,若, , 不能构成空间的
=
1 1 1
1
+ - · --
2 2 2
3
2 √10
√3× 3
=

第八章第五节空间向量的运算及应用课件共60张PPT

第八章第五节空间向量的运算及应用课件共60张PPT

A.-12 a+12 b+c
B.12 a+12 b+c
C.-12 a-12 b+c
D.12 a-12 b+c
A
→ [BM
=BB1+B1M=AA1+12
→ (AD
-A→B
)=c+12
(b-a)=-12
a+12
b+c.]
4.若平面 α 的一个法向量为 u1=(-3,y,2),平面 β 的一个法向量为 u2=(6,-2,z),且 α∥β,则 y+z=________.
向量的基本定理及其意义,掌握空间 小问.
向量的正交分解及其坐标表示. 学科素养: 逻辑推理、数学运算.
课程标准
考向预测
3.掌握空间向量的线性运算及其坐 考情分析: 本节主要考查空间向量
标表示. 的线性运算、数量积及其坐标运算,
4.掌握空间向量的数量积及其坐标 利用空间向量证明空间中的平行与
表示,能运用向量的数量积判断向量 垂直关系,多出现在解答题中的第一
解析: (1)由题意可知,A→B =O→B -O→A =a+2b,A→C =O→C -O→A =
-a-2b,∴A→B =-A→C ,又A→B ,A→C 有公共点,∴A,B,C 三点共线.
(2)∵A→M =kAC1,B→N =kB→C ,∴M→N =M→A +A→B +B→N =kC1A+A→B

→ k BC
-4),点 E,F 分别为线段 BC,AD 的中点,则E→F 的坐标为( )
A.(2,3,3)
B.(-2,-3,-3)
C.(5,-2,1)
D.(-5,2,-1)
B [因为点 E,F 分别为线段 BC,AD 的中点.设 O 为坐标原点,所以E→F
=O→F
-O→E

空间向量基本定理PPT优秀课件

空间向量基本定理PPT优秀课件
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
CA
/

a

b

c
OG

1
ab
1
c
2
2
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
e2
M
C 对向量a进行分
解:
a
e 1 OCOMON
O N
t1e1 t2e2
问题 情境
在空间向量中,我们还可以作怎样的推广呢? 即空间任一向量能用三个不共面的向量来 线性表示吗?

空间向量复习(PPT)5-3

空间向量复习(PPT)5-3

• 面面 | cos || cos n1 • n2 |
• 点面
• 点线
距离 • 点面 • 线线
h | AB•n | |n|
• 线面 其中n为法向量
• 面面
空间向量基础知识
• 空间向量的坐标表示uuur: A(x1, y1, z1) B(x2, y2, z2) AB (x2 x1, y2 y1, z2 z1)
• 空间向量的运算法则:若a (x1, y1, z1),b (x2, y2, z2)
新疆 王新敞
奎屯
a b (x1 x2 , y1 y2 , z1 z2 )
【殡殓】动入殓和出殡:办理~事宜。 【殡仪馆】名供停放灵柩和办理丧事的机构。 【殡葬】动出殡和埋葬:~工|~管理处。 【膑】(臏)同“髌”。
【髌】(髕)①髌骨。②古代削去髌骨的酷刑。 【髌骨】名膝盖部的一块骨,略呈三角形,尖
空间角及距离公式
• 线线 cos | cos a •b |
夹角 • 线面 sin | cos a • n |
a (x1, y1, z1)
ቤተ መጻሕፍቲ ባይዱ
a • b x1x2 y1 y2 z1z2
长,家庭教师和家长,店员和店主)。 【宾服】ī〈书〉动服从;归附。 【宾服】ī?〈方〉动佩服:你说的那个理,俺不~。 【宾馆】ī名招待来宾住宿的地 方。现指较大而设施好的旅馆。 【宾客】ī名客人(总称):迎接八方~。 【宾朋】ī名宾客;朋友:~满座。 【宾语】ī名动词的一种连带成分,一般在动词 后边,用来回答“谁?”或“什么?”例如“我找; / 笔趣阁小说阅读网;厂长”的“厂长”,“他开拖拉机”的“拖拉机”,“接 受批评”的“批评”,“他说他不知道”的“他不知道”。有时候一个动词可以带两个宾语,如“教我们化学”的“我们”和“化学”。 【宾至如归】īī客 人到了这里就像回到自己的家一样,形容旅馆、饭馆等招待周到。 【宾主】ī名客人和主人:~双方进行了友好的会谈。 【彬】ī①[彬彬](īī)〈书〉形文 雅的样子:~有礼|文质~。②(ī)名姓。 【傧】(儐)ī[傧相](ī)名①古代称接引宾客的人,也指赞礼的人。②举行婚礼时陪伴新郎新娘的人: 男~|女~。 【斌】ī同“彬”。 【滨】(濱)ī①水边;近水的地方:海~|湖~|湘江之~。②靠近(水边):~海|~江。③(ī)名姓。 【缤】(繽) ī[缤纷](ī)〈书〉形繁多而凌乱:五彩~|落英(花)~。 【槟】(檳、梹)ī[槟子](ī?)名①槟子树,花红的一种,果实比苹果小,红色,熟后转 紫红,味酸甜带涩。②这种植物的果实。 【镔】(鑌)ī[镔铁](ī)名精炼的铁。 【濒】(瀕)ī①紧靠(水边):~湖|东~大海。②临近;接近:~ 危|~行。 【濒绝】ī动濒临灭绝或绝迹:~物种。 【濒临】ī动紧接;临近:我国~太平洋|精神~崩溃的边缘。 【濒死】ī动临近死亡:从~状态下抢救过 来。 【濒危】ī动接近危险的境地,指人病重将死或物种临近灭绝:病人~|~动物。 【濒于】ī动临近;接近(用于坏的遭遇):~危境|~绝望|~破产。 【豳】ī古地名,在今陕西彬县、旬邑一带。也作邠。 【摈】(擯)〈书〉抛弃;排除:~诸门外|~而不用。 【摈斥】动排斥:~异己。 【摈除】动排除; 抛弃:~陈规陋习。 【摈弃】动抛弃:~旧观念。 【殡】(殯)停放灵柩;把灵柩送到埋葬或火化的地方去:出~|~车。 【殡车】名出殡时运灵柩的车。

1.2 空间向量基本定理(共26张PPT)

1.2 空间向量基本定理(共26张PPT)
(2)求异面直线 AB1 与 BC1 所成角的余弦值.
解:(1) BC
1
BB1 B1C1 BB1 A1C1 A1 B1 a c b
a b a b cos BAA1 11 cos60
a c b
BC1
2
1
1
a cb c ,
,同理可得






跟踪训练 1.如图所示,在平行六面体 ABCD-A′B′C′D′中,AB=a,AD=b,AA′
=c,P 是 CA′的中点,M 是 CD′的中点,N 是 C′D′的中点,点 Q 在 CA′上,
且 CQ∶QA′=4∶1,用基底{a,b,c}表示以下向量.








(1)AP;(2)AM;(3)AN;(4)AQ.
AB1 BC1
AB1 BC1

2
2
a c a b b a c b b 1,
1
2 3

6
6

异面直线 AB1 与 BC1 所成角的余弦值为 6 .
6
课堂小结
1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基
础.
2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利
5.若{a,b,c}是空间的一个基底,试判断{a+b,b+c,c+a}能否作为空间的一个基底.
解:假设a+b,b+c,c+a共面,则存在实数λ,μ,使得a+b=λ(b+c)+μ(c+a),
即a+b=μa+λb+(λ+μ)c.

数学人教A版选择性必修第一册1.1.1空间向量及其线性运算共20张ppt

数学人教A版选择性必修第一册1.1.1空间向量及其线性运算共20张ppt

ab
c
一.空间向量的概念
相等向量:方向相同且模相等的向量称为相等向量, 同向且等长的有向线段表示同一向量或相等向量.
空间向量是自由的,所以对于空间中的任意两个非零向量,我们都可以通过 平移使它们的起点重合.因为两条相交直线确定一个平面,所以起点重合的两个不 共线向量可以确定一个平面,也就是说,任意两个空问向量都可以平移到同一个 平面内,成为同一平面内的两个向量。
一.空间向量的概念
空间中具有大小和方向的量叫做空间向量, 空间向量的大小叫做空间向量的长度或模.
表示:用字母a,b,c,…表示,或用有向线段表示, 有向线段的长度表示向量的模,a的起点是A,终点是B, 则a也可记作AB,其模记为|a|或|AB|.
A
a B A
C
O
B
一.空间向量的概念
特殊向量
A 零向量:规定长度为0的向量叫零向量,
A1A2 A2 A3 A3 A4 An1 An A1 An
A1
An 1
An A2
A3
A4
首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终 点的向量.
二.空间向量的线性运算
在空间中,任意两个向量都可以平 移到同一个平面内,所以空间向量的 加法和减法运算与平面向量相同.
(2)空间向量的减法运算: AB OB OA
注:起点相同,差向量为减向量终点指向被减向量的终点
二.空间向量的线性运算
数乘运算
实数与向量a的积是一个向量,这种 运算叫向量的数乘 . 记作 a,它的长度和方向规定 如下: (1) a a ; (2)当 0时, a的方向与a的方向相同;
当 0时, a的方向与a的方向相反; 当 0时, a 0.
向量的加、减、数乘运算统称向量的线性运算.

第一章空间向量复习课高中数学人教A版选择性必修1课件

第一章空间向量复习课高中数学人教A版选择性必修1课件
①求点 到平面的距离;
②求直线 与平面所成角的正弦值;
③求二面角 − − 的大小.
解:①思路一:几何法
① 作、证、求
② 等体积法
思路二:代数法
= 斜向量∙单位法向量 = ∙ ||

③ 点的迁移
空间向量的应用:
二、空间量的计算
例2.如图,在边长为2的正方体 − 中,, 分别为, 的中点.
点, 分别为 和 的中点.
① 若 = ,求三棱柱 − 的体积;
② 证明: ∥平面 ;
③ 请问当′ 为何值时, ⊥平面 ?试证明你的结论
解:③思路一:几何法
思路二:代数法
线线垂直:共面用“勾股定理”、异面用“三垂线定理”、线面垂直



空间向量的应用:
一、位置关系的判断
线面垂直
线面平行
依据:向量共面、向量垂直
空间向量的应用:
一、位置关系的判断
例1.如图,已知三棱柱 − ′ ′ ′的侧棱垂直于底面, = = , ∠ = °,
点, 分别为′ 和′ ′的中点.
① 若′ = ,求三棱柱 − ′ ′ ′的体积;
线线垂直: ⊥ ⟺ ⊥ ⟺ ∙ =
法向量: ⊥平面 , ⊥平面 ⟺ ∥
空间向量的应用:
二、空间量的计算
空间距离
空间的角
空间向量的应用:
二、空间量的计算
例2.如图,在边长为2的正方体 − 中,, 分别为, 的中点.

2. 向量的坐标表示
若 , , , ( , , ), 则 = ( − , − , − )
若 , , , 则 = (, , )

高考数学专题复习《空间向量及其运算》PPT课件

高考数学专题复习《空间向量及其运算》PPT课件
(3)a·b= x1x2+y1y2+z1z2
;
(4)|a|= ·=
(5)当 a≠0 且 b≠0
12 + 12 + 12
·
时,cos<a,b>=||||
;
=
1 2 +1 2 +1 2
12 +12 +12 22 +22 +22
.
9.空间向量的坐标与空间向量的平行、垂直
第七章
7.5 空间向量及其运算




01பைடு நூலகம்
必备知识 预案自诊
02
关键能力 学案突破
【知识梳理】
1.空间向量
(1)定义:空间中既有 大小
又有 方向
(2)向量的模(或长度):向量的 大小
.
的量称为空间向量.
(3)表示方法:
①几何表示法:可以用 有向线段
来直观的表示向量,如始点为A终点
为B的向量,记为 ,向量的模用 | | 表示.
(ⅰ)当λ>0时,与a的方向 相同
;
(ⅱ)当λ<0时,与a的方向 相反
,而且λa的方向:
.
②当λ=0或a=0时,λa= 0 .
(4)空间向量的线性运算满足如下运算律:
对于实数λ与μ,向量a与b,有λa+μa=(λ+μ)a,λ(a+b)=λa+λb.
4.空间向量的数量积
(1)空间向量的夹角
非零
<a,b>
x2=λx1
(1)当 a≠0 时,a∥b⇔b=λa⇔(x2,y2,z2)=λ(x1,y1,z1)⇔ y2=λy1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)求EF与C1G所成的角的余弦;
的中点,
D1
C1
(3)求的FH长
A1
B1
E
H
D A
GC F
B
例题2
已知ABCD是上.下底边长分别为2和6,高为 3 的等腰梯形,将它沿对称轴OO1折成直二面角, 如图2. (Ⅰ)证明:AC⊥BO1; (Ⅱ)求二面角O-AC-O1的大小.
例题3
如图,在四棱锥V-ABCD中,底面ABCD是正方形, 侧面VAD是正三角形,平面VAD⊥底面ABCD
的正方形,侧棱长为b,且 AA1B1 AA1D1 120 (1)求 AC1 的长;
(2)证明:AA1⊥BD, AC1⊥BD (3)求当a:b为多少时,能使AC1⊥BDA1
D1 A1
C1
D
B1 C
A
B
小测
1.棱长为a的正四面体 ABCD中,AB BC AC BD 。
2.向量a,b,c 两两夹角都是60 , | a |1,| b | 2,| c | 3 ,
A’ A’ A’ A’ A’A’ A’ A’ A’ A’ A’ C’ C’ C’ C’ C’ C’ B’ B’ B’ B’ B’ B’
A A A A AA
C C C C CC C C C C C
B B B B BB
与三棱柱相对照,请猜想三棱锥体积公式。
定理二:如果三棱锥的底面积是S,高是h,那么 它的体积是 V三棱锥= 1 Sh

S1 h1
h S
平行于平面α的任一平面去截

Sh11
截面面积始终相等
h

两个锥体体积相等
S
α
定理一、等底面积等高的两个锥体体积相等。
S1 h1
S1h1
h
h
S
S
α
证明:取任意两个锥体,设它们的底面积为S,高都是h。把这两个
放在同一个平面α上,这是它们的顶点都在和平面α平行的同
面内,用平行于平面α的任一平面去截截它面们分,别与底面相似,
则 | a b c |

3、已知SABC是棱长为1的空间四边形,M、N分别是
AB,SC的中点,求异面直线SM,BN与所成角的余弦值
S
N
A
C
M B
坐标法
例1.在棱长为的正方体ABCD A1B1C1D1中,EF分别是DD1, DB中点,
G在CD棱上,CG
(1)求证:EF B1C
1 4
CD ,H是C1G ;
• 点面
• 点线
距离 • 点面 • 线线
h | AB•n | |n|
• 线面 其中n为法向量
• 面面
堂上基础训练题
1.已知点A(3,-5,7),点B(1,-4,2),则
AB
的坐
标是_______ ,AB中点坐标是______
| AB|
= ____
2. 已知a (2,3,b)与b (4, a,2)平行,则a+b=_____
• 方向向量:若a // l称a是直线 l的方向向量
• 法向量 若n a则称n是a的法向量 ;
n a n • a x1x2 y1 y2 z1z2 0
空间角及距离公式
• 线线 cos | cos a •b |
夹角 • 线面 sin | cos a • n |
• 面面 | cos || cos n1 • n2 |
B’

1 11 1
A AA A
C
C C CC
CC
C
三棱B锥1、B2的B底B△ABBA’、△BB’A’BB的面积相等, 高也相等(顶点都是C)。
定理二:如果三棱锥的底面积是S,高是h,那么
A’
它的体积是
A’
V三棱锥=
1Sh
3
A’
3
C’
1
A
2 B’
C
三棱锥2、3的底 △BCB’、△C’B’C 的面积相等。
6、已知 a =(2,-1,3),b =(-4,2,x),若a与b 夹角是钝角,则x取值范围是_____
7.若 | a | 3,| b | 2,| a b | 7,则a与b 的夹角为
.
8.设|m|=1,|n|=2,2m+n与m-3n垂直,a=4m-n,
b=7m+2n,则a,b =________
向量法
定理二:如果三棱锥的底面积是S,高是h,那么
它的体积是
V三棱锥=
1 3
Sh
A’
A’
A’
3
C’
2 B’
B’
1
A
C 三棱锥1、2的底
C
C
△ABA’、△B’A’B
的面积相等。
B
B
定理二:如果三棱锥的底面积是S,高是h,那么
它的体积是
V三棱锥=
1 Sh
3
A’ A’ A’ A’ A’
A’ A’
A’
3
C’
2 2B’ B’ 2 B2’ B’
3
证明:在平面BCD内,作DE ⊥BC,垂足为E,
A 连接AE, DE就是AE在平面BCD上的射影。
根据三垂线定理,AE ⊥ BC。
∴ ∠AED=θ。
V三棱锥=
1 3
S△B CD ·AD
B θ
E
D
=13
1
×2
BC
·ED
·AD

1 3
×1
2
BC
·AEcosθ·AD
C
= 1 S△AB C ·ADcosθ
例题1.如图,在空间四边形ABCD中,E、F分 别是OC与AB的中点,求证EF 1(OA OB OC)
2O
若 OA 8 AB 6 BC 5 AC 4 8
OAC 45 OAB 60
A
求OA与BC夹角的余弦
F6
E
4
C
B5
例题2
在平行六面体 ABCD A1B1C1D1中,底面ABCD是边长a为
奎屯
a b (x1 x2 , y1 y2 , z1 z2 )
a (x1, y1, z1)
a • b x1x2 y1 y2 z1z2
向量 的共线和共面
• 共线: (1)a // b a b 对应坐标成比例
(2)P、A、B三点共线 OP (1t)OA tOB
• 共面 (1)a,b, p共面 p xa yb 可以用a,b表示 p
C
B’ C
B
B
定理二:如果三棱锥的底面积是S,高是h,那么
A’
它的体积是
A’ A’ A’ A’
V三棱锥=
1Sh
3
A’ A’ A’ A’
A’

3
C’
2
2B’
B’
2
2 B’2B’
B’
2
2B’
2B’2 B’B’
1
A
C
C C C C C C C CC
三棱B锥2、3B的底B △BBCBB’、B △BC’BB’C的B面B积相等。 高也相等(顶点都是A’)。
(Ⅰ)证明AB⊥平面VAD (Ⅱ)求面VAD与面VDB所成的二面角的大小
例题4
已 知 菱 形 ABCD, 其 边 长 为 2 , ∠ BAD=60O, 今
以其对角线BD为棱将菱形折成直二面角,得
空间四边形ABCD(如图),求:
(a)AB与平面ADC的夹角;
二面角B-AD-C的大小。
A
D
B
C
小测
1 . 在 长 方 体 ABCD-A1B1C1D1 中 , AB=2,BC=2,AA1=6,
3
A’
C’ 把三棱锥1以
△ABC为底面、
B’
AA1为侧棱补成 一个三棱柱。
A
C
B
定理二:如果三棱锥的底面积是S,高是h,那么
它的体积是 V三棱锥= 1 Sh
3
连接B’C,然后
A’
C’ 把这个三棱柱
3
分割成三个三
B’
2
棱锥。 就是三棱锥1

和另两个三棱
A
C 锥2、3。
B
定理二:如果三棱锥的底面积是S,高是h,那么
它的体积是
V三棱锥=
1 3
Sh
A’ A’ A’ A’A’AA’’ A’ A’ A’ A’ A’
C’ C’ C’ C’ C’ C’
3

A A A AAA
2 BB’’ B’ B’ B’ B’ B’ 就是三棱锥1 和另两个三棱
C C C C C CC C C C C C 锥2、3。
B B B B B BB
设截面和顶点的距离是h1,截面面积分别是S1、S2,
那么 ∵ S1
h2 1
,S
2
h2 1
S1 S2,S1 S2
S h2 S h2 S S
根据祖搄原理,这两个锥体的体积相等。
与三棱柱相对照,请猜想三棱锥体积公式。
A’
C’
B’
A
C
B
与三棱柱相对照,请猜想三棱锥体积公式。
A’
C’
B’
A
C
B
与三棱柱相对照,请猜想三棱锥体积公式。
结论: V三棱锥=VC-AE D+VB-AE D
练习1:
将长方体沿相邻三个面的对角线截去一个三棱锥, 这个三棱锥的体积是长方体体积几分之几?(请 列出三棱锥体积表达式)
C’ A’
D’
问问题题12、、你如能果有这几是种一
个解平法行?六面
B’
体呢?或者
3
例题一:如图:已知三棱锥A-BCD的侧棱AD垂直于底
面BCD,侧面ABC与底面所成的角为θ 求证:V三棱锥= 1 S△ABC·ADcosθ
相关文档
最新文档