有效数字的修约规则

合集下载

有效数字数值修约及运算法则

有效数字数值修约及运算法则

费休氏水分测定法(P225)
费休氏试液的标定应取3份以上,3次连续标 定结果应在±1%以内,以平均值作为费休 氏试液的滴定度
滴定液(P502)
标定工作应由初标者(配制者)和复标者在相同条 件下各作平行试验3份,除另有规定外,其相对平 均偏差应不得大于0.1%;
初标平均值与复标平均值的相对偏差也不得大于 0.1%;
注意事项
要根据取样的要求,选择相应的量具。 (1) “精密称定”系指称取重量应准确到所取
重量的0.1%,可根据称量选用分析天平或半微量 分析天平;“精密量取”应选用符合国家标准的移 液管;必要时应加校正值。 (2)“称定”(或“量取”)系指称取的重量 (或量取的容量)应准确至所取重量(或容量)的 百分之一。
比如5.28 报告中应该打印数据,应为5.3
有关物质结果的正确书写
超过1%,保留一位小数,比如1.2% 小于1%,保留小数点后两位,比如0.12%
最大杂质峰面积/对照溶液主峰面积 =0.20(0.20%)----百分之一对照
或者=0.20(0.10%)-----两百分之一对照
非水溶液滴定法(P176)
数值修约及其进舍规则
例1 修约间隔为0.1
拟修约数值
修约值
1.050
1.0
0.350
0.4
数值修约及其进舍规则
例2 修约间隔为1000(103)
拟修约数值
修约值
2500
2x103
5500
6x103
例3 将下列数字修约成两位有效位数
拟修约数值 修约值
0.0385
0.038
34500
偏差不得过0.5%,如提取洗涤等操作步骤繁复者, 相对偏差不得过1.0%。

有效数字修约标准操作规程

有效数字修约标准操作规程

有效数字修约标准操作规程有效数字修约标准操作规程一、定义有效数字是指用以表示测量结果或计算结果的数字中,除去最高位以外的其他数字都是准确的,并且可以确定的数字。

二、有效数字的修约原则1. 若最后一位数字小于5,则舍去该数字。

2. 若最后一位数字大于等于5,则进位。

三、有效数字修约的具体操作规程1. 单个数字的有效数字修约。

单个数字的有效数字修约应按照以下步骤进行:步骤1:确定有效数字位数。

有效数字为测量结果或计算结果中,从最高位数字起,包括确定的数字和最后一个不确定的数字。

例如,对于测量结果为1.234 cm的情况,有效数字位数为4位。

步骤2:判断最后一位数字。

若最后一位数字小于5,则舍去该数字;若最后一位数字大于等于5,则进位。

步骤3:修约结果。

将修约后的数字与原始数字进行比较,若相同,则无需修约;若不同,则将修约后的数字代替原始数字,并同时保留有效数字位数。

2. 多个数字的有效数字修约。

多个数字的有效数字修约应按照以下步骤进行:步骤1:确定有效数字位数。

有效数字为测量结果或计算结果中,从最高位数字起,包括确定的数字和最后一个不确定的数字。

例如,对于测量结果为1.234 cm的情况,有效数字位数为4位。

步骤2:对每个数字进行有效数字修约。

按照单个数字的有效数字修约规程,对每个数字进行有效数字修约。

步骤3:修约结果。

将修约后的每个数字按原来的顺序排列,并同时保留有效数字位数。

若有需要,可以进行四舍五入操作。

四、有效数字修约的案例分析案例1:有一个测量结果为12.344 cm,要求按照有效数字修约的原则进行修约。

步骤1:确定有效数字位数为5位。

步骤2:判断最后一位数字为4,小于5,舍去。

步骤3:修约结果为12.34 cm。

案例2:有一个计算结果为12.3456,要求按照有效数字修约的原则进行修约。

步骤1:确定有效数字位数为6位。

步骤2:判断最后一位数字为6,大于等于5,进位。

步骤3:修约结果为12.346。

有效数字修约规程

有效数字修约规程

有效数字修约及其运算规程一.目的为实验室有效数字修约及其运算提供指导,保证有效数字修约及其运算的规范性、科学性和可操作性。

二.适用范围本规程适用于实验室数据计算过程中有效数字修约及其运算。

三.职责实验室所有人员:严格按照有效数字修约及其运算规程填写记录报告。

四.相关规定1.有效数字的基本定义1.1.有效数字是指在检验工作中所能得到有实际意义的数值。

其最后一位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。

最后一位数字的欠准程度通常只能是上下差1单位。

1.2.一个数据的位数不仅表示数量的大小,也反映测量的精确程度。

有效数字就是以一种近似的方式表示报告的数字结果的精确性或者不确定性。

某种意义上说,它是表示一个已知的数据“有多好”的最常见的方式。

2.有效位数2.1.在没有小数位且以若干个零结尾的数值中,有效位数是指从最左一位非0数字向右数,得到的位数减去无效零(即仅为定位用的零)的个数。

例如:35000中若有两个无效0,则为三位有效位数,应写作350×102或3.50×104;若有三个无效0,则为两位有效数,应写作35×103或3.5×104。

当需要在数值的末尾加“0”作定位时,最好采用指数形式表示,否则有效数字的位数含混不清。

2.2.在其他十进位数中,有效数字是指从最左一位非0数字向右数而得到的位数。

例如:3.2、0.32、0.032和0.0032均为两位有效位数,0.320为三位有效位数,10.00为四位有效位数,12.490为五位有效位数。

(数字“0”具有双重意义。

若作为普通数字使用,它就是有效数字;若作为定位用,则不是有效数字。

)2.3.非连续型数值(如个数、分数、倍数)是非测量所得,没有欠准数字的,其有效位数可视为无限多位。

例如:分子式“H2SO4”中的“2”和“4”是个数。

常数π、e和系数2等数值的有效位数可视为是无限多位;含量测定项下“每1 ml的XXX滴定液(0.1mol/L)……”中的“0.1”为名义浓度,规格项下的“0.3g”或“1ml:25mg”中“0.3”、“1”和“25”为标示量,其有效位数也均为无限多位;即在计算中,其有效位数应根据其他数值的最少有效位数而定。

有效数字修约规则

有效数字修约规则
注意:在数字修约时只允许一次修约到所需位 数,不能分次连续修约。所以对于3.149不能先修约
为3.15,再修约为3.2,而应一次 Nhomakorabea约为3.1
当被修约旳数不小于或等 于6时,则进位。
例如:将3.16修约为2位有效数 字时,成果为3.2
注意:3.149修约为两位有效数 字时成果为3.1
当被修约旳数等于5且背面没有数字 或有数字“0”时,如5前面是偶数 则舍去。
有效数字修约规则
数字修约:在处理数据时, 涉及旳各测定值旳有效数字 旳位数可能不同,所以需拟 定各测定值旳有效数字旳位 数。测定值旳有效数字位数 拟定后,就要将他背面多出 旳数字舍弃。舍弃多出数字
旳过程为数字修约。
数字修约规则:四舍六入五成双
当被修约旳数不大于或等于4时,则舍去。
例如:将1.34 和 3.149修约为2位有效数字时,成 果分别为1.3和3.1
例如:将2.45和1.250修约为2位有效数 字时成果分别为2.4和1.2.
如5前面是奇数则进位。
例如:将1.35修约为2位有效数字时成 果为1.4
当被修约旳数等于5且背面有 不为“0”旳数字时,该数字 总比5大,以进位为宜。
例如:将1.851修约为2位有效 数字时,成果为1.9
进舍规则
四舍六入五考虑, 五后非零则进一, 五后皆零视奇偶, 五前为偶应舍去, 五前为奇则进一, 不论数字多少位, 都要一次修约成。

有效数字修约规则

有效数字修约规则

有效数字修约规则有效数字修约是科学实验和数据处理中非常重要的一部分,它涉及到对测量数据的处理和展示。

有效数字修约规则是一种科学的方法,用于确定在测量数据中哪些数字是可靠的,哪些数字是不可靠的,以及如何对这些数字进行修约,以便更好地反映测量的精确度和可靠性。

本文将介绍有效数字修约规则的基本原则和应用方法。

1. 有效数字的定义在科学实验和数据处理中,有效数字是指一个数字中所有能够用来表示测量结果的数字,以及一个不确定数字。

例如,在测量长度时,0.05厘米和0.050厘米都有两个有效数字,而0.0500厘米有三个有效数字。

有效数字是用来表示测量结果的精确度和可靠性的重要指标。

2. 有效数字的修约规则在确定有效数字时,有一些基本的修约规则需要遵循:(1)非零数字是有效数字。

例如,123有三个有效数字,而230有两个有效数字。

(2)零在非零数字之间时,是有效数字。

例如,405有三个有效数字,而4005有四个有效数字。

(3)零在非零数字之前时,不是有效数字。

例如,0.005有一个有效数字,而0.500有三个有效数字。

(4)在科学计数法表示的数字中,所有数字都是有效数字。

例如,3.00×10^2有三个有效数字。

3. 有效数字的修约方法在对测量数据进行有效数字修约时,需要遵循以下几个基本原则:(1)确定最不确定数字。

在测量数据中,最不确定的数字是指测量仪器能够测量到的最小刻度的一半。

例如,如果一个仪器的最小刻度是0.1厘米,那么最不确定数字就是0.05厘米。

(2)根据最不确定数字对测量数据进行修约。

在对测量数据进行有效数字修约时,需要根据最不确定数字来确定修约的位数。

例如,如果最不确定数字是0.05厘米,那么测量结果应该修约到0.01厘米。

(3)进行四舍五入。

在对测量数据进行有效数字修约时,需要进行四舍五入。

例如,如果测量结果为3.567,而最不确定数字是0.01,那么修约后的结果应该为3.57。

4. 有效数字修约的应用有效数字修约在科学实验和数据处理中有着广泛的应用,它可以帮助科学家和工程师更好地理解测量数据的精确度和可靠性,从而更准确地进行数据分析和实验设计。

计算工具中有效数字的修约规则

计算工具中有效数字的修约规则

计算工具中有效数字的修约规则有效数字的修约规则是指在进行数值计算或表示时,对数字进行适当的近似处理,以保留合理的有效位数,并减少舍入误差。

以下将介绍一些常见的有效数字修约规则。

1. 四舍五入法:当待舍去数字小于5时,舍去;当待舍去数字大于5时,进位;当待舍去数字等于5时,根据其前一位数字的奇偶性来判断:奇数进位,偶数舍去。

例如,对于数字3.1456,保留两位有效数字时,应该进行四舍五入,结果为3.15。

2. 向零舍入法:直接舍去小数部分,保留整数部分。

例如,对于数字-2.987,保留一位有效数字时,应该向零舍入,结果为-2。

3. 向上舍入法:无论小数部分的值大小,都进位到下一个整数。

例如,对于数字1.234,保留一位有效数字时,应该向上舍入,结果为2。

4. 向下舍入法:无论小数部分的值大小,都舍去小数部分。

例如,对于数字-4.567,保留两位有效数字时,应该向下舍入,结果为-4.56。

5. 截断法:直接舍去超过有效位数的数字。

例如,对于数字7.890123,保留三位有效数字时,应该截断小数部分,结果为7.89。

6. 绝对误差修约法:根据绝对误差的大小来决定修约。

绝对误差是指实际值与近似值之间的差值。

当绝对误差小于某个阈值时,保留相应的有效位数;当绝对误差大于阈值时,对数值进行修约。

例如,对于数字2.3456,要求保留两位有效数字,且允许的绝对误差为0.005,当近似值与实际值的绝对误差小于0.005时,保留两位有效数字;当绝对误差大于等于0.005时,进行修约。

7. 相对误差修约法:根据相对误差的大小来决定修约。

相对误差是指实际值与近似值之间的相对差值。

当相对误差小于某个阈值时,保留相应的有效位数;当相对误差大于阈值时,对数值进行修约。

例如,对于数字5.6789,要求保留三位有效数字,且允许的相对误差为0.01,当近似值与实际值的相对误差小于0.01时,保留三位有效数字;当相对误差大于等于0.01时,进行修约。

有效数字修约规则

有效数字修约规则

有效数字及计算规则有效数字是指能够代表一定的物理量的数字,即所有实际能测得的确定数字再加上一位不定数字。

例如分析天平测得某物重量0.5020g,其中小数点后前三位是准确数字,第四位是估读的,为不定数字。

小数点前的0不是有效数字,只起到定位作用,而小数点后的两个0都是有效数字。

有效位数:对没有小数位且以若干个零结尾的数值,从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数,对其他十进位数,从非零数字最左一位向右数而得到的位数,就是有效位数。

例1:35000,若有两个无效零,则为三位有效位数,应写为350×102;若有三个无效零,则为两位有效位数,应写为35×103。

例2:3.2 , 0.32 , 0.032 , 0.0032均为两位有效位数;0.0320为三位有效位数。

有效数字的修约规则:1.记录测量数据只应保留一位不定数字。

如滴定管可以准确读至小数点后第一位数字,而第二位就是估读值,因此只能保留至第二位小数。

2.“四舍六入五单双”法则(1)所拟舍去的数字中,最左边第一个数字小于5时舍去,大于5时则进一。

例如:只保留一位小数时,14.2423修约为14.2 ,6.4843修约为6.5。

(2)所拟舍去的数字中,最左边第一个数字等于5而其后面数字不全为0时,则进一;全为0时,保留的数字末位如果为奇数则进一,如为偶数则不进(0以偶数论)。

例如:只保留一位小数时,10.0501修约为10.1;10.05修约为10.0;10.15修约为10.2;10.25修约为10.2。

(3)所摄取的数字并非单独一个数字时,不得对该数字连续修约。

例如45.45修65约为整数应为45 ,而不是45.4565—45.456—45.46—45.5—46 。

有效数字修约和计算

有效数字修约和计算

练习: ➢ 0.23452、0.28350、0.55278、0.45500001、0.01500
两位有效数字:0.23、0.28、0.55、0.46、0.15 三位有效数字:0.235、0.284、0.553、0.455、0.0150
(3)只进不舍规则 在相对标准偏差(RSD)中采取“只进不舍”的规则,如0.162%,0.52%修约时
解析:
计算公式应为乘除运算,其中0.0408的有效数字位数最少,为三位有效数字, 以此为准进行进算(在运算过程中暂时多保留一位)。
0.0408÷1.004×100.0%=4.064%
因标准规定的限度为不得过4.0%,故将计算结果4.064%修约为4.1%,大于 4.0%,应判为不符合规定。(切忌不能以最后标准的有效位数为准则进行运算,运 算是应先按照运算规则修约计算后将计算结果修约到标准中所规定的有效位数,而 后进行判定。)
最后对计算结果进行修约,应只保留至百分位,故: 13.65 + 0.00823 + 1.633 = 13.65 + 0.008 + 1.633 = 15.291,修约为15.29
二、有效数字的运算法则
2、乘除法 许多数值相乘除时,所得积或商的相对误差必较任何一个数值的相对误差大,因
此相乘除时应以诸数值中相对误差最大(即有效位数最少)的数值为准,确定其他数值 在运算中保留的位数和决定计算结果的有效位数。
3、有效数字的修约规则
在多数情况下,测量数据本身并非最后的要求结果,一般需要经一系列运算后才能 获得所需的结果。在计算一组准确度不等(即有效数字位数不同)的数据之前,应先按 照确定了的有效数字将多余的数字修约或整化。 (1)四舍五入法则
如按照英、美、日药典方法修约时,按照四舍五入进舍即可。 (2)四舍六入五成双法则(源自我国科学技术委员会颁布的《数字修约规则》)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有效数字及计算规则
有效数字是指能够代表一定的物理量的数字,即所有实际能测得的确定数字再加上一位不定数字。

例如在分析天平上称得某物重0.5020g,其中小数点后的前三位是确定的数字,而小数点后面第四位是估读的,因此这最后一位是不定数字。

小数点前的0不是有效数字,只起到定位作用,而小数点后面的两个0都是有效数字,故0.5020有四位有效数字。

有效数字的记录及计算规则如下:
1、记录测量数据只应该保留一位不定数字。

如一般滴定管可以准
确读至小数点后第一位数字,而第二位小数是估计值。

因此只
能保留至第二位小数。

2、“四舍六入五单双”法则:
(1)所拟舍去的数字中,其最左边的第一个数字小于5时,则舍去。

例如拟将14.2423修约只保留一位小数时,其所舍去的数字
中最左边的第一个数字是4,则结果成为14.2。

(2)所拟舍去的数字中,其最左边的第一个数字大于5时,则进一。

例如拟将6.4843修约只保留数一位小数时,其所舍去的数字中最左边的第一个数字是8则结果成为6.5。

(3)所拟舍去的数字中,其最左边的第一个数字等于5而其后面的数字并非全部为0时,则进一。

例如拟将21.0501修约只保留数一位小数时,其所舍去的数
字中最左边的第一个数字是5,5后面的数字还有01,则进1,则结果为21.1。

(4)所拟舍去的数字中,其最左边的第一个数字等于5而其后面的数字全部为0时,保留的数字末位如果为奇数则进1,如为偶数则不进(0以偶数论)。

例如将下列数字修约只保留一位小数。

10.05因保留的数字末位为0,以偶数论不进,成为10.0
10.15因保留的数字末位为1,奇数进1,成为10.2
10.25因保留的数字末位为2,偶数不进,成为10.2
10.45因45保留的末位数字是4,偶数不进,成为10.4
(5)所以舍去的数字并非单独的一个数字时,不得对该数字进行连续的修约。

例如:将45.4565修约为整数,不能采取将45.4565---45.456---45.46---45.5---46的方法修约;正确的修约应为45.4565---45。

相关文档
最新文档