初三中考数学总复习教案
中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案一、教学目标:1. 让学生掌握代数应用性问题的基本类型及解题方法。
2. 提高学生将实际问题转化为代数问题的能力。
3. 培养学生运用代数知识解决实际问题的能力。
二、教学内容:1. 代数应用性问题的基本类型:方程问题、不等式问题、函数问题。
2. 解题方法:列方程、列不等式、列函数关系式。
3. 实际问题转化为代数问题的步骤:(1)理解实际问题的背景,找出关键信息。
(2)设未知数,找出已知数。
(3)根据实际问题建立代数模型。
(4)解代数方程(不等式、函数)。
(5)检验解的合理性,解释实际意义。
三、教学重点与难点:1. 教学重点:代数应用性问题的基本类型及解题方法。
2. 教学难点:实际问题转化为代数问题的步骤,解题方法的灵活运用。
四、教学过程:1. 导入:通过一个简单的实际问题,引发学生对代数应用性问题的思考。
2. 讲解:介绍代数应用性问题的基本类型及解题方法,结合实际问题引导学生转化为一元一次方程、一元一次不等式、函数关系式。
3. 案例分析:分析几个典型代数应用性问题,引导学生掌握解题思路。
4. 练习:布置一些代数应用性问题,让学生独立解答,巩固所学知识。
五、课后作业:1. 总结代数应用性问题的解题步骤。
2. 完成课后练习题,巩固所学知识。
3. 收集一些实际问题,尝试将其转化为代数问题,提高解决实际问题的能力。
六、教学策略:1. 案例教学:通过分析具体案例,让学生了解代数应用性问题的特点和解题方法。
2. 问题驱动:引导学生从实际问题中发现问题、提出问题,激发学生解决问题的兴趣。
3. 分组讨论:组织学生分组讨论,促进学生之间的交流与合作,提高解决问题的能力。
4. 反馈与评价:及时给予学生反馈,鼓励学生积极参与,提高课堂效果。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生完成的课后作业,评估学生对代数应用性问题的理解和掌握程度。
中考总复习:矩形、菱形和正方形教案

中考总复习:矩形、菱形和正方形教案一、教学目标:1. 知识与技能:(1)理解矩形、菱形和正方形的定义及性质;(2)掌握矩形、菱形和正方形的判定方法;(3)学会运用矩形、菱形和正方形的性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、推理等方法,探索矩形、菱形和正方形的性质;(2)培养学生的空间想象能力和逻辑思维能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神,增强自信心。
二、教学内容:1. 矩形的性质(1)定义:有一个角为直角的平行四边形叫矩形;(2)性质:对边平行且相等,对角相等,对边垂直。
2. 菱形的性质(1)定义:有一组邻边相等的平行四边形叫菱形;(2)性质:对边平行且相等,对角相等,邻边垂直。
3. 正方形的性质(1)定义:有一个角为直角且有一组邻边相等的矩形叫正方形;(2)性质:对边平行且相等,对角相等,邻边垂直,四条边相等。
4. 矩形、菱形和正方形的判定(1)有一个角为直角的平行四边形是矩形;(2)有一组邻边相等的平行四边形是菱形;(3)有一个角为直角且有一组邻边相等的矩形是正方形。
三、教学重点与难点:1. 重点:矩形、菱形和正方形的性质及判定。
2. 难点:矩形、菱形和正方形性质的灵活运用。
四、教学过程:1. 导入:通过复习平行四边形的性质,引导学生思考矩形、菱形和正方形的特殊性质。
2. 新课导入:介绍矩形、菱形和正方形的定义及性质。
3. 实例分析:运用矩形、菱形和正方形的性质解决实际问题。
4. 判定方法:讲解矩形、菱形和正方形的判定方法。
5. 练习与讨论:学生分组练习,探讨矩形、菱形和正方形的性质及判定。
五、课后作业:1. 复习矩形、菱形和正方形的性质及判定;2. 完成课后练习题,巩固所学知识;3. 思考如何运用矩形、菱形和正方形的性质解决实际问题。
六、教学策略与方法:1. 采用问题驱动法,引导学生探究矩形、菱形和正方形的性质;2. 利用几何画板或实物模型,直观展示矩形、菱形和正方形的性质;3. 运用案例分析法,让学生通过实际问题,巩固矩形、菱形和正方形的知识。
初中数学中考总复习教案

初中数学中考总复习教案第一章:实数与代数1.1 有理数理解有理数的定义及分类掌握有理数的加减乘除运算规则能够进行有理数的乘方和开方运算1.2 整式与分式理解整式和分式的定义掌握整式和分式的加减乘除运算规则能够进行整式和分式的化简和求值第二章:函数与方程2.1 一次函数和二次函数理解一次函数和二次函数的定义和性质掌握一次函数和二次函数的图像和解析式能够解决一次函数和二次函数的实际问题2.2 一元一次方程和一元二次方程理解一元一次方程和一元二次方程的定义和解法掌握一元一次方程和一元二次方程的解法和应用能够解决一元一次方程和一元二次方程的实际问题第三章:几何与变换3.1 平面几何基本概念理解点、线、面的基本概念和性质掌握线段、射线、直线的性质和运算能够进行线段和角的大小比较3.2 三角形理解三角形的定义和性质掌握三角形的分类和判定方法能够解决三角形的相关问题第四章:统计与概率4.1 统计理解统计的基本概念和方法掌握数据的收集、整理和表示方法能够进行数据的分析和解释4.2 概率理解概率的基本概念和方法掌握事件的分类和概率的计算方法能够解决概率相关问题第五章:综合应用题5.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题5.2 函数与方程的综合应用题能够解决涉及函数与方程的综合应用题5.3 几何与变换的综合应用题能够解决涉及几何与变换的综合应用题5.4 统计与概率的综合应用题能够解决涉及统计与概率的综合应用题第六章:实数与代数的综合应用题6.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题,如面积、体积、距离等问题。
6.2 列代数式与求代数式的值能够根据实际问题列出相应的代数式能够求出代数式的值,包括解含绝对值、平方、立方等的代数式。
第七章:函数与方程的综合应用题7.1 一次函数和二次函数的综合应用题能够解决涉及一次函数和二次函数的综合应用题,如实际问题、图像分析等问题。
7.2 一元一次方程和一元二次方程的综合应用题能够解决涉及一元一次方程和一元二次方程的综合应用题,如实际问题、方程组等问题。
2024年九年级中考数学复习第3课时代数式及整式教案

九年级数学科目_复习_课型第__章第__课时,总第___课时月日周用数字、字母和符号表示简单的数量关系时注意书写规范,如乘号“×”用“2、把多项式的同类项合并成一项,叫做合并同类项。
即把它们的 相加作为新的系数,而字母和字母的 不变。
考点五:整式的加减运算单项式与单项式,单项式与多项式及多项式与多项式的加减法实质上是 。
三、典例剖析例1:某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4 月 份增加了15%,则5月份的产值是( )A 、(10%)(15%)a a ⨯-+万元B 、(110%)(115%)a ⨯-+万元C 、(10%15%)a -+万元D 、(110%15%)a ⨯-+万元例2:用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1cm 得到新的正方形,则这根铁丝需增加( )A 、4cmB 、8cmC 、(a+4) cmD 、(a+8) cm例3:已知4a+3b=1,则整式8a+6b3的值为( )A 、3B 、2C 、1D 、2例4:如果12a x y +与21b x y -是同类项,那么a b的值是( ) A 、12B 、13C 、1D 、3 例5、下面是一个简单的数值运算程序,当输入x 的值为3时,则输出的数值为 .四、巩固提升1、(1)用代数式表示“a 、b 两数的平方和”,结果为 ;(2)“比a 的2倍大15的数”用代数式表示是 。
2、化简2a+3a 的结果是( )A .aB .aC .5aD .5a3、计算2x 2+3x 2的结果为( )A .5x 2B .5x 2C .x 2D .x 24、下面是一个简单的数值运算程序,当输入x 的值为3时,则输出的数值为 .5、如果整式x n25x+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.66、多项式1+2xy3xy2的次数及最高次项的系数分别是()A.3,3 B.2,3 C.5,3 D.2,37、定义运算a⊕b=a(1b),下面给出了这种运算的四个结论:①2⊕(2)=6;②若a+b=0,则(a⊕a)+(b⊕b)=2ab;③a⊕b=b⊕a;④若a⊕b=0,则a=0或b=1.其中结论正确的有()A.①②B.①②③C.②③④D.①②④8、如果x=1时,代数式2ax3+3bx+4的值是5,那么x=1时,代数式2ax3+3bx+4的值是.8、甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样五、学后反思本节课你有哪些收获呢?你还存在哪些疑惑呢?六、课后达标:“剑指中考”1、必作:P30-32面,A组第1、2、9、10、12题;B组第2、3题。
初三数学中考总复习教案全集最新版

初三数学中考总复习教案全集最新版一、教学内容二、教学目标1. 掌握数的概念与运算,能够熟练运用各种运算法则进行计算。
2. 学会解一元一次方程、一元二次方程、不等式组,并能解决实际问题。
3. 理解函数的概念,掌握一次函数、二次函数的性质及其图像,了解函数在实际问题中的应用。
4. 掌握几何图形的性质,能够进行几何证明,解决几何问题。
5. 掌握三角形与四边形的性质,熟练运用勾股定理、相似等知识解决相关问题。
6. 理解相似与位似的概念,能够解决实际问题。
7. 学会解三角形,了解圆的性质,并能解决与圆相关的问题。
三、教学难点与重点1. 教学难点:函数的性质及其图像、几何证明、解三角形。
2. 教学重点:数的概念与运算、方程与不等式、几何图形的性质、相似与位似。
四、教具与学具准备1. 教具:多媒体设备、黑板、粉笔。
2. 学具:教材、练习本、圆规、直尺、量角器。
五、教学过程1. 实践情景引入:通过讲解实际生活中的问题,引出本章所学知识。
2. 例题讲解:讲解典型例题,分析解题思路和方法。
3. 随堂练习:布置与例题类似的题目,让学生独立完成,并及时解答疑问。
六、板书设计1. 黑板左侧:列出本章的知识点、公式、定理。
2. 黑板右侧:展示例题、解题过程、答案。
七、作业设计1. 作业题目:(1)计算题:数的概念与运算。
(2)解答题:解一元一次方程、一元二次方程、不等式组。
(3)应用题:函数在实际问题中的应用。
(4)证明题:几何图形的性质与证明。
(5)综合题:三角形、四边形、相似与位似、解三角形、圆等知识点的综合应用。
2. 答案:课后作业答案附后。
八、课后反思及拓展延伸2. 拓展延伸:布置一些提高性的题目,供学有余力的学生进行拓展学习。
同时,鼓励学生参加数学竞赛,提高自己的数学水平。
重点和难点解析1. 教学内容的全面性与深度。
2. 教学目标的明确性与具体性。
3. 教学难点与重点的区分与处理。
4. 教学过程的实践情景引入与随堂练习设计。
中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。
②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。
③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。
(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
①数与代数分为3个大单元:数与式、方程与不等式、函数。
②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。
③统计与概率分为2个大单元:统计与概率。
(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。
2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。
(2)必须深钻教材,不能脱离课本。
(3)掌握基础知识,一定要从理解角度出发。
数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。
相对而言,“题海战术”在这个阶段是不适用的。
(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。
二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。
第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。
中考数学总复习教案七篇

中考数学总复习教案七篇中考数学总复习教案【篇1】【教学目标】1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
【知识讲解】一、本讲主要学习内容1、负数的意义及表示2、零的位置和地位3、有理数的分类4、数轴概念及三要素5、数轴上数与点的对应关系6、数轴上数的比较大小其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。
负数的'意义是难点。
下面概述一下这六点的主要内容1、负数的意义及表示把大于0的数叫正数如5,3,+3等。
在正数前加上“-”号的数叫做负数如-5,-3,-等。
负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位零既不是正数,也不是负数,但它是自然数。
它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
中考数学总复习教案【篇2】一、教材分析1.教学目标、重点、难点.教学目标:(1)通过实例,感受引入负数的必要性.(2)了解正数、负数的概念.(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量.重点:理解相反意义的量,理解负数的意义.难点:正确区分两种相反意义的量,并会用正负数表示.2.例、习题的意图通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性.通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念.例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解.让学生准确的认识和区分正数与负数。
在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示.让学生进一步掌握如何用正、负数表示相反意义的数量.并理解相反意义与数量的含义.进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。
中考数学专题复习《代数应用性问题复习》的教案

中考数学专题复习《代数应用性问题复习》的教案第一章:代数应用性问题概述1.1 教学目标让学生了解代数应用性问题的基本概念和特点。
培养学生解决代数应用性问题的基本思路和方法。
1.2 教学内容代数应用性问题的定义和特点。
代数应用性问题解决的步骤和方法。
1.3 教学过程引入代数应用性问题的概念,让学生举例说明。
引导学生分析代数应用性问题的特点,如实际背景、数学模型等。
讲解代数应用性问题解决的步骤,如理解问题、建立方程等。
第二章:一元一次方程的应用2.1 教学目标让学生掌握一元一次方程的基本概念和解法。
培养学生应用一元一次方程解决实际问题的能力。
2.2 教学内容一元一次方程的定义和性质。
一元一次方程的解法和应用。
2.3 教学过程引入一元一次方程的概念,让学生举例说明。
讲解一元一次方程的性质和解法,如加减法、代入法等。
给出实际问题,让学生应用一元一次方程解决。
第三章:二元一次方程组的应用3.1 教学目标让学生掌握二元一次方程组的基本概念和解法。
培养学生应用二元一次方程组解决实际问题的能力。
3.2 教学内容二元一次方程组的定义和性质。
二元一次方程组的解法和应用。
3.3 教学过程引入二元一次方程组的概念,让学生举例说明。
讲解二元一次方程组的性质和解法,如代入法、消元法等。
给出实际问题,让学生应用二元一次方程组解决。
第四章:不等式的应用4.1 教学目标让学生掌握不等式的基本概念和解法。
培养学生应用不等式解决实际问题的能力。
4.2 教学内容不等式的定义和性质。
不等式的解法和应用。
4.3 教学过程引入不等式的概念,让学生举例说明。
讲解不等式的性质和解法,如大小比较、解集表示等。
第五章:整式的应用5.1 教学目标让学生掌握整式的基本概念和运算规则。
培养学生应用整式解决实际问题的能力。
5.2 教学内容整式的定义和性质。
整式的运算规则和应用。
5.3 教学过程引入整式的概念,让学生举例说明。
讲解整式的性质和运算规则,如加减法、乘除法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三中考数学总复习教案第周星期第课时总课时章节第一章课题实数的有关概念课型复习课教法讲练结合教学目标(知识、能力、教育)1.使学生复习巩固有理数、实数的有关概念.2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3.会求一个数的相反数和绝对值,会比较实数的大小4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
教学重点有理数、无理数、实数、非负数概念;相反数、倒数、数的绝对值概念;教学难点实数的分类,绝对值的意义,非负数的意义。
教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.实数的有关概念(1)有理数: 和统称为有理数。
(2)有理数分类①按定义分: ②按符号分:有理数()()0()()()()⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩;有理数()()()()()()⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩(3)相反数:只有不同的两个数互为相反数。
若a、b互为相反数,则。
(4)数轴:规定了、和的直线叫做数轴。
(5)倒数:乘积的两个数互为倒数。
若a(a≠0)的倒数为1a.则。
(6)绝对值:(7)无理数:小数叫做无理数。
(8)实数: 和 统称为实数。
(9)实数和 的点一一对应。
2.实数的分类:实数3.科学记数法、近似数和有效数字(1)科学记数法:把一个数记成±a×10n的形式(其中1≤a<10,n 是整数)(2)近似数是指根据精确度取其接近准确数的值。
取近似数的原则是“四舍五入”。
(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。
(二):【课前练习】1.|-22|的值是( )A .-2 B.2 C .4 D .-4 2.下列说法不正确的是( )A .没有最大的有理数B .没有最小的有理数C .有最大的负数D .有绝对值最小的有理数 3.在()0222sin 45090.2020020002273π-⋅⋅⋅、、、、、、这七个数中,无理数有( ) A .1个;B .2个;C .3个;D .4个 4.下列命题中正确的是( )A .有限小数是有理数B .数轴上的点与有理数一一对应C .无限小数是无理数D .数轴上的点与实数一一对应5.近似数0.030万精确到 位,有 个有效数字,用科学记数法表示为 万二:【经典考题剖析】1.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m 处,商场在学校西200m 处,医院在学校东500m 处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m .(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.:解:(1)如图所示:(2)300-(-200)=500(m );或|-200-300 |=500(m );或 300+|200|=500(m ).答:青少宫与商场之间的距离是 500m 。
2.下列各数中:-1,0,169,2π,1.1010016.0, ,12-, 45cos ,- 60cos , 722,2,π-722.有理数集合{ …}; 正数集合{ …};()()()()()()()()()()()()⎧⎫⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎭⎪⎪⎫⎧⎪⎨⎬⎪⎩⎭⎩零整数集合{ …};自然数集合{ …};分数集合{ …};无理数集合{ …};绝对值最小的数的集合{ …};3. 已知(x-2)2+|y-4|+6z-=0,求xyz的值.解:48 点拨:一个数的偶数次方、绝对值,非负数的算术平方根均为非负数,若几个非负数的和为零,则这几个非负数均为零.4.已知a与 b互为相反数,c、d互为倒数,m的绝对值是2求32122()2()mma b cdm-+-÷的值5.a、b在数轴上的位置如图所示,且a>b,化简a a b b a-+--三:【课后训练】2、一个数的倒数的相反数是115,则这个数是()A.65B.56C.65D.-563、一个数的绝对值等于这个数的相反数,这样的数是()A.非负数B.非正数C.负数D.正数4、数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是2”,这种说明问题的方式体现的数学思想方法叫()A.代人法B.换元法C.数形结合D.分类讨论5、若a的相反数是最大的负整数,b是绝对值最小的数,则a+b=___________.6、已知x y y x-=-,4,3x y==,则()3x y+=7、光年是天文学中的距离单位,1光年大约是95km,用科学计数法表示 (保留三个有效数字)8、当a为何值时有:①23a-=;②20a-=;③23a-=-9、已知a与 b互为相反数,c、d互为倒数,x的绝对值是2的相反数的负倒数,y不能0ba作除数,求20022001200012()2()a b cd yx+-++的值.10、(1)阅读下面材料:点 A、B在数轴上分别表示实数a,b,A、B两点之间的距离表示为|AB|,当A上两点中有一点在原点时,不妨设点A在原点,如图1-2-4所示,|AB|=|BO|=|b|=|a-b|;当A、B两点都不在原点时,①如图1-2-5所示,点A、B都在原点的右边,|AB|=|BO|-|OA|=|b|-|a|=b-a=|a-b|;②如图1-2-6所示,点A、B都在原点的左边,|AB|=|BO|-|OA|=|b|-|a|=-b-(-a)=|a -b|;③如图1-2-7所示,点A、B在原点的两边多边,|AB|=|BO|+|OA|=|b|+|a|=a+(-b)=|a-b|综上,数轴上 A、B两点之间的距离|AB|=|a-b|(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_____,数轴上表示-2和-5的两点之间的距离是____,数轴上表示1和-3的两点之间的距离是______.②数轴上表示x和-1的两点A和B之间的距离是________,如果 |AB|=2,那么x为_________.③当代数式|x+1|+|x-2|=2 取最小值时,相应的x 的取值范围是_________.四:【课后小结】布置作业见学案教后记第周星期第课时总课时初三备课组章节第一章课题实数的运算课型复习课教法讲练结合教学目标(知识、能力、教育)1.理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2.复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3.会用电子计算器进行四则运算。
教学重点实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的有关应用。
教学难点实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的有关应用。
教学媒体学案5.三个重要的非负数: (二):【课前练习】1. 下列说法中,正确的是( )A .|m|与—m 互为相反数B .2121+-与互为倒数C .1998.8用科学计数法表示为1.9988×102D .0.4949用四舍五入法保留两个有效数字的近似值为0.502. 在函数11y x=-中,自变量x 的取值范围是( )A .x >1B .x <1C .x ≤1D .x ≥13. 按鍵顺序-1·2÷4=,结果是 。
4.16的平方根是______5.计算(1) 32÷(-3)2+|-16|×(- 6)+49;(2) 2(32-23)-(32+23) 二:【经典考题剖析】1.已知x 、y 是实数, 234690,3,.x y y axy x y a ++-+=-=若求实数的值2.请在下列6个实数中,计算有理数的和与无理数的积的差:24014,,2,,27,(1)23π--3.比较大小:(1)35211,(2)155137,(3)103++-与与与3-224.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…那么37的个位数字是 ;320的个位数字是 ; 5.计算:(1)342221(2)(1)(12)()20.25413(2)⎡⎤-⨯---÷-⎢⎥⎣⎦⎡⎤⨯+-⨯-⎣⎦;(2)1002211()(2001tan 30)(2)31621--++-⋅+- 三:【课后训练】1.某公司员工分别住在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个住宅区在同一条直线上,位置如图所示,该公司的接送车打算在此间设一个停靠站,为使所有员工步行到停靠站的路程之和最小, 那么停靠站的位置应设在( )A .A 区;B .B 区;C .C 区;D .A 、B 两区之间2.根据国家税务总局发布的信息,2004年全国税收收入完成25718亿元,比上年增长25.7%,占2004年国内生产总值(GDP )的19%。
根据以上信息,下列说法:①2003年全国税收收入约为25718×(1-25.7%)亿元;②2003年全国税收收入约为257181+25.7%200m 100m A C B布置作业见学案教后记第周星期第课时总课时初三备课组章节第一章课题数的开方与二次根式课型复习课教法讲练结合教学目标(知识、能力、教育)1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。
会求实数的平方根、算术平方根和立方根2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。
掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
教学重点使学生掌握二次根式的有关概念、性质及根式的化简.教学难点二次根式的化简与计算.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.平方根与立方根(1)如果x2=a,那么x叫做a的。
一个正数有个平方根,它们互为;零的平方根是;没有平方根。
(2)如果x3=a,那么x叫做a的。
一个正数有一个的立方根;一个负数有一个的立方根;零的立方根是;2.二次根式(1) (2)(3)(4)二次根式的性质①20,a ≥=若则(a) ;③ab = (0,0)a b ≥≥②2()()a a a a ⎧==⎨-⎩;④(0,0)a a a b b b=≥(5)二次根式的运算①加减法:先化为 ,在合并同类二次根式;②乘法:应用公式(0,0)a b ab a b ⋅=≥≥;③除法:应用公式(0,0)a a a bb b=≥④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。