《高等数学1试题微积分》 (2)
微积分试卷(含答案)

微积分试题一、 填空题(每题2分⨯10=20分)1、函数()f x =的定义域是2、 设()2f x x =- ,则[(2)]f f =3、 22929lim 1n n n n →∞--=- . 4、 0sin 5limsin x x x→= 5、 1lim(1)x x x →∞+= 6、 '(arcsin )x =7、 函数2y x =,则=dy 8、 函数3x y e =的导数为 . 9、 02sin lim x x x→= . 10、数学思维从思维活动的总体规律的角度来考察,可分为形象思维、 、和直觉思维。
二 选择题(每题2分⨯5=10分)1、 若),1()(+=x x x f 则=-)(x f ( ).A x(x-1)B (x-1)(x-2)C x(x+1)D (x+1)(x+2)2、1sin(1)lim 1x x x →-=-( ). A 1 B 0 C 2 D 21 3、 函数)(x f 在0x x =处有定义是)(x f 在0x x =处连续的( ).A 必要条件B 充分条件C 充要条件D 无关条件4、设)(x f y -=,则='y ( ).A )('x fB )('x f -C '()f x --D )('x f -5、 设函数(),()u x v x 在x 可导,则( )A []uv u v '''=B []uv u v '''=-C []u v u v '''⨯=+D []uv u v uv '''=+三、计算题(每小题6分,共24分)1、已知2(tan )6sec f x x =-,求)(x f 2、求极限333lim 22x x x x→∞- 3、求极限0tan sin lim x x x x→- 4、求极限10lim(14)xx x →+四、计算题(每小题8分,共24分)1、求4x y x e =的导数2、设)(x y y =由隐函数5y e xy =+确定,求y '。
微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分试卷及答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim 2=-++∞→n bn an n ,则a = ,b= 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分试卷(附答案)

微积分试卷一、填空题(每题3分,共30分) 1、函数)1ln(3-+-=x x y 的定义域是____________.2、设xx f -=11)(则=))(1(x f f ________________. 3、已知654lim25=-+-→x kx x x ,则k =________________. 4、=+-∞→xx x x )11(lim ____________. 5、设函数⎪⎩⎪⎨⎧=≠=0,0,1sin )(x a x xx x f 为),(+∞-∞上的连续函数,则a =____________ . 6、设)(x f 在0=x 处可导,且0)0(=f ,则=→xx f x )(lim 0. 7、已知xxx f +=1)1(,求)(ln x f '= . 8、曲线)1ln(2x y +=的在区间__________________单调减少。
9、若xe-是)(x f 的原函数,则=⎰dx x f x )(ln 2_____________.10、⎰=xdx x ln _____________. 二、单选题(每题3分,共15分)1、下列极限计算正确的是( )A . 111lim 0=⎪⎭⎫ ⎝⎛++→x x x B. e x xx =⎪⎭⎫⎝⎛++→11lim 0C . 1sin lim=∞→x x x D. 11sin lim 0=→xx x2、函数11arctan )(-=x x f 在x =1处是( ).A. 连续B. 可去间断点C. 跳跃间断点D. 第二类间断点3、函数3)(x x f =在区间]1,0[上满足拉格朗日中值定理,则其ξ=( ).A . 3 B.3- C.33-D. 33 4、当0→x 时,与2x 等价的无穷小是( )。
A. 12-xeB. )21ln(x+ C. )cos 1(2x - D.x arctan5、设)()(x f x F =',则下列正确的表达式是( ) A .⎰+=C x f x dF )()( B. C x F dx x f +=⎰)()(C.⎰+=C x f dx x F dx d)()( D. ⎰+='C x f dx x F )()( 三、计算题(每题8分,共32分)1、求极限xx xx x 3220sin sin lim -→2、求曲线x yy x arctan ln22=+所确定的函数)(x f y =在)0,1(处的切线方程。
微积分试题及答案

微积分试题及答案在高等数学中,微积分是一门重要的学科。
它研究函数的极限、导数、积分等概念,通过对这些概念的理解和应用,可以帮助我们解决各种实际问题。
本文将提供一些微积分的试题,并附带相应的答案,供读者参考。
一、查找函数的极限1. 计算函数f(x) = (2x^2 + 3x - 1) / (3x^2 - 2x + 1)的极限lim(x->1) f(x)。
解答:首先,我们将x代入函数f(x)中,得到:f(x) = (2(1)^2 + 3(1) - 1) / (3(1)^2 - 2(1) + 1)= 4 / 2= 2因此,lim(x->1) f(x) = 2。
二、求函数的导数2. 求函数f(x) = 3x^4 - 8x^3 + 6x^2 - 12x + 2的导数f'(x)。
解答:对于多项式函数,求导的规则是将指数乘以系数,并降低指数1。
根据这个规则,我们对函数f(x)进行求导:f'(x) = 4(3x^3) - 3(8x^2) + 2(6x) - 1(12)= 12x^3 - 24x^2 + 12x - 12三、计算定积分3. 计算积分∫(0,1) x^2 dx。
解答:根据定积分的定义,我们需要计算被积函数x^2在0到1之间的面积。
∫(0,1) x^2 dx = [x^3/3] (0,1)= 1/3 - 0= 1/3四、求解微分方程4. 求微分方程 dy/dx = 2x 的通解。
解答:根据微分方程的性质,我们可以对方程两边同时积分,得到:∫dy = ∫2x dxy = x^2 + C其中,C为常数,代表特解的不确定常数。
这些例题涵盖了微积分中的一些基本概念和技巧。
希望通过这些试题的解答,读者能够更好地理解微积分的相关知识,并在实际应用中灵活运用。
总结:微积分是一门重要的数学学科,对解决实际问题具有广泛的应用。
本文介绍了微积分中的一些试题,并附带了详细的解答。
通过对这些试题的学习和理解,我们可以更好地把握微积分的核心概念和运算技巧。
微积分考试试题及答案

微积分考试试题及答案第一题:求函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点和拐点。
解析:首先,我们需要找到函数的极值点。
极值点对应于函数的导数为零的点。
对函数 f(x) 求导得到 f'(x) = 3x^2 - 6x + 2。
令导数等于零,我们得到一个二次方程 3x^2 - 6x + 2 = 0。
使用求根公式,可以解得这个二次方程的解为x = 1 ± √(2/3)。
所以函数的极值点为x = 1 + √(2/3) 和 x = 1 - √(2/3)。
接下来,我们需要找到函数的拐点。
拐点对应于函数的二阶导数为零的点。
对函数 f(x) 求二阶导数得到 f''(x) = 6x - 6。
令二阶导数等于零,我们得到 x = 1,这是函数的一个拐点。
综上所述,函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点为x = 1 + √(2/3)和 x = 1 - √(2/3),拐点为 x = 1。
第二题:已知函数 f(x) = e^x,在点 x = 0 处的切线方程为 y = mx + b,求参数 m 和 b 的值。
解析:切线方程的斜率 m 等于函数在给定点的导数。
对函数 f(x) = e^x 求导得到 f'(x) = e^x。
根据题意,在 x = 0 处求切线,所以我们需要计算函数在 x = 0 处的导数。
将 x = 0 代入函数的导数表达式中,我们得到 f'(0) = e^0 = 1。
所以切线的斜率 m = 1。
切线方程的常数项 b 可以通过将给定点的坐标代入切线方程求解。
由题意知道切线过点 (0, f(0)),即 (0, e^0) = (0, 1)。
将点 (0, 1) 代入切线方程 y = mx + b,我们得到 1 = 0 + b,解得 b = 1。
综上所述,切线方程为 y = x + 1。
第三题:计算函数f(x) = ∫(0 to x) sin(t^2) dt。
高等数学上册试题及参考答案3篇

高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。
参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。
由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。
微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大一《高等数学A 》
一、单项选择题)
1.设()1,
10,
1
x f x x ⎧≤⎪=⎨
>⎪⎩,则()()()f
f f x =( )
A. 0
B. 1
C. 1,10,
1
x x ⎧≤⎪⎨
>⎪⎩
D.0,11,
1
x x ⎧≤⎪⎨
>⎪⎩
2.设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得( )
A.()f x 在(0,)δ内单调增加.
B.()f x 在(,0)δ-内单调减小.
C.对任意的(0,)x δ∈有()(0)f x f >
D.对任意的(,0)x δ∈-有()(0)f x f >.
3.设0x →时,tan sin e e x x -与n x 是同阶无穷小,则n 为( ) A. 1
B. 2
C. 3
D.4
4.在(),-∞+∞内方程11
4
2
cos 0x x
x +-=( )
A.无实根
B.有且仅有一个实根
C.有且仅有两个实根
D.有无穷多个实根
5.设()f x 对任意x 均满足()()1f x af x +=,且()0f b '=,其中a b ≠为非0非1的常 数,则( ) A.()f x 在1x =处不可导
B.()f x 在1x =处可导,且()1f a '=
C.()f x 在1x =处可导,且()1f b '=
D.()f x 在1x =处可导,且()1f ab '= 6.设(
)()f x f x =--,(),x ∈-∞+∞,且在()0,+∞内()()0,0f x f x '''><,则在(),0-∞
内( )
A.()()0,0f x f x '''>>
B.()()0,0f x f x '''><
C.()()0,0f x f x '''<>
D.()()0,0f x f x '''<<
二、填空题(每小题4分,共24分)
7.设函数()f x 可表示成()()()f x F x G x =+,其中()F x 为偶函数,()G x 为奇函数,则()F x = ,()G x = .
8.0
1lim
ln x
x a x a
→-= .
9.设(
)10,0
x f x x
a bx x ⎧-<⎪
=⎨⎪+≥⎩
,则当a = ,b = 时,()f x 处处可导。
10.设()y f x =由方程2e cos e 1x y xy +-=-所确定,则曲线()y f x =在()0,1处的法线方
程为 .
11.设()f u 可导,函数()y y x =由()22y x x y f x y +=+所确定,则d y = .
12.设()f x 有任意阶导数且()2
()f x f x '=,则()
()n f
x = .(n>2)
三、解答题(每小题9分,共27分)
13.求极限sin sin sin lim sin x
t x
t x t x -→⎛⎫ ⎪⎝⎭
,记此极限为()f x ,求()f x 的间断点,并指出其类型.
14.设4211x y f x ⎛⎫+= ⎪+⎝⎭
,(
)ln
f x '=d d y x
.
15.已知()23e x
f x x =+在1x =处()16e f '=+,()f x 有反函数()x ϕ,求()3e ϕ'+.
四、证明题(每小题9分,共18分)
16.设()010,1sin 1n n x x x -==+-,1,2,n = ,证明数列{}n x 收敛,并求lim n n x →∞。
17.设()f x 在[]0,1上二次可微,且()()010f f ==,证明:存在()0,1ξ∈,使
()()20f f ξξξ'''+=.
五、应用题(本题7分)
18.溶液自深18cm 顶直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中,开始时漏斗中盛满了溶液。
已知当溶液在漏斗中深为12cm 时,其表面下降的速度为1cm/s ,问此时圆柱形筒中溶液表面上升的速度为多少?
参考答案
一、单项选择题:
1. B
2. C,
3. C,
4. C,
5. D,
6. A. 二、填空题: 7.()()11[()()];[()()]2
2
F x f x f x
G x f x f x =+-=
--
8.1
9.11,2
8
a b =
=
,
10.220x y -+=,
11.()()
22221
1
2
2
22
2ln d d ln 2y x y x
x yf x y y x y x y
y x yx
x x y xy f x y ++'+-⋅-⋅⋅=
'+⋅-+;
12.()
()1!()n n f
x n f x +=
三、解答题:
13.解:()sin sin exp lim 1e sin sin sin x
x t x t x f x x
t x →⎧⎫⎛⎫
=-⋅=⎨⎬
⎪-⎝⎭⎩⎭, 间断点为()π0,1,2,x k k ==±± 。
因为()0
lim e x f x →=,所以0x =为第一类间断点,其余间断点属于第二类,无穷间断点。
14.解:令4
2
11
x u x +=
+,则
()
2
2
d 42d 1u x
x x
x
=-
+,所以
()()44
2
2
2222d d d 142121ln d d d 1111y
y u x x
x f x x x u x x x x x ⎧
⎫⎡
⎤⎛⎫++⎪⎪
⎢⎥'==-=-⋅⎨⎬ ⎪⎢⎥++⎝⎭++⎪⎪⎩
⎭⎣
⎦。
15.解:因()13e f =+,所以,()3e 1ϕ+=,()()
1
13e 16e
f ϕ'+==
'+。
四、证明题:
16.证明:()101sin 010x x =+->=,01x ≤<。
假设1n n x x ->和01n x ≤<,则()()11sin 1sin 10n n n n x x x x +--=--->和
101n x +≤<,所以lim n n x →∞
存在。
设lim n n x c →∞
=,在()11s i n 1n n x x -=+-两边令n →∞,有()1s i n 1c c =+-,所以
10c -=,即1c =。
17.证明:令()()F x xf x =。
在[]0,1上,()()()F x f x xf x ''=+,()()010F F ==,由罗尔定理,存在()0,1c ∈,使()0F c '=。
又()()000F f '==,()()()2F x f x xf x '''''=+,[]0,1x ∈,再对()F x '应用罗尔定理,存在()()0,0,1c ξ∈⊂,使()0F ξ''=,即()()20f f ξξξ'''+=。
五、应用题:
18.解:设漏斗在时刻t 的水深为h (cm ),筒中的水深为H (cm ),则漏斗中水面半径满足
618
r h =,即13
r h =。
设盛满溶液时漏斗的体积为2
01π6183
V =
⋅⋅,则有
()2
2
01ππ53
V r h H t -
=⋅
上式两边对t 求导,得 2
d 1d 25d 9d H h h
t
t
=-。
代入
()d 1cm /s d h t
=-,12cm h =,得圆柱形容器中溶液表面上升的速度为
()()2
2
d 12
14
10.64c m /s d 9255
H t
⎛
⎫=-
⋅⋅-== ⎪⎝
⎭。