蒸气云爆炸冲击波uvce

合集下载

蒸汽云爆炸后果分析

蒸汽云爆炸后果分析

1、蒸气云爆炸后果单罐液化天然气泄漏后引发蒸气云爆炸,其后果可以采用TNT 当量法和超压准则来预测,方法如下:(1)蒸气云爆炸的TNT当量W TNT = a WQ/Q TNT式中:W TNT—天然气蒸气云的TNT当量,kg;a—天然气蒸气云的TNT当量系数(统计平均值为0.03);W—天然气蒸气云中可燃气体质量,kg;Q—天然气的高热值,kJ/kg,取56061.88 kJ/kg;Q TNT—TNT的爆炸热,取4500kJ/kg。

如果储罐内的液化天然气全部泄漏,则:W= k ρVk—单罐充装系数,取85%;ρ—泄漏前储罐内液化天然气的密度,kJ/m3,取432.97kg/m3;V—储罐体积,为150m3。

得W=0.85×432.97×150=55203.7kg;W TNT = a WQ/Q TNT=0.03×55203.7×56061.88/4500=20632.15 (kg,TNT)(2)蒸气云爆炸的伤害分区为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径记为R1,表示外圆周处人员因冲击波作用导致肺出血而死亡的概率为0.5,它与爆炸量之间的关系为:R1 = 13.6(W TNT/1000)0.37= 13.6(20632.15/1000)0.37=41.68≈42m重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡。

其内径即为死亡半径R1,外径记为R2,代表该处人员因冲击波作用耳膜破裂的概率为0.5,它要求的冲击波峰值超压为44000Pa。

冲击波超压ΔP按下式计算:ΔP= 0.137 Z-3 + 0.119 Z-2 + 0.269 Z-1 - 0.019ΔP= 44000/P0 = 44000/101325 = 0.434式中:Z= R2/(E/P0)1/3ΔP—冲击波超压,Pa;Z—中间因子;E—蒸气云爆炸能量值,J;E=aWQ=0.03×55203.7×56061.88=92844696.15kJ =92844696150J P0—大气压,取101325Pa;得R2=105.83m≈106m轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。

蒸气云爆炸冲击波uvce

蒸气云爆炸冲击波uvce

L P G罐区定量模拟评价模拟事故及条件液化石油气(LPG)一旦大量泄漏,极易与周围空气混合形成爆炸性混合物,如遇到明火引起火灾爆炸,其产生的爆炸冲击波及爆炸热火球热辐射破坏、伤害作用极大。

LPG 罐区发生过的事故类型主要有蒸气云爆炸(UVCE)和沸腾液体扩展蒸气云爆炸(BLEVE)。

蒸气云爆炸(UVCE)是指可燃气体或蒸气与空气的云状混合物在开阔地上空遇到点火源引发的爆炸。

UVCE发生后的危害主要是爆炸冲击波对周围人员、建筑物、储罐等设备的伤害、破坏。

沸腾液体扩展蒸气云爆炸(BLEVE)是指液化气体储罐在外部火焰的烘烤下突然破裂,压力平衡破坏,液化石油气(LPG)急剧气化,并随即被火焰点燃而产生的爆炸。

BLEVE 发生后的危害主要是火球热辐射危害,同时爆炸产生的碎片和冲击波也有一定的危害。

恒源石化炼油厂液化气储罐区共有液化气储罐9台,总储量3000 m3,最大储罐1000m3。

蒸气云爆炸(UVCE)定量模拟评价TNT当量法是一种对UVCE定量评价的主要方法,首先按超压-冲量准则确定人员伤亡区域及财产损失区域。

冲击波超压破坏准则见表1:表1冲击波超压破坏、伤害准则1发生蒸气云爆炸(UVCE)的LPG的TNT当量WTNT及爆炸总能量E:LPG的TNT当量:WTNT =αWLPGQ/QTNT(1)α为LPG蒸气云当量系数(统计平均值为0.04);WLPG为蒸气云中LPG质量(在此模拟400 m3储罐,折合约240t);Q为LPG燃烧热,46.5MJ/kg;QTNT为TNT爆炸热5.066MJ/kg;由式(1)可求得LPG的TNT当量:WTNT=88.1t;2爆炸冲击波正相最大超压ΔP:LPG的爆炸冲击波正相最大超压:(1)式中,—对比距离。

△P—为冲击波的正相最大超压(kPa);R—为距UVCE中心距离(m);W—为TNT质量或TNT当量(kg)。

图1冲击波的正相最大超压-距UVCE中心距离对数曲线由表1和图1可得出以下结果(表2):表2冲击波超压破坏、伤害距离沸腾液体扩展蒸气云爆炸(BLEVE)定量模拟评价BLEVE是在LPG储罐暴露于火源时发生的,是由储罐区发生的小型火灾引发的。

TNT当量评价简介

TNT当量评价简介

一、固有危险度-TNT当量法介绍1)能量转换概述爆炸理论计算其有关爆炸参数。

在此计算预测的情况下,就可考虑具体的破坏情况、人员伤害情况、其影响范围和程度、对附近的易燃、易爆、毒害物质导致燃烧、爆炸、泄漏、毒害的可能性,由此提出相应的对策措施。

具体计算方法如下:为了计算和评价爆炸效应,人们通常以1000千卡/公斤作为梯恩梯当量。

其计算公式为:W TNT =α·W·Q v / Q TNT式中,α-蒸汽云爆炸的效率因子,表明参与爆炸的可燃气体的分数,一般取3%或4%;W —为A物质质量(kg);Q V —为A物质热值(KJ/kg);(单纯物质热值查阅化学品安全卫生综合信息系统,混合物需要计算出混合热值,参看下表)Q TNT —为TNT的爆炸热,一般取4.52×106J/kg;W TNT —A物质的梯恩梯当量(kg)。

2)单元能量转换(1)热量计算对于装置内的物料量而言,由于介质属于混合类危险物质,火灾、爆炸是装置的主要危险因素。

计算单元混合物质热值可以采用加权平均值的方法粗略估计混合物质的热值。

假设物料各组分已知,如下表所示:附表3-5 混合物料热指计算表VmolWn%—为可燃物质的组分摩尔比(2)TNT计算装置按***万吨/年,***kg/h处理量计,根据各组分物质的量及划分的单元,计算公式如下:W TNT =α·W·Q v / Q TNT(5)式中,α——蒸汽云爆炸的效率因子;W —为A物质质量(kg);Q V —为A物质热值(KJ/kg);Q TNT —取4.52×106J/kg;W TNT —A物质梯恩梯当量(kg)。

二、举例:对原料罐的粗醚进行蒸气云爆炸(UVCE)事故模拟计算。

假设粗醚储罐发生部分泄漏,沸点较低、挥发度较高的异丙醚泄漏后蒸发量较大,大量蒸发会在泄漏液上空形成爆炸性蒸气云,遇着火源,即可引发爆炸。

危险源基本情况及物料特性数据分别见附表3-4和附表3-5。

安全评价中几个事故模型的概念

安全评价中几个事故模型的概念

安全评价中几个事故模型的概念
蒸气云爆炸(UVCE)模型:蒸气云爆炸是指可燃气体或蒸气与空气的云状混合物在开阔地上空遇到点火源引发的爆炸。

UVCE模型用于定量化模拟评价与分析可燃气体或液化介质的生产或储存场所所可能发生的UVCE事故后果的严重度和危险等级、影响范围。

池火灾(PoolFire)模型:池火灾指可燃液体作为燃料的火灾,比如罐区池火灾主要是由于超载或雷击等原因导致LPG泄漏而形成液池,遇到火源而引起池火灾。

PoolFire模型用于模拟评价与分析池火灾的事故后果的严重度和危险等级、灾害影响范围。

沸腾液体扩展蒸气爆炸(BLEVE)模型:沸腾液体扩展蒸气爆炸指液化介质储罐在外部火焰的烘烤等条件下突然破裂,压力平衡破坏,介质急剧气化,并随即被火焰点燃而产生的爆炸。

BLEVE模型用于模拟评价与分析沸腾液体扩展蒸气爆炸事故的后果严重度、危险等级和灾害影响范围。

凝聚相爆炸(CPE)模型:凝聚相爆炸指炸药等类型的含能材料发生的爆炸。

CPE模型用于模拟评价与分析凝聚相爆炸事故的后果严重度、危险等级和灾害影响和破坏范围。

固体火灾(SolidFire)模型:固体火灾指可燃固体为燃料的火灾。

SolidFire 模型用于模拟评价固体火灾事故后果的严重度、危险等级和灾害影响范围。

泄漏扩散(Leaks)模型:用于模拟评价与分析有毒、有害物质在一定的泄漏模式和扩散环境下的泄漏扩散危害范围。

苯蒸气云爆炸事故模拟分析与安全技术措施

苯蒸气云爆炸事故模拟分析与安全技术措施

苯蒸气云爆炸事故模拟分析与安全技术措施作者:李霜来源:《科技风》2018年第07期摘要:针对苯储罐爆炸产生的安全风险,采用安元科技——蒸气云爆炸(UVCE)事故模拟评价与风险分析系统对伤亡半径、财产损失半径进行预测,并根据预测结果提出安全技术措施,最终达到大幅度降低事件发生后果的目标。

关键词:苯储罐;蒸气云爆炸(UVCE);安全技术措施苯在常温下为一种高度易燃,有香味的无色的液体HYPERLINK"https:///doc/5944437.html"\t"_blank",火灾危险性为甲类。

苯有高的毒性HYPERLINK"https:///doc/5993718.html"\t"_blank",也是一种致癌HYPERLINK"https:///doc/2620622.html"\t"_blank"物质。

蒸气云爆炸(UVCE)是由于气体或易于挥发的液体燃料的大量快速泄露,与周围空气混合形成覆盖很大范围的“预混云”,在某一有限空间遇点火源而导致的爆炸[1]。

本文以某危险化学品企业100m3苯储罐发生意外泄露引发蒸气云爆炸事故为例,采用安元科技——蒸气云爆炸(UVCE)事故模拟评价与风险分析系统软件对其进行定量分析,并根据分析结果提出安全技术措施,为应对突发安全事件提供科学依据。

1 苯储罐概况某危险化学品生产企业苯储罐容积为100m3,密度为0.88×103kg/m3,按照总容积的80%进行计算,最大储存量为70400Kg。

苯蒸馏工段布置在公司现有装置的最东面,四周设有高2.2m的围墙与外界隔开,设有2处进出口。

2 原有安全技术措施(1)储罐罐体(包括附件)每年定期进行检测,保证质量可靠,避免因异常情况损坏,造成事故。

(2)在储罐区设置安全疏散指示标志,一旦发生火灾、爆炸、有毒物料大量泄漏等重大事故时,人员能按指示标志及时、有效、安全地离开危险区,避免人员伤亡。

蒸汽云爆炸伤害半径计算模型

蒸汽云爆炸伤害半径计算模型

C.7蒸汽云爆炸模型分析该工程建设项目原料罐区设100m 3异丁烯储罐2台,如1台不慎发生爆裂,发生火灾爆炸,其气体泄漏量计算公式如下:gh p p p A C Q d L 220+⎪⎪⎭⎫⎝⎛-=ρ式中:Q L ——液体泄漏速度,kg/s ; C d ——液体泄漏系数; A ——裂口面积,m 2; ρ——泄漏介质密度,kg/m 3; P ——容器内介质压力,Pa ; P 0——环境压力,Pa ; g ——重力加速度;h ——裂口之上液位高度,m 。

现假设异丁烯储罐破裂形成80mm ,宽20mm 的长方形裂口,裂口之上液位高度忽略,泄漏时间取1min ,液体密度取670kg/m 3,环境大气压取0.1MPa ,介质压力取0.6MPa ,液体泄漏系数取0.5。

经计算,异丁烯泄漏速度为1.695kg/s ,泄漏量为101.7kg 。

根据荷兰应用科研院提供的蒸汽云爆炸冲击波伤害半径计算公式计算伤害半径:()3/1C S H V N C R ∙∙=式中:R ——损害半径,m ;C S——经验常数,取决于损害等级,具体损害等级见表C-5;N——效率因子,一般取10%;V——参与爆炸的可燃气体体积,m3;H C——高热值,kJ/m3,取240771.7 kJ/m3;表C-5 损害等级表损害等级Cs 人员伤害设备损坏备注1 0.031%死亡于肺部伤害>50%耳膜破裂>50%被碎片击伤。

重创建筑物和设备2 0.061%耳膜破裂。

1%被碎片击伤。

造成建筑物外表的可修复性破坏3 0.15 被玻璃击伤玻璃破碎4 0.4 10%玻璃破碎通过现假设异丁烯储罐破裂并泄漏1min,计算出泄漏量为101.7kg,折算成气体体积为40599.7704m3。

异丁烯的高热值取120772.321kJ/m3。

结合表C-5中C S的值,带入公式,计算出不同损害等级的半径如下:表C-6 损害半径表损害等级Cs 人员伤害设备损坏损害半径(m)备注1 0.03 1%死亡于肺部伤害>50%耳膜破裂>50%被碎片击伤重创建筑物和设备23.662 0.061%耳膜破裂1%被碎片击伤造成建筑物外表的可修复性破坏47.323 0.15 被玻璃击伤玻璃破碎118.34 0.4 10%玻璃破碎315.42从伤害模型的计算结果可以看出:当异丁烯储罐泄漏,假设泄漏时间1min,泄漏的异丁烯全部气化,在爆炸中心周边23.66m范围内的建筑及设备受到重创,人员1%死亡于肺部伤害、>50%耳膜破裂、>50%被碎片击伤;在爆炸中心周边47.23m范围内的建筑物外表将造成可修复性破坏,人员1%耳膜破裂、1%被碎片击伤;在爆炸中心周边118.3m范围内的建筑玻璃破碎,人员可能被玻璃击伤。

蒸气云爆炸事故后果分析

蒸气云爆炸事故后果分析

二、蒸气云爆炸事故后果分析根据荷兰应用科研院TNO(1979)建议,可按下式预测蒸气云爆炸的冲击波损害半径:R=C s(N·E)1/3式中:R—损害半径,m;E—爆炸能量,kJ。

可按下式取:E=VH cV—参与反应的可燃气体的体积m3;H c—可燃气体的高燃烧热值,N—效率因子,其值与燃料浓度持续展开所造成损耗的比例和燃料燃烧所得机械能的数量有关,一般取N=10%C s—经验常数,取决于损害等级,其取值情况见下表表7-14 损害等级表该公司煤气管道布防在整个炼钢、炼铁生产区,现以管径最长,敷设距离最长的一段管道(管径Ф=2000mm,长度L=1000m,转炉煤气管道,起自风机房,终至5万m3转炉煤气柜)发生煤气爆炸事故进行模拟分析。

该段高炉煤气管道的容量约为:3.14×12×1000=3140m3按转炉煤气的H c=8790kJ/m3。

E=VH c=3140×8700=2.73×107kJ蒸气云爆炸的冲击波损害半径计算结果如下:(1)R=C s(N·E)1/3=0.03(0.1×2.73×107)1/3=4.17m(2)R=C s(N·E)1/3=0.06(0.1×2.73×107)1/3=8.34m(3)R=C s(N·E)1/3=0.15(0.1×2.73×107)1/3=20.85m(4)R=C s(N·E)1/3=0.4(0.1×2.73×107)1/3=55.6m由此可知,当管径Ф=2000mm,长度L=1000m,转炉煤气管道泄漏,发生蒸气云爆炸的冲击波伤害、破坏情况见下表表7-16蒸气云爆炸的冲击波伤害、破坏半径表司敷设最长、管径最大的一段高炉煤气管道进行评价,可知,此段煤气管道一旦发生蒸气云爆炸,对周围20.85m范围内人员均会造成不同程度的伤害。

蒸气云模型在安全评价工作中的应用-文档资料

蒸气云模型在安全评价工作中的应用-文档资料

(2) p 1.02( 3 mTNT ) 3.99( 3 mTNT )2 12.6( 3 mTNT )3
r
r
r
(3)R1=1.98×W0.447(学位论文)
ln(p / p0 ) 0.9216 1.5058ln(R) 0.167 ln2 (R) 0.0320 ln3(R)
6. 国内:开始于20世纪80年代。受技术条件和经济条件的限制,只是 初步的研究工作。
7. 《易燃、易爆、有毒重大危险源评价法》(“ 八五”国家科技攻关课 题,有关于蒸气云爆炸模型的描述)
三、蒸气云爆炸相关知识
1. 气云爆炸包括蒸气云爆炸和沸腾液体扩展蒸气爆炸两种。气云爆炸 的共同点是参与的爆炸物质的量一般都比较大(5×103kg以上)。
2. 燃料:最常见的是低分子的碳氢化合物,偶尔也有其它物质(氯乙 烯、异丙醇、氢气)。
3. 伤害形式:云雾区内的爆炸波作用、云雾区外的冲击波作用、高温 燃烧作用、热辐射作用、缺氧造成的窒息作用。
三、蒸气云爆炸相关知识
4. 影响蒸气云爆炸的因素:蒸气云爆炸是一个复杂的物理化学过程, 主要影响因素包括蒸气云特性、周围环境、天气情况、点火源特性。
能够预测大范围内的 由于简化了VCE爆炸的过程
爆炸超压
模拟与预测精度受到影响
相关模型,也叫缩放比率模型, 是依靠实验结果建立起来的模型 ,如TNT模型、TNO模型、ME模 型、CAM模型。
模型简单,易于用于 安全评价中
四、蒸气云爆炸模型
4. 典型的相关模型:TNT模型、TNO多能模型。
5. TNT模型相关知识:目前,对凝聚相爆炸(理想爆源)的研究达到了很 高的水平,已经可以对爆炸场进行有效的预测。在此基础上,研究 者提出了TNT当量的概念,即采用能量相当的法则,将气云爆炸所 产生的冲击波转化为TNT爆炸所产生的冲击波,然后用TNT爆炸的 结果与规律预测气云爆炸的强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LPG罐区定量模拟评价
模拟事故及条件
液化石油气(LPG)一旦大量泄漏,极易与周围空气混合形成爆炸性混合物,如遇到明火引起火灾爆炸,其产生的爆炸冲击波及爆炸热火球热辐射破坏、伤害作用极大。

LPG 罐区发生过的事故类型主要有蒸气云爆炸(UVCE)和沸腾液体扩展蒸气云爆炸(BLEVE)。

蒸气云爆炸(UVCE)是指可燃气体或蒸气与空气的云状混合物在开阔地上空遇到点火源引发的爆炸。

UVCE发生后的危害主要是爆炸冲击波对周围人员、建筑物、储罐等设备的伤害、破坏。

沸腾液体扩展蒸气云爆炸(BLEVE)是指液化气体储罐在外部火焰的烘烤下突然破裂,压力平衡破坏,液化石油气(LPG)急剧气化,并随即被火焰点燃而产生的爆炸。

BLEVE发生后的危害主要是火球热辐射危害,同时爆炸产生的碎片和冲击波也有一定的危害。

恒源石化炼油厂液化气储罐区共有液化气储罐9台,总储量3000 m3,最大储罐1000m3。

蒸气云爆炸(UVCE)定量模拟评价
TNT当量法是一种对UVCE定量评价的主要方法,首先按超压-冲量准则确定人员伤亡区域及财产损失区域。

冲击波超压破坏准则见表1:
表1 冲击波超压破坏、伤害准则
1 发生蒸气云爆炸(UVCE)的LPG的TNT当量W TNT及爆炸总能量E:
LPG的TNT当量:W TNT=αW LPG Q/Q TNT (1)
α为LPG蒸气云当量系数(统计平均值为0.04);
W LPG为蒸气云中LPG质量(在此模拟400 m3储罐,折合约240t);Q为LPG燃烧热,46.5MJ/kg;
Q TNT为TNT爆炸热5.066 MJ/kg;
由式(1)可求得LPG的TNT当量:W TNT=88.1t;
2爆炸冲击波正相最大超压ΔP:
LPG的爆炸冲击波正相最大超压:
(1)
式中,—对比距离。

△P—为冲击波的正相最大超压(kPa);
R—为距UVCE中心距离(m);
W—为TNT质量或TNT当量(kg)。

图1 冲击波的正相最大超压-距UVCE中心距离对数曲线由表1和图1可得出以下结果(表2):
表2 冲击波超压破坏、伤害距离
沸腾液体扩展蒸气云爆炸(BLEVE)定量模拟评价
BLEVE是在LPG储罐暴露于火源时发生的,是由储罐区发生的小型火灾引发的。

BLEVE的基本特点:容器损坏;超热液体的蒸气突然燃烧;蒸气燃烧并形成火球。

BLEVE发生后的最主要危害是产生火球强热辐射,火球当量半径R可由下式计算:
R=2.9W1/3()
火球持续时间t可由下式计算:
t=0.45W1/3()
W:发生BLEVE的LPG质量,单位kg
模拟1000 m3储罐发生BLEVE,其火球当量半径R=244m,持续时间t=38s。

定量模拟评价总结
蒸气云爆炸(UVCE)和沸腾液体扩展蒸气云爆炸(BLEVE)是液化石油气罐区(LPG)发生可能性较大,且危害极大的两种事故类型,石油化工企业多起重特大事故都是这两种事故或次生事故造成的,从以上模拟计算得出的结果(UVCE中等损伤事故距离201-154米m,BLEVE火球当量半径244 m)可见这两种事故一旦发生,其破坏作用是灾难性的,覆盖区域内人员大部分伤亡,设备大部分损坏,原油罐区、渣油罐区、成品油罐区接连发生爆炸和火灾,而且对北侧恒源工业园内临近的企业也会造成很大的危害。

因此针对能够导致这两种事故发生的所有因素都要采取严格的控制措施,制定科学有效的事故应急预案,协助北侧北侧恒源工业园内临近的企业制订并严格执行有效的控制措施,制订协同应急救援预案。

蒸气云爆炸(UVCE)和沸腾液体扩展蒸气云爆炸(BLEVE)发生的形式规模是多种
多样的,灾害覆盖范围随LPG量和自然条件变化会发生一定的变化本章只是对其中一种进行了模拟评价,旨在给企业提供一种方法和给于一定的警示,企业可以参照这种方法模拟分析各种量的这两种事故。

火球覆盖范围图2、 1000 m3LPG储罐发生沸腾液体扩展
蒸汽云爆炸(BLEVE),火球覆盖范围图
如有侵权请联系告知删除,感谢你们的配合。

相关文档
最新文档