配变三相不平衡解决方案及控制策略

合集下载

变压器三相电流不平衡度

变压器三相电流不平衡度

变压器三相电流不平衡度变压器三相电流不平衡度是指变压器三相输入或输出电流的不平衡程度。

在实际应用中,变压器三相电流不平衡度的大小直接影响着变压器的运行和性能。

在本文中,我将深入探讨变压器三相电流不平衡度的原因、影响以及解决方法,以便读者能够全面了解这个主题。

一、原因三相电流不平衡度的产生原因主要有两个方面:电源和负载。

不平衡的电源供电是导致变压器三相电流不平衡的主要原因之一。

供电系统在输电过程中可能发生电压波动,或者存在电源相序连接错误等问题。

这些都会导致变压器接收到的三相电压不平衡,进而引起三相电流不平衡。

不平衡的负载也是造成变压器三相电流不平衡的重要原因。

如果负载过于集中或者部分电器设备工作不正常,都会导致变压器的负载不平衡,从而引发三相电流的不平衡。

二、影响变压器三相电流不平衡度的大小对变压器的运行和性能有重要影响。

电流不平衡会增加变压器的损耗。

当电流不平衡度较大时,变压器的铜损和铁损都会增加,从而降低变压器的运行效率。

电流不平衡会导致变压器的温升不均匀。

不平衡的电流会引起变压器内部部件的不均匀负荷,使得部分部件温升过高,从而影响变压器的寿命。

电流不平衡还会引起变压器的振动和噪声增加,给设备运行和使用环境带来不便。

三、解决方法为了解决变压器三相电流不平衡度的问题,可以从电源和负载两个方面入手。

对电源进行检测和调整是减小电流不平衡的重要手段之一。

可以通过对供电系统的电压和相序进行监测,及时发现问题并进行修复。

对负载进行合理分配是改善电流不平衡的有效方法。

可以采取合理的负载平衡策略,避免电器设备过度连接在单个相线上,或者通过调整负载连接方式来均匀分布负载。

也可以采取一些电力调节装置,如三相平衡变压器,来实现变压器三相电流的平衡。

个人观点和理解变压器三相电流的不平衡度是电力系统中一个重要的问题,直接影响着电力设备的运行和稳定性。

对于电力系统来说,减小三相电流的不平衡度既有助于提高电能的利用效率,又能减少变压器运行过程中的损耗和故障发生率。

不平衡负载下三相四桥臂逆变器的控制与实现

不平衡负载下三相四桥臂逆变器的控制与实现

一、概述在现代电力系统中,逆变器作为电能转换的重要设备,广泛应用于各种领域,如风电、光伏发电、电动汽车等。

三相四桥臂逆变器作为一种常见的逆变器结构,在实际应用中,由于负载不平衡等因素的影响,会对其控制和性能产生一定的影响。

针对三相四桥臂逆变器在不平衡负载下的控制与实现进行研究,对于提高逆变器的稳定性和性能具有重要意义。

二、三相四桥臂逆变器基本结构和工作原理三相四桥臂逆变器是一种常见的逆变器结构,其基本结构由六个功率器件组成,可以实现对三相交流电源的逆变输出。

在正常工作情况下,三相四桥臂逆变器的工作原理是利用PWM技术对输入的直流电压进行调制,从而实现对输出三相交流电压的控制。

在负载平衡的情况下,逆变器可以实现良好的性能。

三、不平衡负载对三相四桥臂逆变器的影响在实际应用中,由于负载的不平衡性,如负载的不对称、不匹配等因素会对三相四桥臂逆变器的工作产生影响。

主要表现在以下几个方面:1. 输出电压波形失真:负载不平衡会导致逆变器输出的三相电压波形失真,影响其稳定性和性能。

2. 电流不平衡:负载不平衡还会导致逆变器输出的三相电流不平衡,存在功率因数低、损耗大等问题。

3. 逆变器保护失效:负载不平衡会加大逆变器内部元件的损耗,使其保护功能失效,从而影响系统的安全性。

四、不平衡负载下三相四桥臂逆变器的控制策略针对不平衡负载下三相四桥臂逆变器的影响,可以采取以下控制策略进行改进和优化:1. 直接控制策略:通过对逆变器输出电压和电流进行实时检测和调整,实现对不平衡负载的即时响应。

2. 功率均衡控制策略:通过对三相输出功率进行均衡调整,实现对负载不平衡的自适应调节,提高逆变器的整体性能。

3. 容错控制策略:在逆变器输出发生不平衡时,引入容错机制,及时对系统进行保护和修复,确保逆变器的稳定运行。

五、不平衡负载下三相四桥臂逆变器的实现技术在实际工程中,对于不平衡负载下三相四桥臂逆变器的实现,可以采用以下技术手段进行:1. 基于DSP的控制算法:利用数字信号处理器(DSP)实现对逆变器的实时控制和调节,提高控制精度和速度。

三相不平衡的原因、危害以及解决措施!

三相不平衡的原因、危害以及解决措施!
• 第四点表现在装置开关和补偿设备的投切 次数的限制,要在设计时将全天的优化方 案进行策略的管理。
• 总之,在进行比例调节系数额设置时,需 要同时考虑功率因数的限制条件以及过补 偿限制的条件。
改进配电网三相不平衡的技术
• 3、增设对三相负荷的检测调整
• 定期开设对三相负荷的检测工作也是非常必要 的。在对三相符合的合理分配以及控制后,相 关部门应当开设检测工作。
三相不平衡的危害
• 1、增加线路的电能损耗 • 在三相四线制供电网络中,电流通过线路导线
时,因存在阻抗必将产生电能损耗,其损耗与 通过电流的平方成正比。
• 当低压电网以三相四线制供电时,由于有单相 负载存在,造成三相负载不平衡在所难免。
• 当三相负载不平衡运行时,中性线即有电流通 过。这样不但相线有损耗,而且中性线也产生 损耗,从而增加了电网线路的损耗。
三相不平衡的危害
• 假如当配变处于三相负载不平衡工况下运行, 负载轻的一相就有富余容量,从而使配变的出 力减少。其出力减少程度与三相负载的不平衡 度有关。
• 三相负载不平衡越大,配变出力减少越多。
• 为此,配变在三相负载不平衡时运行,其输出 的容量就无法达到额定值,其备用容量亦相应 减少,过载能力也降低。假如配变在过载工况 下运行,即极易引发配变发热,严重时甚至会 造成配变烧损。
• 一是需要注意到电流的治理应当有两个内容,一个 是补偿功率因数,一个是调节三相电流不平衡,这 两者共同确定了补偿所需要的无功功率。
• 第二点,在实际的工程施工时,应当采用全容性的 治理方式,与电感补偿相区分,避免出现严重过补 偿的情况。
改进配电网三相不平衡的技术
• 第三点是需要考虑到负荷是会随着时间的 变化而变化的,基于这种特性,补偿量也 应该根据负荷的变化进行适当的调整。

三相不平衡补偿和谐波补偿

三相不平衡补偿和谐波补偿

三相不平衡补偿和谐波补偿1.引言1.1 概述三相电力系统是工业和家庭供电中最常用的电力系统之一,其稳定运行是保证电力质量和供电可靠性的关键。

然而,在实际运行中,三相电力系统常常面临不平衡和谐波问题。

不平衡是指三相电源中电压、电流或负载之间的不平衡分布。

三相不平衡会引起电网负荷失衡、电流不对称和功率的浪费,进而导致电力设备的过度负荷和寿命下降。

而谐波则是指电源输出电压或电流中包含非基波频率的波形分量,其产生主要源于非线性电气负载。

谐波问题不仅会导致电网电压失真,还会产生电磁干扰、损坏设备和影响电力系统的稳定性。

因此,针对三相不平衡和谐波问题的补偿已成为电力系统研究的热点之一。

三相不平衡补偿旨在通过调整电压或电流的相位和幅值,减少不平衡引起的功率损耗和设备寿命下降。

谐波补偿则是通过在电力系统中接入谐波滤波器或使用谐波抑制技术,减少谐波波形分量,提高电网电压质量和设备的工作可靠性。

本文将首先介绍三相不平衡补偿的定义和影响,包括三相电压和电流的不平衡度量方法以及不平衡电流引起的各种问题。

随后,将详细探讨三相不平衡补偿的原理和方法,包括基于电压源和电流源的补偿策略。

接着,将对谐波问题的定义和影响进行讨论,包括谐波电压和电流的含义以及谐波对电力系统的影响。

最后,将详细介绍谐波补偿的原理和方法,包括谐波滤波器的设计和使用。

通过本文的阐述,读者将能够全面了解三相不平衡和谐波问题的本质和影响,并学习到如何进行有效的补偿措施,以提高电力系统的运行质量和可靠性。

另外,本文还将重点强调三相不平衡补偿和谐波补偿的重要性,并探讨其在实际应用中的效果和前景。

1.2 文章结构文章结构部分内容:本文将从三相不平衡补偿和谐波补偿两个方面展开讨论。

首先,在正文部分将详细介绍三相不平衡补偿的定义和影响,以及其原理和方法。

其次,将探讨谐波问题的定义和影响,并介绍谐波补偿的原理和方法。

最后,在结论部分将强调三相不平衡补偿的重要性,并评述谐波补偿的效果和应用。

低压台区三相负荷不平衡治理与监管优化

低压台区三相负荷不平衡治理与监管优化

低压台区三相负荷不平衡治理与监管优化摘要:当前电器类型多样,使用频繁,人们在享受电器所带来的生活便利的同时,也面临单相负荷激增导致低压配电网三相负荷不平衡,从而影响供电稳定性的现实困扰。

在解决电网三相不平衡问题方面,主要采取在负荷侧或电网侧安装静止无功补偿器、安装有源滤波器等负荷补偿装置,达到三相不平衡治理或抑制的目的,但成本投入较高。

三相不平衡问题改善不明显。

本文针对低压台区三相负荷不平衡治理及监管问题展开详细探讨,以期探明低压台区三相负荷不平衡的有效治理思路和监管举措。

关键词:低压台区;三相负荷不平衡;综合整治低压配网中单相用户负荷特征极为复杂,且用户用电习惯差异较大,带有用电随机、用电同时率低等特征,使得低压台区三相负荷不平衡问题更为突出,一旦出现三相负荷不平衡问题,使得配电变压器处于不平衡运作状态,增加电能损耗。

且因局部温度的提升,影响变压器的正常使用,缩短其寿命,影响用户端用电设备的正常使用。

低压台区三相不平衡问题的治理探讨也更为深入,在三相负荷不平衡治理与监管中应做到技术的持续改良和监管力度的持续加大,以实现对三相负荷不平衡导致的各种问题的综合治理。

1低压台区三相负荷不平衡危害低压台区三相负荷不平衡具有较大危害。

最主要的直接的危害是随着三相电流不平衡度的增加,重负荷相的线路电流模值处于增大状态,引发较大的功率损耗,而轻负荷相的线路电流模局不断变小,功率损耗减小,零线电流处于快速增加状态[1],功率损耗明显加大。

具体来说,低压台区三相负荷不平衡对低压台区配电变压器有影响,严重影响配电网、变压器及低压线路的安全运行。

低压台区三相负荷不平衡对低压台区线损有影响,三相不平衡程度的加剧,导致低压网线损率明显上升,对比三相电流平衡时一般增加 4.5%-5%,严重影响低压台区经济运行。

低压台区三相负荷不平衡对低压台区电能质量有一定影响,若台区首端电流不平衡度在50%以上,线路末端电压偏移度加大,甚至超出电压偏移下限值,导致线路后端用户电压偏低,影响用户正常用电。

配变三相不平衡解决方案及控制策略解析

配变三相不平衡解决方案及控制策略解析

配变三相不平衡解决方案及控制策略解析摘要:配电网建设已经成为当前现代化建设中的关键工作,对于提升电力系统运行可靠性具有重要意义,同时为社会用电安全性与稳定性的提升奠定了基础。

在配电网运行的过程中,通常会出现三相不平衡的问题,导致线路损耗持续增加,给电力企业造成严重的经济损失。

此外,电力设备也会受到三相不平衡的影响,出现故障或者损毁问题,给配电网的正常运转带来极大的阻碍。

本文将通过分析配变三相不平衡的影响,探索配变三相不平衡解决方案及控制策略,为电力工作人员提供参考与建议。

关键词:配电变压器;三相不平衡;解决方案;控制策略在配电线路与用户连接中,配电变压器是最为关键的设备之一,对于电能的合理分配尤为重要,因此也成了电力运行维护中的重点设备。

用户用电随机性和接电三相负荷不均等,是造成三相电流不平衡的主要原因,给电网和设备运行带来影响的同时,也会降低用户的用电质量,甚至引发安全事故威胁人的生命安全。

为此,需要针对配变三相不平衡产生的原因,制定针对性解决方案,以满足配电网的运行要求,提升供电服务质量的同时,保障电力企业的经济效益。

电容器调补装置、静止无功发生器、晶闸管复合式换相开关的应用,能够有效解决配变三相不平衡问题。

尤其是晶闸管复合式换相开关的运用,可以从总线控制、直线控制、三相进线控制、预测控制和低电压控制等多个层次进行有效控制。

1、配变三相不平衡的影响如果三相不平衡问题出现在配电变压器中,那么就会导致配电变压器和线路损耗增加,给电网企业带来严重的经济损失。

其中配电变压器损耗包括了零序电流损耗和铜损。

三相不平衡问题还会影响运行安全,导致变压器负荷高的一相出现诸多故障,比如接点发热、缺相和密封胶垫劣化等。

钢铁铁件和油箱壁中有零序磁通通过时,会导致变压器温度上升,引起配电变压器损毁,威胁运行安全。

另一方面,单相设备无法正常用电的问题也是由于三相不平衡引发的,用户设备会由于过电压而倍损毁。

2、配变三相不平衡解决方案及控制策略2.1 静止无功发生器大功率电力电子与控制技术,是静止无功发生器的核心技术,可以实现系统无功的动态补偿以及三相电流和合理调整。

浅谈解决三相变压器直流电阻不平衡率的问题

浅谈解决三相变压器直流电阻不平衡率的问题

运行与维护146丨电力系统装备 2018.5Operation And Maintenance2018年第5期2018 No.5电力系统装备Electric Power System Equipment会在汽轮机发电机组的工作环境产生不平衡的振动。

汽轮机动叶片的损坏也会导致蒸汽流通不均,从而造成不规则振动。

汽轮机的轴承结构没有固定好,也会引发振动。

油系统中的润滑油系统中,由于润滑油掺入杂质或者温度过高,会导致汽轮机的下轴瓦产生轴振动。

再加上发电机的电流变化而导致的电机轴振动,汽轮机在工作会受到各种振动的影响。

汽轮机振动会对其轴承、汽缸等结构薄弱的连接部位造成损坏,最后甚至出现共振以及复振现象,严重威胁到汽轮机运行的安全稳定。

4 汽轮机常见问题的对策4.1 油系统的常见对策在故障发生时,要及时正确地分析产生问题的原因,做出应对。

首先要加强油质管理,避免堵塞。

如果润滑油系统或者密封油系统不能够正常工作时,应该及时关闭并启动备用油系统,迅速检查故障,分析产生原因。

情况紧急时,及时停止汽轮机的工作,进行紧急检查和抢修,避免产生巨大的损失。

一旦出现因为油系统故障而引起的火灾事故,应该第一时间切断油供给,并将各个油箱内的油紧急排放到预先准备好的事故油箱里,防止事故扩大。

同时,要组织紧急救火措施或求助火警,在保证人员安全的前提下,尽量减小财产损失。

火灾的产生往往是由于油系统的泄漏所引起,短时间内就会产生大面积的火势。

在出现火灾时,要稳住阵脚,及时通知消防人员。

在日常维护中,要加强火灾安全的培训,提高防范意识。

4.2 汽轮机叶片问题的对策汽轮机叶片问题是最常见的问题,在日常维护中就要加强对其维护管理,多检查叶片连接点等设备,及时对叶片进行加固。

对汽轮机内部进行检查,防止存在叶片碎片影响运行。

在安装时加强监控,确保质量合格。

如果叶片部分产生裂痕,要及时焊接,提高叶片的使用寿命和稳定性。

4.3 汽轮机振动问题的对策在汽轮机带动发电机发电时,控制好转子的平衡,对动叶片等出现损坏的部分及时进行焊接。

三相逆变器并联控制主从控制策略

三相逆变器并联控制主从控制策略

三相逆变器并联控制主从控制策略1. 引言1.1 概述本文旨在研究并探讨三相逆变器并联控制主从控制策略。

随着电力系统的快速发展和需求增加,三相逆变器在可再生能源领域以及工业应用中得到了广泛应用。

同时,并联控制作为一种提升系统性能和可靠性的手段,也受到了越来越多的关注。

因此,通过深入了解三相逆变器控制策略以及主从控制原理,进一步研究并验证并联控制的必要性与优势,对于提高电力系统的效率和可靠性具有重要意义。

1.2 文章结构本文共分为五个部分进行阐述。

首先,在引言部分,我们将概述文章的背景和意义,并对文章内容进行简要介绍。

接下来,在“二、三相逆变器控制策略”中,我们会介绍三相逆变器的基本原理,并列举出其他常见的控制策略。

然后,在“三、主从控制策略及其设计原理”一节中,我们将详细讨论主从控制架构的概述、工作原理以及应用范围和局限性。

在“四、实验研究与结果分析”中,我们将介绍实验的设置与测试平台,并对不同并联控制策略的性能进行对比分析。

最后,在“五、结论与展望”部分,我们会总结本次研究的工作成果,并展望未来可能的研究方向。

1.3 目的本文的目的在于提供关于三相逆变器并联控制主从控制策略方面的详细阐述和深入理解。

通过本文内容的阅读,读者将能够了解三相逆变器控制策略的基本原理和常见方法,并深入学习主从控制策略的设计原理以及其在工程领域中的应用。

此外,通过对不同并联控制策略性能进行实验研究与结果分析,读者还可以对这些控制策略的性能进行更加全面地了解和比较。

最终,希望通过本文的撰写能够为相关领域的研究工作提供一定参考价值,并促进该领域技术水平的进一步提高。

2. 三相逆变器控制策略:2.1 三相逆变器基本原理:三相逆变器是一种电力电子设备,用于将直流电源转换为交流电源。

其基本原理是通过控制开关器件的导通和断开来改变输出电压的形式和幅值。

在三相逆变器中,通常采用六个双向开关(IGBT或MOSFET)来实现对正弦波输出的控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配变三相不平衡解决方案及控制策略
发表时间:2018-07-02T11:46:01.237Z 来源:《电力设备》2018年第8期作者:刘宝娟袁林涛[导读] 摘要:现阶段,我国的经济发展的十分的迅速,电力工程的发展也有了很大的提高。

国网山东省电力公司枣庄供电公司山东枣庄 277100 摘要:现阶段,我国的经济发展的十分的迅速,电力工程的发展也有了很大的提高。

当前,农村部分地区仍然存在着台区三相负荷不平衡现象,特别是季节性、时段性用户用电时间不统一造成配变三相负荷不平衡,通过人工调整三相负荷平衡是很难实现的,要实现真正三相负荷平衡,必须采用自动化方式完成,采用自动调节三相负荷平衡也解决了因台区负荷分布变化、新增用户等原因造成的三相负荷不
平衡现象。

自动调节三相不平衡装置的推出是适应当前智能电网建设要求,通过调整三相负荷分配,降低三相负荷不平衡率,可以有效平衡低压线路电流,解决偏负荷相电流大压降高的问题,从而提高末端电压,降低线损。

关键词:配变三相不平衡;解决方案;控制策略引言
三相不平衡使我们评价电能质量的重要指标。

就目前而言,当前造成三项不平衡的因素主要可以分为事故性和正常性两种类型,其中事故性的主要诱因是电路系统故障,而正常性则是由三相元件、线路参数以及负荷等因素的不对称引起的。

属于允许长期存在或长时间存在的三项不平衡现象。

在低压电网中,配电变压器是中心枢纽,而三相负荷的平均分配则是确保电能质量、为用电单位输出高安全系数电能的重要保障。

近年来,国家采取了诸多措施改变农村等偏远地区低压电网状况,使配电台区的供电能力和电压质量有了一定程度的提高。

但三相负荷不平衡这一问题仍将导致低压电网的可靠性与稳定性降低、电能质量差、线损率与故障率高,甚至影响电力系统的安全运行。

1基本概念
在电路理论中,根据供电是系统的电量是否对称将其分为了对称系统和不对称系统。

其中对称系统表示的电动势、电压以及电流等数值大小相等,而且彼此的相互移动角度均为2π/m。

此外,根据多相系统是否平衡的特点,又可以将其分为多相平衡系统和多相不平衡系统与不平衡的,两者的根本区别在于电路系统中的功率是都根据时间的变动而变动,若变动,则是不平衡系统,若不变动,则是平衡系统。

最后,我们还应该明白系统不对称的多相系统并不是衡量其是否平衡的标准。

例如,在不对称二相系统中,其主要组成单元为两个大小相等,夹角互为90度角的电动势,这种电路的对称性与平衡性则是相互对应。

而在单相系统中,其功率受时间变化的影响,波动范围为:p1+1/cosφ,p1-1/cosφ。

其中p代表系统的有功功率。

这种电路的对称性和平衡性则不能对应。

但是,本文的主要目的是为了论述三相系统的不平衡,所以将“不平衡”和“不对称”定义为同种含义。

2配变三相不平衡的危害
2.1影响电能质量、危及安全
对电能质量的影响主要体现在由于中性点漂移引起三相电压不对称。

当配电变压器在三相负荷不对称运行时,变压器次级线圈发生三相电流运行异常,异常现像导致中性线产生零序电流。

此类现状下,使得三相电流电压对称性出现异常,三相电流中性点产生位移,这时将出现三相电压不对称的电能质量问题。

当配电变压器长期处于不平衡运行时容易造成如下问题:1)低压相电用电户电器设备,因电压异常现象无法正常应用。

高压相电用电户,电器设备则因电压变动存在设备烧坏的可能性。

2)三相电流运行异常,造成中性线出现零序电流。

零序电流的移动,导致中性线产生电流。

最终造成中性线路熔断,相电压运行失效,转换为线电压。

此类现状下,对于用电设备以及操作人员的人身安全,都造成了较大的危害。

3)电流负荷较大区域,最终用电线路在供电的过程中,产生了大量的热能。

热能现象使得用电线路绝缘性快速降低,最终造成人员触电等危害。

4)三相电流不平衡运行时间加长,超负荷区域负载超限。

最终造成相电导线熔断,电器设备烧毁。

严重时可能造成变压器设备的爆炸等后果,严重影响电网的安全运行。

2.2配变产生零序电流
配变在三相负荷不平衡工况下运行,将产生零序电流,不平衡度越大,则零序电流也越大。

运行中的配变若存在零序电流,则铁芯中将产生零序磁通(高压侧没有零序电流),迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。

配变的绕组绝缘因过热而加快老化,导致设备寿命降低,同时,零序电流的存在也会增加配变的损耗。

2.3增加线路的电能损耗
在三相四线制供电网络中,电流通过线路导线时因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。

当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。

当线路三相负载不平衡运行时,中性线即有电流通过,这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。

3配变三相不平衡的控制措施
3.1换相控制策略
基于台区配变终端的三相不平衡治理系统换相控制策略是关键。

配变终端根据设定的周期定时计算三相不平衡率,当计算值大于设定的三相不平衡门槛值时,将对分散安装的换相开关进行控制换相。

首先找出配变低压侧三相电流中的最大值及其所在相序、最小值及其所在相序以及中间值所在相序,然后查寻是否有换相开关所带负荷位于配变低压侧三相电流最大值和中间值所在相序,若无本轮调节结束。

若存在则遍历所有符合条件的换相开关,将换相开关负荷所在相序为转出相、配变低压侧三相电流中的最小值所在相序为转入相,计算出转换后的三相不平衡率,该值小于转换前的三相不平衡率则存入可控队列。

3.2预测控制策略
换相开关根据采集的电流值,实时调整不平衡负载的方式节能效果最好,但换相动作过于频繁会给用户生活带来干扰,例如引起白炽灯跳闪等现象发生。

预测控制策略是基于用户历史负荷数据,采用时间序列分析、模糊理论等算法对未来负荷变化情况作出预测,在凌晨等非高峰时段调整换相开关,避免在用电高峰期的频繁换相给居民生活带来影响。

系统对用电随机性的准确预测是影响治理效果的主要因素,换相开关的提前或滞后动作减少了对用户的影响,但总体来说牺牲了节能效果。

3.3加强对配变的监测,形成闭环管理
加大配变监测终端的覆盖率,通过配变监测计量系统,及时查获配电变压器的三相电压、电流、有功功率、有功电量、负载率和不平衡度等实时数据,经过统计分析得到相应的结果,可以为三相不平衡的整改提供所需的数据,根据这些数据,可以及时做出整改措施。

也能够对调整以后的配电变压器运行状况时时刻刻进行跟踪监测,及时发现配电变压器运行过程中存在的问题并上报上级部门,形成闭环管理。

结语
本文提出了一种用于配电变压器三相不平衡低压侧负荷改接的最优调节算法。

该算法在用电采集系统的基础上实现,算法同时加入了经济效益分析计算功能,可轻易实现计算机大规模分析。

通过采集平均电流计算负荷调节系数的方法,克服了负荷波动大导致实际负荷不平衡度测量不准确的问题。

实例分析表明,本方法具有很强的实用性,可在配电网中大规模推广。

参考文献
[1]陈超,荣军,杨学海,杨超,刘朝发,王继尧.屈百达,潘文英.三相逆变器的建模及其控制[J].电源技术,2014,(02):152-155.
[2]张明,谢珊珊,罗云峰.低压配电网三相负荷不平衡优化模型的研究[J].武汉科技大学学报:自然科学版,2015,41(1):59-62.
[3]张文斌,赵维,熊星等.基于三相负荷平衡控制的电网节能降损技术[J].农村电气化,2014,(8):13-15.
[4]敖然,吕会军,王剑等.配网三相不平衡补偿分析[J].华北电力技术,2013,(5):54-57.
[5]田一焜.农村低压电网三相负荷不平衡运行的危害及其防范措施[J].科技展望,2014,24(18):28.
[6]孙国苹,孙海燕.浅谈低压三相负荷不平衡的危害[J].中国电力教育,2010年管理论丛与技术研究专刊:485-486.。

相关文档
最新文档